In this paper, we have obtained exact analytical solutions for the bound states of a graphene Dirac electron in magnetic fields with various q-parameters under an electrostatic potential. In order to solve the time-independent Dirac–Weyl equation, the Nikoforov–Uvarov (NU) and Frobenius methods have been used. We have also investigated the thermodynamic properties by using the Hurwitz zeta function method for one of the states. Finally, some of the numerical results are also shown.
Mahdi Eshghi 1, 2 ; Hosein Mehraban 1
@article{CRPHYS_2017__18_1_47_0, author = {Mahdi Eshghi and Hosein Mehraban}, title = {Exact solution of the {Dirac{\textendash}Weyl} equation in graphene under electric and magnetic fields}, journal = {Comptes Rendus. Physique}, pages = {47--56}, publisher = {Elsevier}, volume = {18}, number = {1}, year = {2017}, doi = {10.1016/j.crhy.2016.06.002}, language = {en}, }
TY - JOUR AU - Mahdi Eshghi AU - Hosein Mehraban TI - Exact solution of the Dirac–Weyl equation in graphene under electric and magnetic fields JO - Comptes Rendus. Physique PY - 2017 SP - 47 EP - 56 VL - 18 IS - 1 PB - Elsevier DO - 10.1016/j.crhy.2016.06.002 LA - en ID - CRPHYS_2017__18_1_47_0 ER -
Mahdi Eshghi; Hosein Mehraban. Exact solution of the Dirac–Weyl equation in graphene under electric and magnetic fields. Comptes Rendus. Physique, Volume 18 (2017) no. 1, pp. 47-56. doi : 10.1016/j.crhy.2016.06.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.06.002/
[1] Science, 306 (2004), pp. 666-669
[2] Rev. Mod. Phys., 81 (2009), pp. 109-162
[3] Rev. Mod. Phys., 84 (2012), pp. 1067-1125
[4] Phys. Rev. B, 73 (2006)
[5] Phys. Rev. Lett., 98 (2007)
[6] Physica E, 42 (2009), p. 70
[7] J. Phys. Condens. Matter, 21 (2009)
[8] Phys. Rev. B, 81 (2010)
[9] J. Phys. Condens. Matter, 23 (2011), p. 245304
[10] Phys. Lett. A, 379 (2015), pp. 907-911
[11] Phys. Rev. D, 85 (2012)
[12] Phys. Rev. A, 89 (2014)
[13] Phys. Lett. A, 378 (2014) no. 30–31, p. 2317
[14] J. Phys. Condens. Matter, 19 (2007), p. 406231
[15] J. Appl. Phys., 109 (2011)
[16] Phys. Rev. Lett., 98 (2007)
[17] J. Math. Anal. Appl., 158 (1991), pp. 63-79
[18] Special Functions of Mathematical Physics, Birkhäuser Verlag, Basel, Switzerland, 1988
[19] Int. J. Theor. Phys., 48 (2009), p. 337
[20] Chin. Phys. B, 21 (2012) no. 11, p. 110302
[21] Tables of Integrals, Series, and Products, Academic Press, New York, 1994
[22] Phys. Rev. A, 14 (1976), pp. 2363-2366
[23] Special Functions: A Unifield Theory Based in Singularities, Oxford University Press, New York, 2000
[24] J. Phys. Condens. Matter, 21 (2009), p. 455305
[25] Phys. Rev. B, 84 (2011)
[26] Heun's Differential Equations, Oxford University Press, 1995
[27] Eur. Phys. J. C, 72 (2012), p. 2051
[28] Phys. Rev. B, 75 (2007)
[29] Phys. Rev. B, 77 (2008)
[30] Phys. Rev. B, 81 (2010)
[31] Microelectron. J., 40 (2009), p. 716
[32] Phys. B, 433 (2014), p. 28
[33] Math. Methods Appl. Sci., 39 (2016) no. 6, p. 1599
[34] Statistical Mechanics, Pergamon Press, Oxford, UK, 1972
[35] J. Phys. Condens. Matter, 19 (2007), p. 256203
[36] Electron. J. Theor. Phys., 12 (2015) no. 32, p. 1
[37] Ten Physical Applications of Spectral Zeta Functions, Springer-Verlag, Berlin, Heidelberg, 1995
[38] Electron. J. Theor. Phys., 12 (2015) no. 32, p. 1
[39] Physica E, 69 (2015), p. 153
Cité par Sources :
Commentaires - Politique