Comptes Rendus
Original article
Exact solution of the Dirac–Weyl equation in graphene under electric and magnetic fields
Comptes Rendus. Physique, Volume 18 (2017) no. 1, pp. 47-56.

In this paper, we have obtained exact analytical solutions for the bound states of a graphene Dirac electron in magnetic fields with various q-parameters under an electrostatic potential. In order to solve the time-independent Dirac–Weyl equation, the Nikoforov–Uvarov (NU) and Frobenius methods have been used. We have also investigated the thermodynamic properties by using the Hurwitz zeta function method for one of the states. Finally, some of the numerical results are also shown.

Publié le :
DOI : 10.1016/j.crhy.2016.06.002
Mots clés : Graphene, Dirac–Weyl equation, Nikoforov–Uvarov method

Mahdi Eshghi 1, 2 ; Hosein Mehraban 1

1 Faculty of Physics, Semnan University, Semnan, Iran
2 Department of Physics, Imam Hosein Comprehensive University, Tehran, Iran
@article{CRPHYS_2017__18_1_47_0,
     author = {Mahdi Eshghi and Hosein Mehraban},
     title = {Exact solution of the {Dirac{\textendash}Weyl} equation in graphene under electric and magnetic fields},
     journal = {Comptes Rendus. Physique},
     pages = {47--56},
     publisher = {Elsevier},
     volume = {18},
     number = {1},
     year = {2017},
     doi = {10.1016/j.crhy.2016.06.002},
     language = {en},
}
TY  - JOUR
AU  - Mahdi Eshghi
AU  - Hosein Mehraban
TI  - Exact solution of the Dirac–Weyl equation in graphene under electric and magnetic fields
JO  - Comptes Rendus. Physique
PY  - 2017
SP  - 47
EP  - 56
VL  - 18
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.06.002
LA  - en
ID  - CRPHYS_2017__18_1_47_0
ER  - 
%0 Journal Article
%A Mahdi Eshghi
%A Hosein Mehraban
%T Exact solution of the Dirac–Weyl equation in graphene under electric and magnetic fields
%J Comptes Rendus. Physique
%D 2017
%P 47-56
%V 18
%N 1
%I Elsevier
%R 10.1016/j.crhy.2016.06.002
%G en
%F CRPHYS_2017__18_1_47_0
Mahdi Eshghi; Hosein Mehraban. Exact solution of the Dirac–Weyl equation in graphene under electric and magnetic fields. Comptes Rendus. Physique, Volume 18 (2017) no. 1, pp. 47-56. doi : 10.1016/j.crhy.2016.06.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.06.002/

[1] K.S. Novoselov; A.K. Geim; S.V. Morozov; D. Jiang; S.V. Dobonos; I.V. Grigorieva Science, 306 (2004), pp. 666-669

[2] A.H. Castro Neto; F. Guinea; N.M.R. Peres; K.S. Novoselov; A.K. Giem Rev. Mod. Phys., 81 (2009), pp. 109-162

[3] V.N. Kotov; B. Uchoa; V.M. Pereira; F. Guinea; A.H. Castro Neto Rev. Mod. Phys., 84 (2012), pp. 1067-1125

[4] N.M.R. Peres; A.H. Castro Neto; F. Guinea Phys. Rev. B, 73 (2006)

[5] A. De Martino; L.D. Anna; R. Egger Phys. Rev. Lett., 98 (2007)

[6] N. Myoung; G. Ihm Physica E, 42 (2009), p. 70

[7] T.K. Ghosh J. Phys. Condens. Matter, 21 (2009)

[8] Y.P. Bliokh; V. Freilikher; F. Nori Phys. Rev. B, 81 (2010)

[9] E. Milpas; M. Torres; G. Murguia J. Phys. Condens. Matter, 23 (2011), p. 245304

[10] L.G. De Silva Leite; C. Filgueiras; D. Cogollo; Edilberto O. Silva Phys. Lett. A, 379 (2015), pp. 907-911

[11] N. Sadeghi; F. Taghinavaz Phys. Rev. D, 85 (2012)

[12] R.R. Hartmann; M.E. Portnoi Phys. Rev. A, 89 (2014)

[13] J.E.O. De Souza; C.A. de Lima Ribeiro; C. Furtado Phys. Lett. A, 378 (2014) no. 30–31, p. 2317

[14] N.M.R. Peres; E.V. Castro J. Phys. Condens. Matter, 19 (2007), p. 406231

[15] Y. Song; Y. Guo J. Appl. Phys., 109 (2011)

[16] P.G. Silvestrov; K.B. Efetov Phys. Rev. Lett., 98 (2007)

[17] A. Arai J. Math. Anal. Appl., 158 (1991), pp. 63-79

[18] A.F. Nikoforov; V.B. Uvarov Special Functions of Mathematical Physics, Birkhäuser Verlag, Basel, Switzerland, 1988

[19] C. Tezcan; R. Sever Int. J. Theor. Phys., 48 (2009), p. 337

[20] S.M. Ikhdair; M. Hamzavi Chin. Phys. B, 21 (2012) no. 11, p. 110302

[21] I.S. Gradshteyn; I.M. Ryzhik Tables of Integrals, Series, and Products, Academic Press, New York, 1994

[22] R.I. Greene; C. Adrich Phys. Rev. A, 14 (1976), pp. 2363-2366

[23] S.Yu. Slavyanov; W. Lay Special Functions: A Unifield Theory Based in Singularities, Oxford University Press, New York, 2000

[24] S. Kuru; J. Negro; L.M. Nieto J. Phys. Condens. Matter, 21 (2009), p. 455305

[25] A.O. Slobodeniuk; S.G. Sharapov; V.M. Lojtev Phys. Rev. B, 84 (2011)

[26] A. Ronveaux Heun's Differential Equations, Oxford University Press, 1995

[27] E.R. Figueiredo Medeiros; R. Bezerra de Mello Eur. Phys. J. C, 72 (2012), p. 2051

[28] A. Matulis; M. Peters Phys. Rev. B, 75 (2007)

[29] M. Tahir; K. Sabeeh Phys. Rev. B, 77 (2008)

[30] R. Nasir; K. Sabeeh; M. Tahir Phys. Rev. B, 81 (2010)

[31] A.R. Wright; J. Liu; Z. Ma; Z. Zeng; W. Xu; C. Zhang Microelectron. J., 40 (2009), p. 716

[32] J.S. Ardenghi; P. Bechthold; E. Gonzalez; P. Jasen; A. Juan Phys. B, 433 (2014), p. 28

[33] M. Eshghi; H. Mehraban Math. Methods Appl. Sci., 39 (2016) no. 6, p. 1599

[34] R.K. Patria Statistical Mechanics, Pergamon Press, Oxford, UK, 1972

[35] M.-A. Dariescu; C. Dariescu J. Phys. Condens. Matter, 19 (2007), p. 256203

[36] A. Boumali Electron. J. Theor. Phys., 12 (2015) no. 32, p. 1

[37] E. Elizalde Ten Physical Applications of Spectral Zeta Functions, Springer-Verlag, Berlin, Heidelberg, 1995

[38] A. Boumali Electron. J. Theor. Phys., 12 (2015) no. 32, p. 1

[39] M.V. Cheremisin Physica E, 69 (2015), p. 153

Cité par Sources :

Commentaires - Politique