In this paper, we have obtained exact analytical solutions for the bound states of a graphene Dirac electron in magnetic fields with various q-parameters under an electrostatic potential. In order to solve the time-independent Dirac–Weyl equation, the Nikoforov–Uvarov (NU) and Frobenius methods have been used. We have also investigated the thermodynamic properties by using the Hurwitz zeta function method for one of the states. Finally, some of the numerical results are also shown.
Mahdi Eshghi 1, 2 ; Hosein Mehraban 1
@article{CRPHYS_2017__18_1_47_0, author = {Mahdi Eshghi and Hosein Mehraban}, title = {Exact solution of the {Dirac{\textendash}Weyl} equation in graphene under electric and magnetic fields}, journal = {Comptes Rendus. Physique}, pages = {47--56}, publisher = {Elsevier}, volume = {18}, number = {1}, year = {2017}, doi = {10.1016/j.crhy.2016.06.002}, language = {en}, }
TY - JOUR AU - Mahdi Eshghi AU - Hosein Mehraban TI - Exact solution of the Dirac–Weyl equation in graphene under electric and magnetic fields JO - Comptes Rendus. Physique PY - 2017 SP - 47 EP - 56 VL - 18 IS - 1 PB - Elsevier DO - 10.1016/j.crhy.2016.06.002 LA - en ID - CRPHYS_2017__18_1_47_0 ER -
Mahdi Eshghi; Hosein Mehraban. Exact solution of the Dirac–Weyl equation in graphene under electric and magnetic fields. Comptes Rendus. Physique, Prizes of the French Academy of Sciences 2015 / Prix de l'Académie des sciences 2015, Volume 18 (2017) no. 1, pp. 47-56. doi : 10.1016/j.crhy.2016.06.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.06.002/
[1] Science, 306 (2004), pp. 666-669
[2] Rev. Mod. Phys., 81 (2009), pp. 109-162
[3] Rev. Mod. Phys., 84 (2012), pp. 1067-1125
[4] Phys. Rev. B, 73 (2006)
[5] Phys. Rev. Lett., 98 (2007)
[6] Physica E, 42 (2009), p. 70
[7] J. Phys. Condens. Matter, 21 (2009)
[8] Phys. Rev. B, 81 (2010)
[9] J. Phys. Condens. Matter, 23 (2011), p. 245304
[10] Phys. Lett. A, 379 (2015), pp. 907-911
[11] Phys. Rev. D, 85 (2012)
[12] Phys. Rev. A, 89 (2014)
[13] Phys. Lett. A, 378 (2014) no. 30–31, p. 2317
[14] J. Phys. Condens. Matter, 19 (2007), p. 406231
[15] J. Appl. Phys., 109 (2011)
[16] Phys. Rev. Lett., 98 (2007)
[17] J. Math. Anal. Appl., 158 (1991), pp. 63-79
[18] Special Functions of Mathematical Physics, Birkhäuser Verlag, Basel, Switzerland, 1988
[19] Int. J. Theor. Phys., 48 (2009), p. 337
[20] Chin. Phys. B, 21 (2012) no. 11, p. 110302
[21] Tables of Integrals, Series, and Products, Academic Press, New York, 1994
[22] Phys. Rev. A, 14 (1976), pp. 2363-2366
[23] Special Functions: A Unifield Theory Based in Singularities, Oxford University Press, New York, 2000
[24] J. Phys. Condens. Matter, 21 (2009), p. 455305
[25] Phys. Rev. B, 84 (2011)
[26] Heun's Differential Equations, Oxford University Press, 1995
[27] Eur. Phys. J. C, 72 (2012), p. 2051
[28] Phys. Rev. B, 75 (2007)
[29] Phys. Rev. B, 77 (2008)
[30] Phys. Rev. B, 81 (2010)
[31] Microelectron. J., 40 (2009), p. 716
[32] Phys. B, 433 (2014), p. 28
[33] Math. Methods Appl. Sci., 39 (2016) no. 6, p. 1599
[34] Statistical Mechanics, Pergamon Press, Oxford, UK, 1972
[35] J. Phys. Condens. Matter, 19 (2007), p. 256203
[36] Electron. J. Theor. Phys., 12 (2015) no. 32, p. 1
[37] Ten Physical Applications of Spectral Zeta Functions, Springer-Verlag, Berlin, Heidelberg, 1995
[38] Electron. J. Theor. Phys., 12 (2015) no. 32, p. 1
[39] Physica E, 69 (2015), p. 153
- Topological effects on non-relativistic eigenvalue solutions under AB-flux field with pseudoharmonic- and Mie-type potentials, Communications in Theoretical Physics, Volume 75 (2023) no. 5, p. 055103 | DOI:10.1088/1572-9494/acccdc
- Topological Effects on Relativistic Energy Spectra of Diatomic Molecules Under the Magnetic Field with Kratzer Potential and Thermodynamic-Optical Properties, International Journal of Theoretical Physics, Volume 62 (2023) no. 11 | DOI:10.1007/s10773-023-05494-7
- Effects of Cosmic String on Non-Relativistic Quantum Particles with Potential and Thermodynamic Properties, International Journal of Theoretical Physics, Volume 62 (2023) no. 7 | DOI:10.1007/s10773-023-05397-7
- Topological effects of cosmic string on radial eigenvalue solution with Mie-type potential, The European Physical Journal D, Volume 77 (2023) no. 9 | DOI:10.1140/epjd/s10053-023-00749-8
- 2D relativistic oscillators with a uniform magnetic field in anti-de Sitter space, International Journal of Modern Physics A, Volume 36 (2021) no. 17, p. 2150113 | DOI:10.1142/s0217751x2150113x
- Effects of Topological Defect on the Energy Spectra and Thermo-magnetic Properties of
Diatomic Molecule, Journal of Low Temperature Physics, Volume 203 (2021) no. 1-2, p. 84 | DOI:10.1007/s10909-021-02577-9 - Schrödinger equation based analytic assessment of thermal properties of confined electrons under vector and scalar fields, Mathematical Methods in the Applied Sciences, Volume 44 (2021) no. 17, p. 12774 | DOI:10.1002/mma.7577
- Coherent states for graphene under the interaction of crossed electric and magnetic fields, Annals of Physics, Volume 421 (2020), p. 168287 | DOI:10.1016/j.aop.2020.168287
- Schrödinger-type 2D coherent states of magnetized uniaxially strained graphene, Journal of Mathematical Physics, Volume 61 (2020) no. 10 | DOI:10.1063/5.0022806
- Dirac electron in graphene with magnetic fields arising from first-order intertwining operators, Journal of Physics A: Mathematical and Theoretical, Volume 53 (2020) no. 3, p. 035302 | DOI:10.1088/1751-8121/ab3f40
- Effect of gravity and electromagnetic field on the spectra of cylindrical quantum dots together with AB flux field, Modern Physics Letters A, Volume 35 (2020) no. 12, p. 2050092 | DOI:10.1142/s0217732320500923
- Bosonic oscillator under a uniform magnetic field with Snyder-de Sitter algebra, Journal of Mathematical Physics, Volume 60 (2019) no. 1 | DOI:10.1063/1.5043472
- Solutions of the Dirac-Weyl equation in graphene under magnetic fields in the Cartesian coordinate system, The European Physical Journal Plus, Volume 134 (2019) no. 1 | DOI:10.1140/epjp/i2019-12429-1
- Eigen solutions of the D-dimensional Schrӧdinger equation with inverse trigonometry scarf potential and Coulomb potential, Chinese Journal of Physics, Volume 56 (2018) no. 5, p. 2538 | DOI:10.1016/j.cjph.2018.03.013
- Energy states of the Hulthen plus Coulomb-like potential with position-dependent mass function in external magnetic fields, Chinese Physics B, Volume 27 (2018) no. 2, p. 020301 | DOI:10.1088/1674-1056/27/2/020301
- Spin-1/2 Landau levels in the symmetric gauge from the zero energy modes, Journal of Physics Communications, Volume 2 (2018) no. 4, p. 045030 | DOI:10.1088/2399-6528/aabdf3
- Magnetic dispersion of Dirac fermions in graphene under inhomogeneous field profiles, The European Physical Journal Plus, Volume 133 (2018) no. 8 | DOI:10.1140/epjp/i2018-12137-4
- Approximate energies and thermal properties of a position-dependent mass charged particle under external magnetic fields, Chinese Physics B, Volume 26 (2017) no. 6, p. 060302 | DOI:10.1088/1674-1056/26/6/060302
- Analytical Solutions of the 1D Dirac Equation Using the Tridiagonal Representation Approach, Journal of Applied Mathematics and Physics, Volume 05 (2017) no. 10, p. 2072 | DOI:10.4236/jamp.2017.510172
- Eigen spectra and wave functions of the massless Dirac fermions under the nonuniform magnetic fields in graphene, Physica E: Low-dimensional Systems and Nanostructures, Volume 94 (2017), p. 106 | DOI:10.1016/j.physe.2017.07.024
- Eigenspectra and thermodynamic quantities in graphene under the inside and outside magnetic fields, The European Physical Journal Plus, Volume 132 (2017) no. 11 | DOI:10.1140/epjp/i2017-11728-9
- Study of a 2D charged particle confined by a magnetic and AB flux fields under the radial scalar power potential, The European Physical Journal Plus, Volume 132 (2017) no. 3 | DOI:10.1140/epjp/i2017-11379-x
- Effective of the q-deformed pseudoscalar magnetic field on the charge carriers in graphene, Journal of Mathematical Physics, Volume 57 (2016) no. 8 | DOI:10.1063/1.4960740
Cité par 23 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier