Comptes Rendus
Original article
Exact solution of the Dirac–Weyl equation in graphene under electric and magnetic fields
Comptes Rendus. Physique, Prizes of the French Academy of Sciences 2015 / Prix de l'Académie des sciences 2015, Volume 18 (2017) no. 1, pp. 47-56.

In this paper, we have obtained exact analytical solutions for the bound states of a graphene Dirac electron in magnetic fields with various q-parameters under an electrostatic potential. In order to solve the time-independent Dirac–Weyl equation, the Nikoforov–Uvarov (NU) and Frobenius methods have been used. We have also investigated the thermodynamic properties by using the Hurwitz zeta function method for one of the states. Finally, some of the numerical results are also shown.

Publié le :
DOI : 10.1016/j.crhy.2016.06.002
Mots-clés : Graphene, Dirac–Weyl equation, Nikoforov–Uvarov method

Mahdi Eshghi 1, 2 ; Hosein Mehraban 1

1 Faculty of Physics, Semnan University, Semnan, Iran
2 Department of Physics, Imam Hosein Comprehensive University, Tehran, Iran
@article{CRPHYS_2017__18_1_47_0,
     author = {Mahdi Eshghi and Hosein Mehraban},
     title = {Exact solution of the {Dirac{\textendash}Weyl} equation in graphene under electric and magnetic fields},
     journal = {Comptes Rendus. Physique},
     pages = {47--56},
     publisher = {Elsevier},
     volume = {18},
     number = {1},
     year = {2017},
     doi = {10.1016/j.crhy.2016.06.002},
     language = {en},
}
TY  - JOUR
AU  - Mahdi Eshghi
AU  - Hosein Mehraban
TI  - Exact solution of the Dirac–Weyl equation in graphene under electric and magnetic fields
JO  - Comptes Rendus. Physique
PY  - 2017
SP  - 47
EP  - 56
VL  - 18
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.06.002
LA  - en
ID  - CRPHYS_2017__18_1_47_0
ER  - 
%0 Journal Article
%A Mahdi Eshghi
%A Hosein Mehraban
%T Exact solution of the Dirac–Weyl equation in graphene under electric and magnetic fields
%J Comptes Rendus. Physique
%D 2017
%P 47-56
%V 18
%N 1
%I Elsevier
%R 10.1016/j.crhy.2016.06.002
%G en
%F CRPHYS_2017__18_1_47_0
Mahdi Eshghi; Hosein Mehraban. Exact solution of the Dirac–Weyl equation in graphene under electric and magnetic fields. Comptes Rendus. Physique, Prizes of the French Academy of Sciences 2015 / Prix de l'Académie des sciences 2015, Volume 18 (2017) no. 1, pp. 47-56. doi : 10.1016/j.crhy.2016.06.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.06.002/

[1] K.S. Novoselov; A.K. Geim; S.V. Morozov; D. Jiang; S.V. Dobonos; I.V. Grigorieva Science, 306 (2004), pp. 666-669

[2] A.H. Castro Neto; F. Guinea; N.M.R. Peres; K.S. Novoselov; A.K. Giem Rev. Mod. Phys., 81 (2009), pp. 109-162

[3] V.N. Kotov; B. Uchoa; V.M. Pereira; F. Guinea; A.H. Castro Neto Rev. Mod. Phys., 84 (2012), pp. 1067-1125

[4] N.M.R. Peres; A.H. Castro Neto; F. Guinea Phys. Rev. B, 73 (2006)

[5] A. De Martino; L.D. Anna; R. Egger Phys. Rev. Lett., 98 (2007)

[6] N. Myoung; G. Ihm Physica E, 42 (2009), p. 70

[7] T.K. Ghosh J. Phys. Condens. Matter, 21 (2009)

[8] Y.P. Bliokh; V. Freilikher; F. Nori Phys. Rev. B, 81 (2010)

[9] E. Milpas; M. Torres; G. Murguia J. Phys. Condens. Matter, 23 (2011), p. 245304

[10] L.G. De Silva Leite; C. Filgueiras; D. Cogollo; Edilberto O. Silva Phys. Lett. A, 379 (2015), pp. 907-911

[11] N. Sadeghi; F. Taghinavaz Phys. Rev. D, 85 (2012)

[12] R.R. Hartmann; M.E. Portnoi Phys. Rev. A, 89 (2014)

[13] J.E.O. De Souza; C.A. de Lima Ribeiro; C. Furtado Phys. Lett. A, 378 (2014) no. 30–31, p. 2317

[14] N.M.R. Peres; E.V. Castro J. Phys. Condens. Matter, 19 (2007), p. 406231

[15] Y. Song; Y. Guo J. Appl. Phys., 109 (2011)

[16] P.G. Silvestrov; K.B. Efetov Phys. Rev. Lett., 98 (2007)

[17] A. Arai J. Math. Anal. Appl., 158 (1991), pp. 63-79

[18] A.F. Nikoforov; V.B. Uvarov Special Functions of Mathematical Physics, Birkhäuser Verlag, Basel, Switzerland, 1988

[19] C. Tezcan; R. Sever Int. J. Theor. Phys., 48 (2009), p. 337

[20] S.M. Ikhdair; M. Hamzavi Chin. Phys. B, 21 (2012) no. 11, p. 110302

[21] I.S. Gradshteyn; I.M. Ryzhik Tables of Integrals, Series, and Products, Academic Press, New York, 1994

[22] R.I. Greene; C. Adrich Phys. Rev. A, 14 (1976), pp. 2363-2366

[23] S.Yu. Slavyanov; W. Lay Special Functions: A Unifield Theory Based in Singularities, Oxford University Press, New York, 2000

[24] S. Kuru; J. Negro; L.M. Nieto J. Phys. Condens. Matter, 21 (2009), p. 455305

[25] A.O. Slobodeniuk; S.G. Sharapov; V.M. Lojtev Phys. Rev. B, 84 (2011)

[26] A. Ronveaux Heun's Differential Equations, Oxford University Press, 1995

[27] E.R. Figueiredo Medeiros; R. Bezerra de Mello Eur. Phys. J. C, 72 (2012), p. 2051

[28] A. Matulis; M. Peters Phys. Rev. B, 75 (2007)

[29] M. Tahir; K. Sabeeh Phys. Rev. B, 77 (2008)

[30] R. Nasir; K. Sabeeh; M. Tahir Phys. Rev. B, 81 (2010)

[31] A.R. Wright; J. Liu; Z. Ma; Z. Zeng; W. Xu; C. Zhang Microelectron. J., 40 (2009), p. 716

[32] J.S. Ardenghi; P. Bechthold; E. Gonzalez; P. Jasen; A. Juan Phys. B, 433 (2014), p. 28

[33] M. Eshghi; H. Mehraban Math. Methods Appl. Sci., 39 (2016) no. 6, p. 1599

[34] R.K. Patria Statistical Mechanics, Pergamon Press, Oxford, UK, 1972

[35] M.-A. Dariescu; C. Dariescu J. Phys. Condens. Matter, 19 (2007), p. 256203

[36] A. Boumali Electron. J. Theor. Phys., 12 (2015) no. 32, p. 1

[37] E. Elizalde Ten Physical Applications of Spectral Zeta Functions, Springer-Verlag, Berlin, Heidelberg, 1995

[38] A. Boumali Electron. J. Theor. Phys., 12 (2015) no. 32, p. 1

[39] M.V. Cheremisin Physica E, 69 (2015), p. 153

  • Faizuddin Ahmed Topological effects on non-relativistic eigenvalue solutions under AB-flux field with pseudoharmonic- and Mie-type potentials, Communications in Theoretical Physics, Volume 75 (2023) no. 5, p. 055103 | DOI:10.1088/1572-9494/acccdc
  • Luthfiya Kurnia Permatahati; C. Cari; A. Suparmi; Harjana Harjana Topological Effects on Relativistic Energy Spectra of Diatomic Molecules Under the Magnetic Field with Kratzer Potential and Thermodynamic-Optical Properties, International Journal of Theoretical Physics, Volume 62 (2023) no. 11 | DOI:10.1007/s10773-023-05494-7
  • Faizuddin Ahmed Effects of Cosmic String on Non-Relativistic Quantum Particles with Potential and Thermodynamic Properties, International Journal of Theoretical Physics, Volume 62 (2023) no. 7 | DOI:10.1007/s10773-023-05397-7
  • Faizuddin Ahmed Topological effects of cosmic string on radial eigenvalue solution with Mie-type potential, The European Physical Journal D, Volume 77 (2023) no. 9 | DOI:10.1140/epjd/s10053-023-00749-8
  • Lakhdar Sek; Mokhtar Falek; Mustafa Moumni 2D relativistic oscillators with a uniform magnetic field in anti-de Sitter space, International Journal of Modern Physics A, Volume 36 (2021) no. 17, p. 2150113 | DOI:10.1142/s0217751x2150113x
  • C. O. Edet; A. N. Ikot Effects of Topological Defect on the Energy Spectra and Thermo-magnetic Properties of CO Diatomic Molecule, Journal of Low Temperature Physics, Volume 203 (2021) no. 1-2, p. 84 | DOI:10.1007/s10909-021-02577-9
  • Mahdi Eshghi; Ismaeil Ahmadi Azar; Sasan Soudi Schrödinger equation based analytic assessment of thermal properties of confined electrons under vector and scalar fields, Mathematical Methods in the Applied Sciences, Volume 44 (2021) no. 17, p. 12774 | DOI:10.1002/mma.7577
  • M. Castillo-Celeita; E. Díaz-Bautista; M. Oliva-Leyva Coherent states for graphene under the interaction of crossed electric and magnetic fields, Annals of Physics, Volume 421 (2020), p. 168287 | DOI:10.1016/j.aop.2020.168287
  • Erik Díaz-Bautista Schrödinger-type 2D coherent states of magnetized uniaxially strained graphene, Journal of Mathematical Physics, Volume 61 (2020) no. 10 | DOI:10.1063/5.0022806
  • M Castillo-Celeita; D J Fernández C Dirac electron in graphene with magnetic fields arising from first-order intertwining operators, Journal of Physics A: Mathematical and Theoretical, Volume 53 (2020) no. 3, p. 035302 | DOI:10.1088/1751-8121/ab3f40
  • B. Tchana Mbadjoun; J. M. Ema’a Ema’a; P. Ele Abiama; G. H. Ben-Bolie; P. Owono Ateba Effect of gravity and electromagnetic field on the spectra of cylindrical quantum dots together with AB flux field, Modern Physics Letters A, Volume 35 (2020) no. 12, p. 2050092 | DOI:10.1142/s0217732320500923
  • M. Falek; M. Merad; M. Moumni Bosonic oscillator under a uniform magnetic field with Snyder-de Sitter algebra, Journal of Mathematical Physics, Volume 60 (2019) no. 1 | DOI:10.1063/1.5043472
  • M. Hosseini; H. Hassanabadi; S. Hassanabadi Solutions of the Dirac-Weyl equation in graphene under magnetic fields in the Cartesian coordinate system, The European Physical Journal Plus, Volume 134 (2019) no. 1 | DOI:10.1140/epjp/i2019-12429-1
  • C.A. Onate; O. Ebomwonyi; K.O. Dopamu; J.O. Okoro; M.O. Oluwayemi Eigen solutions of the D-dimensional Schrӧdinger equation with inverse trigonometry scarf potential and Coulomb potential, Chinese Journal of Physics, Volume 56 (2018) no. 5, p. 2538 | DOI:10.1016/j.cjph.2018.03.013
  • M Eshghi; R Sever; S M Ikhdair Energy states of the Hulthen plus Coulomb-like potential with position-dependent mass function in external magnetic fields, Chinese Physics B, Volume 27 (2018) no. 2, p. 020301 | DOI:10.1088/1674-1056/27/2/020301
  • Lucas Sourrouille Spin-1/2 Landau levels in the symmetric gauge from the zero energy modes, Journal of Physics Communications, Volume 2 (2018) no. 4, p. 045030 | DOI:10.1088/2399-6528/aabdf3
  • D. Jahani; F. Shahbazi; M. R Setare Magnetic dispersion of Dirac fermions in graphene under inhomogeneous field profiles, The European Physical Journal Plus, Volume 133 (2018) no. 8 | DOI:10.1140/epjp/i2018-12137-4
  • M Eshghi; H Mehraban; S M Ikhdair Approximate energies and thermal properties of a position-dependent mass charged particle under external magnetic fields, Chinese Physics B, Volume 26 (2017) no. 6, p. 060302 | DOI:10.1088/1674-1056/26/6/060302
  • Ibsal A. Assi; Hocine Bahlouli Analytical Solutions of the 1D Dirac Equation Using the Tridiagonal Representation Approach, Journal of Applied Mathematics and Physics, Volume 05 (2017) no. 10, p. 2072 | DOI:10.4236/jamp.2017.510172
  • M. Eshghi; H. Mehraban; I. Ahmadi Azar Eigen spectra and wave functions of the massless Dirac fermions under the nonuniform magnetic fields in graphene, Physica E: Low-dimensional Systems and Nanostructures, Volume 94 (2017), p. 106 | DOI:10.1016/j.physe.2017.07.024
  • M. Eshghi; H. Mehraban; I. Ahmadi Azar Eigenspectra and thermodynamic quantities in graphene under the inside and outside magnetic fields, The European Physical Journal Plus, Volume 132 (2017) no. 11 | DOI:10.1140/epjp/i2017-11728-9
  • M. Eshghi; H. Mehraban Study of a 2D charged particle confined by a magnetic and AB flux fields under the radial scalar power potential, The European Physical Journal Plus, Volume 132 (2017) no. 3 | DOI:10.1140/epjp/i2017-11379-x
  • M. Eshghi; H. Mehraban Effective of the q-deformed pseudoscalar magnetic field on the charge carriers in graphene, Journal of Mathematical Physics, Volume 57 (2016) no. 8 | DOI:10.1063/1.4960740

Cité par 23 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: