Comptes Rendus
Polariton condensates at room temperature
[Condensats de polaritons à température ambiante]
Comptes Rendus. Physique, Volume 17 (2016) no. 8, pp. 946-956.

Cette article de revue est consacré aux récents développements de la physique des polaritons dans les microcavités présentant le couplage fort exciton–photon à température ambiante, aboutissant à la réalisation de condensats de polaritons à température ambiante. De telles cavités contiennent des couches actives spécifiques, dont les excitons présentent une grande énergie de liaison et une grande force d'oscillateur, i.e. des semiconducteurs à grand gap ou organiques, ou des molécules organiques. Les différents systèmes étudiés à ce jour sont comparés, sur la base de leurs figures de mérites et de leurs propriétés communes liées à leur grande force d'oscillateur. Cette comparaison s'étend ensuite aux différentes démonstrations de laser à polariton, et aux diagrammes des phases correspondant. Le fonctionnement à température ambiante permet en effet une étude détaillée des régimes thermodynamique vs hors d'équilibre du processus de condensation. Le rôle crucial de la dynamique spatiale de formation du condensat est aussi abordé, ainsi que la question encore débattue du mécanisme de relaxation stimulée depuis le réservoir jusqu'au condensat dans le cas de l'excitation non résonante. Enfin, les enjeux des dispositifs polaritoniques sont présentés.

We review the recent developments of the polariton physics in microcavities featuring the exciton–photon strong coupling at room temperature, and leading to the achievement of room-temperature polariton condensates. Such cavities embed active layers with robust excitons that present a large binding energy and a large oscillator strength, i.e. wide bandgap inorganic or organic semiconductors, or organic molecules. These various systems are compared, in terms of figures of merit and of common features related to their strong oscillator strength. The various demonstrations of polariton laser are compared, as well as their condensation phase diagrams. The room-temperature operation indeed allows a detailed investigation of the thermodynamic and out-of-equilibrium regimes of the condensation process. The crucial role of the spatial dynamics of the condensate formation is discussed, as well as the debated issue of the mechanism of stimulated relaxation from the reservoir to the condensate under non-resonant excitation. Finally the prospects of polariton devices are presented.

Publié le :
DOI : 10.1016/j.crhy.2016.07.002
Mots clés : Polariton, Microcavity, Condensate, ZnO, GaN
Thierry Guillet 1 ; Christelle Brimont 1

1 Laboratoire Charles-Coulomb (L2C), UMR 5221, Centre national de la recherche scientifique (CNRS) – Université de Montpellier, Montpellier, France
@article{CRPHYS_2016__17_8_946_0,
     author = {Thierry Guillet and Christelle Brimont},
     title = {Polariton condensates at room temperature},
     journal = {Comptes Rendus. Physique},
     pages = {946--956},
     publisher = {Elsevier},
     volume = {17},
     number = {8},
     year = {2016},
     doi = {10.1016/j.crhy.2016.07.002},
     language = {en},
}
TY  - JOUR
AU  - Thierry Guillet
AU  - Christelle Brimont
TI  - Polariton condensates at room temperature
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 946
EP  - 956
VL  - 17
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.07.002
LA  - en
ID  - CRPHYS_2016__17_8_946_0
ER  - 
%0 Journal Article
%A Thierry Guillet
%A Christelle Brimont
%T Polariton condensates at room temperature
%J Comptes Rendus. Physique
%D 2016
%P 946-956
%V 17
%N 8
%I Elsevier
%R 10.1016/j.crhy.2016.07.002
%G en
%F CRPHYS_2016__17_8_946_0
Thierry Guillet; Christelle Brimont. Polariton condensates at room temperature. Comptes Rendus. Physique, Volume 17 (2016) no. 8, pp. 946-956. doi : 10.1016/j.crhy.2016.07.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.07.002/

[1] D.G. Lidzey; D.D.C. Bradley; M.S. Skolnick; T. Virgili; S. Walker; D.M. Whittaker Strong exciton–photon coupling in an organic semiconductor microcavity, Nature, Volume 395 (1998), pp. 53-55 | DOI

[2] N. Antoine-Vincent; F. Natali; D. Byrne; A. Vasson; P. Disseix; J. Leymarie; M. Leroux; F. Semond; J. Massies Observation of Rabi splitting in a bulk GaN microcavity grown on silicon, Phys. Rev. B, Volume 68 (2003) | DOI

[3] F. Semond; I.R. Sellers; F. Natali; D. Byrne; M. Leroux; J. Massies; N. Ollier; J. Leymarie; P. Disseix; A. Vasson Strong light-matter coupling at room temperature in simple geometry GaN microcavities grown on silicon, Appl. Phys. Lett., Volume 87 (2005) | DOI

[4] R. Butté; G. Christmann; E. Feltin; J. Carlin; M. Mosca; M. Ilegems; N. Grandjean Room-temperature polariton luminescence from a bulk GaN microcavity, Phys. Rev. B, Volume 73 (2006) | DOI

[5] R. Shimada; J. Xie; V. Avrutin; U. Özgür; H. Morkoc Cavity polaritons in ZnO-based hybrid microcavities, Appl. Phys. Lett., Volume 92 (2008) | DOI

[6] S. Faure; C. Brimont; T. Guillet; T. Bretagnon; B. Gil; F. Médard; D. Lagarde; P. Disseix; J. Leymarie; J. Zuniga-Perez; M. Leroux; E. Frayssinet; J.C. Moreno; F. Semond; S. Bouchoule Relaxation and emission of Bragg-mode and cavity-mode polaritons in a ZnO microcavity at room temperature, Appl. Phys. Lett., Volume 95 (2009) | DOI

[7] M. Nakayama; S. Komura; T. Kawase; DaeGwi Kim Observation of exciton polaritons in a ZnO microcavity with HfO2/SiO2 distributed Bragg reflectors, J. Phys. Soc. Jpn., Volume 77 (2008) | DOI

[8] R. Schmidt-Grund; B. Rheinländer; C. Czekalla; G. Benndorf; H. Hochmuth; M. Lorenz; M. Grundmann Exciton–polariton formation at room temperature in a planar ZnO resonator structure, Appl. Phys. B, Volume 93 (2008), pp. 331-337 | DOI

[9] S. Halm; S. Kalusniak; S. Sadofev; H.-J. Wunsche; F. Henneberger Strong exciton–photon coupling in a monolithic ZnO/(Zn, Mg)O multiple quantum well microcavity, Appl. Phys. Lett., Volume 99 (2011) | DOI

[10] G. Oohata; T. Nishioka; D. Kim; H. Ishihara; M. Nakayama Giant Rabi splitting in a bulk CuCl microcavity, Phys. Rev. B, Volume 78 (2008) | DOI

[11] C. Sturm; H. Hilmer; R. Schmidt-Grund; Marius Grundmann Observation of strong exciton–photon coupling at temperatures up to 410 K, New J. Phys., Volume 11 (2009) | DOI

[12] S. Zhang; W. Xie; H. Dong; L. Sun; Yanjing Ling; J. Lu; Y. Duan; W. Shen; X. Shen; Z. Chen Robust exciton–polariton effect in a ZnO whispering gallery microcavity at high temperature, Appl. Phys. Lett., Volume 100 (2012) | DOI

[13] P. Kelkar; V. Kozlov; H. Jeon; A.V. Nurmikko; C.-C. Chu; D.C. Grillo; J. Han; C.G. Hua; R.L. Gunshor Excitons in a II–VI semiconductor microcavity in the strong-coupling regime, Phys. Rev. B, Volume 52 (1995), p. R5491-R5494 | DOI

[14] A. Pawlis; A. Khartchenko; O. Husberg; D. As; K. Lischka; D. Schikora Large room temperature Rabi-splitting in a ZnSe/(Zn, Cd)Se semiconductor microcavity structure, Solid State Commun., Volume 123 (2002), pp. 235-238 | DOI

[15] K. Sebald; A. Trichet; M. Richard; L.S. Dang; M. Seyfried; S. Klembt; C. Kruse; D. Hommel Optical polariton properties in ZnSe-based planar and pillar structured microcavities, Eur. Phys. J. B, Volume 84 (2011), pp. 381-384 | DOI

[16] T. Klein; S. Klembt; E. Durupt; C. Kruse; D. Hommel; M. Richard Polariton lasing in high-quality selenide-based micropillars in the strong coupling regime, Appl. Phys. Lett., Volume 107 (2015) | DOI

[17] Y. Katakani; T. Kawase; D. Kim; M. Nakayama Characteristics of cavity polaritons in a CuBr microcavity, Eur. Phys. J. B, Volume 85 (2012) | DOI

[18] A. Brehier; R. Parashkov; J.S. Lauret; E. Deleporte Strong exciton–photon coupling in a microcavity containing layered perovskite semiconductors, Appl. Phys. Lett., Volume 89 (2006), p. 171110 | DOI

[19] K. Gauthron; J.-S. Lauret; L. Doyennette; G. Lanty; A. Al Choueiry; S.J. Zhang; A. Brehier; L. Largeau; O. Mauguin; J. Bloch; E. Deleporte Optical spectroscopy of two-dimensional layered (C_6H_5C_2H_4-NH_3)_2-PbI_4 perovskite, Opt. Express, Volume 18 (2010), p. 5912 | DOI

[20] D.G. Lidzey; D.D.C. Bradley; T. Virgili; A. Armitage; M.S. Skolnick; S. Walker Room temperature polariton emission from strongly coupled organic semiconductor microcavities, Phys. Rev. Lett., Volume 82 (1999), pp. 3316-3319 | DOI

[21] S. Kéna-Cohen; M. Davanço; S.R. Forrest Strong exciton–photon coupling in an organic single crystal microcavity, Phys. Rev. Lett., Volume 101 (2008) | DOI

[22] K.S. Daskalakis; S.A. Maier; R. Murray; S. Kéna-Cohen Nonlinear interactions in an organic polariton condensate, Nat. Mater., Volume 13 (2014), pp. 271-278 | DOI

[23] J.D. Plumhof; T. Stöferle; L. Mai; U. Scherf; R.F. Mahrt Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer, Nat. Mater., Volume 13 (2013), pp. 247-252 | DOI

[24] E. Feltin; J.-F. Carlin; J. Dorsaz; G. Christmann; R. Butté; M. Laügt; M. Ilegems; N. Grandjean Crack-free highly reflective AlInN/AlGaN Bragg mirrors for UV applications, Appl. Phys. Lett., Volume 88 (2006) | DOI

[25] J. Zuniga-Perez; E. Mallet; R. Hahe; M.J. Rashid; S. Bouchoule; C. Brimont; P. Disseix; J.Y. Duboz; G. Gommé; T. Guillet; O. Jamadi; X. Lafosse; M. Leroux; J. Leymarie; F. Li; F. Réveret; F. Semond Patterned silicon substrates: a common platform for room temperature GaN and ZnO polariton lasers, Appl. Phys. Lett., Volume 104 (2014) | DOI

[26] Z. Han; H.-S. Nguyen; F. Réveret; K. Abdel-Baki; J.-S. Lauret; J. Bloch; S. Bouchoule; E. Deleporte Top-mirror migration for the fabrication of high- Q planar microcavities containing fragile active materials, Appl. Phys. Express, Volume 6 (2013), p. 106701 | DOI

[27] F. Li; L. Orosz; O. Kamoun; S. Bouchoule; C. Brimont; P. Disseix; T. Guillet; X. Lafosse; M. Leroux; J. Leymarie; G. Malpuech; M. Mexis; M. Mihailovic; G. Patriarche; F. Reveret; D. Solnyshkov; J. Zuniga-Perez Fabrication and characterization of a room-temperature ZnO polariton laser, Appl. Phys. Lett., Volume 102 (2013), p. 191118 | DOI

[28] L.K. van Vugt; S. Rühle; P. Ravindran; H.C. Gerritsen; L. Kuipers; D. Vanmaekelbergh Exciton polaritons confined in a ZnO nanowire cavity, Phys. Rev. Lett., Volume 97 (2006) | DOI

[29] M.A. Zimmler; J. Bao; F. Capasso; S. Muller; C. Ronning Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation, Appl. Phys. Lett., Volume 93 (2008) | DOI

[30] V.V. Ursaki; V.V. Zalamai; I.M. Tiginyanu; A. Burlacu; E.V. Rusu; C. Klingshirn Refractive index dispersion deduced from lasing modes in ZnO microtetrapods, Appl. Phys. Lett., Volume 95 (2009), p. 171101 | DOI

[31] A. Trichet; F. Médard; J. Zúñiga-Pérez; B. Alloing; M. Richard From strong to weak coupling regime in a single GaN microwire up to room temperature, New J. Phys., Volume 14 (2012)

[32] L. Sun; Z. Chen; Q. Ren; K. Yu; L. Bai; W. Zhou; H. Xiong; Z.Q. Zhu; X. Shen Direct observation of whispering gallery mode polaritons and their dispersion in a ZnO tapered microcavity, Phys. Rev. Lett., Volume 100 (2008) | DOI

[33] A. Trichet; L. Sun; G. Pavlovic; N.A. Gippius; G. Malpuech; W. Xie; Z. Chen; M. Richard; L.S. Dang One-dimensional ZnO exciton polaritons with negligible thermal broadening at room temperature, Phys. Rev. B, Volume 83 (2011) | DOI

[34] C. Czekalla; C. Sturm; R. Schmidt-Grund; B. Cao; M. Lorenz; M. Grundmann Whispering gallery mode lasing in zinc oxide microwires, Appl. Phys. Lett., Volume 92 (2008), p. 241102 | DOI

[35] E. Wertz; A. Amo; D.D. Solnyshkov; L. Ferrier; T.C.H. Liew; D. Sanvitto; P. Senellart; I. Sagnes; A. Lemaître; A.V. Kavokin; G. Malpuech; J. Bloch Propagation and amplification dynamics of 1D polariton condensates, Phys. Rev. Lett., Volume 109 (2012) | DOI

[36] M.A. Zimmler; F. Capasso; S. Muller; Carsten Ronning Optically pumped nanowire lasers: invited review, Semicond. Sci. Technol., Volume 25 (2010) | DOI

[37] A. Tredicucci; Y. Chen; V. Pellegrini; M. Börger; L. Sorba; F. Beltram; F. Bassani Controlled exciton–photon interaction in semiconductor bulk microcavities, Phys. Rev. Lett., Volume 75 (1995), pp. 3906-3909 | DOI

[38] F. Réveret; I.R. Sellers; P. Disseix; J. Leymarie; A. Vasson; F. Semond; M. Leroux; J. Massies Strong coupling in bulk GaN microcavities grown on silicon, Phys. Status Solidi C, Volume 4 (2007), pp. 108-111 | DOI

[39] S. Richter; T. Michalsky; L. Fricke; C. Sturm; H. Franke; M. Grundmann; R. Schmidt-Grund Maxwell consideration of polaritonic quasi-particle Hamiltonians in multi-level systems, Appl. Phys. Lett., Volume 107 (2015), p. 231104 | DOI

[40] F. Médard; J. Zuniga-Perez; P. Disseix; M. Mihailovic; J. Leymarie; A. Vasson; F. Semond; E. Frayssinet; J.C. Moreno; M. Leroux; S. Faure; T. Guillet Experimental observation of strong light-matter coupling in ZnO microcavities: influence of large excitonic absorption, Phys. Rev. B, Volume 79 (2009) | DOI

[41] S. Faure; T. Guillet; P. Lefebvre; T. Bretagnon; B. Gil Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities, Phys. Rev. B, Volume 78 (2008) | DOI

[42] S. Christopoulos; G.B.H. von Högersthal; A.J.D. Grundy; P.G. Lagoudakis; A.V. Kavokin; J.J. Baumberg; G. Christmann; R. Butté; E. Feltin; J.-F. Carlin; N. Grandjean Room-temperature polariton lasing in semiconductor microcavities, Phys. Rev. Lett., Volume 98 (2007) | DOI

[43] O. Jamadi; F. Réveret; E. Mallet; P. Disseix; F. Médard; M. Mihailovic; D. Solnyshkov; G. Malpuech; J. Leymarie; X. Lafosse; S. Bouchoule; F. Li; M. Leroux; F. Semond; J. Zuniga-Perez Polariton condensation phase diagram in wide-band-gap planar microcavities: GaN versus ZnO, Phys. Rev. B, Volume 93 (2016) | DOI

[44] D. Solnyshkov; H. Ouerdane; G. Malpuech Kinetic phase diagrams of GaN-based polariton lasers, J. Appl. Phys., Volume 103 (2008) | DOI

[45] J.J. Baumberg; A.V. Kavokin; S. Christopoulos; A.J.D. Grundy; R. Butté; G. Christmann; D.D. Solnyshkov; G. Malpuech; G. Baldassarri Höger von Högersthal; E. Feltin; J.-F. Carlin; N. Grandjean Spontaneous polarization buildup in a room-temperature polariton laser, Phys. Rev. Lett., Volume 101 (2008) | DOI

[46] P. Bhattacharya; T. Frost; S. Deshpande; M.Z. Baten; A. Hazari; A. Das Room temperature electrically injected polariton laser, Phys. Rev. Lett., Volume 112 (2014) | DOI

[47] T. Tawara; H. Gotoh; T. Akasaka; N. Kobayashi; T. Saitoh Cavity polaritons in InGaN microcavities at room temperature, Phys. Rev. Lett., Volume 92 (2004) | DOI

[48] G. Christmann; R. Butté; E. Feltin; J.-F. Carlin; N. Grandjean Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity, Appl. Phys. Lett., Volume 93 (2008) | DOI

[49] J. Levrat; R. Butté; E. Feltin; J.-F. Carlin; N. Grandjean; D. Solnyshkov; G. Malpuech Condensation phase diagram of cavity polaritons in GaN-based microcavities: experiment and theory, Phys. Rev. B, Volume 81 (2010) | DOI

[50] T.-C. Lu; J.-R. Chen; S.-C. Lin; S.-W. Huang; S.-C. Wang; Y. Yamamoto Room temperature current injection polariton light emitting diode with a hybrid microcavity, Nano Lett., Volume 11 (2011), pp. 2791-2795 | DOI

[51] T. Guillet; M. Mexis; J. Levrat; G. Rossbach; C. Brimont; T. Bretagnon; B. Gil; R. Butté; N. Grandjean; L. Orosz; F. Reveret; J. Leymarie; J. Zúñiga-Pérez; M. Leroux; F. Semond; S. Bouchoule Polariton lasing in a hybrid bulk ZnO microcavity, Appl. Phys. Lett., Volume 99 (2011), p. 161104 | DOI

[52] T.-C. Lu; Y.-Y. Lai; Y.-P. Lan; S.-W. Huang; J.-R. Chen; Y.-C. Wu; W.-F. Hsieh; H. Deng Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity, Opt. Express, Volume 20 (2012), pp. 5530-5537 | DOI

[53] F. Li; L. Orosz; O. Kamoun; S. Bouchoule; C. Brimont; P. Disseix; T. Guillet; X. Lafosse; M. Leroux; J. Leymarie; M. Mexis; M. Mihailovic; G. Patriarche; F. Réveret; D. Solnyshkov; J. Zúñiga-Pérez; G. Malpuech From excitonic to photonic polariton condensate in a ZnO-based microcavity, Phys. Rev. Lett., Volume 110 (2013) | DOI

[54] H. Franke; C. Sturm; R. Schmidt-Grund; Gerald Wagner; M. Grundmann Ballistic propagation of exciton–polariton condensates in a ZnO-based microcavity, New J. Phys., Volume 14 (2012) | DOI

[55] R. Johne; D.D. Solnyshkov; G. Malpuech Theory of exciton–polariton lasing at room temperature in ZnO microcavities, Appl. Phys. Lett., Volume 93 (2008), p. 211105 | DOI

[56] D.D. Solnyshkov; H. Terças; G. Malpuech Optical amplifier based on guided polaritons in GaN and ZnO, Appl. Phys. Lett., Volume 105 (2014), p. 231102 | DOI

[57] R. Hahe; C. Brimont; P. Valvin; T. Guillet; F. Li; M. Leroux; J. Zuniga-Perez; X. Lafosse; G. Patriarche; S. Bouchoule Interplay between tightly focused excitation and ballistic propagation of polariton condensates in a ZnO microcavity, Phys. Rev. B, Volume 92 (2015) | DOI

[58] M. Thunert; A. Janot; H. Franke; C. Sturm; T. Michalsky; M.D. Martín; L. Viña; B. Rosenow; M. Grundmann; R. Schmidt-Grund Cavity polariton condensate in a disordered environment, Phys. Rev. B, Volume 93 (2016) | DOI

[59] J. Dai; C.X. Xu; X.W. Sun; X.H. Zhang Exciton–polariton microphotoluminescence and lasing from ZnO whispering-gallery mode microcavities, Appl. Phys. Lett., Volume 98 (2011) | DOI

[60] D. Xu; W. Xie; W. Liu; J. Wang; L. Zhang; Y. Wang; S. Zhang; L. Sun; X. Shen; Z. Chen Polariton lasing in a ZnO microwire above 450 K, Appl. Phys. Lett., Volume 104 (2014) | DOI

[61] W. Xie; H. Dong; S. Zhang; L. Sun; W. Zhou; Y. Ling; J. Lu; X. Shen; Z. Chen Room-temperature polariton parametric scattering driven by a one-dimensional polariton condensate, Phys. Rev. Lett., Volume 108 (2012) | DOI

[62] A. Trichet; E. Durupt; F. Médard; S. Datta; A. Minguzzi; M. Richard Long-range correlations in a 97% excitonic one-dimensional polariton condensate, Phys. Rev. B, Volume 88 (2013) | DOI

[63] C.P. Dietrich; R. Johne; T. Michalsky; C. Sturm; P. Eastham; H. Franke; M. Lange; M. Grundmann; R. Schmidt-Grund Parametric relaxation in whispering gallery mode exciton–polariton condensates, Phys. Rev. B, Volume 91 (2015) | DOI

[64] L. Zhang; W. Xie; J. Wang; A. Poddubny; J. Lu; Y. Wang; J. Gu; W. Liu; D. Xu; X. Shen; Y.G. Rubo; B.L. Altshuler; A.V. Kavokin; Z. Chen Weak lasing in one-dimensional polariton superlattices, Proc. Natl. Acad. Sci., Volume 112 (2015), p. E1516-E1519 | DOI

[65] S. Klembt; E. Durupt; S. Datta; T. Klein; A. Baas; Y. Léger; C. Kruse; D. Hommel; A. Minguzzi; M. Richard Exciton–polariton gas as a nonequilibrium coolant, Phys. Rev. Lett., Volume 114 (2015) | DOI

[66] M. Nakayama; K. Miyazaki; T. Kawase; D. Kim Control of exciton–photon interactions in CuCl microcavities, Phys. Rev. B, Volume 83 (2011) | DOI

[67] H. Oka; H. Ajiki Light squeezing via a biexciton in a semiconductor microcavity, Phys. Rev. B, Volume 83 (2011) | DOI

[68] M. Nakayama; K. Murakami; Y. Furukawa; D. Kim Photoluminescence characteristics of polariton condensation in a CuBr microcavity, Appl. Phys. Lett., Volume 105 (2014) | DOI

[69] H.S. Nguyen; Z. Han; K. Abdel-Baki; X. Lafosse; A. Amo; J.-S. Lauret; E. Deleporte; S. Bouchoule; J. Bloch Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature, Appl. Phys. Lett., Volume 104 (2014) | DOI

[70] V. Agranovich; H. Benisty; C. Weisbuch Organic and inorganic quantum wells in a microcavity: Frenkel–Wannier–Mott excitons hybridization and energy transformation, Solid State Commun., Volume 102 (1997), pp. 631-636 | DOI

[71] V.M. Agranovich; M. Litinskaia; D.G. Lidzey Cavity polaritons in microcavities containing disordered organic semiconductors, Phys. Rev. B, Volume 67 (2003) | DOI

[72] P. Michetti; G.C. La Rocca Simulation of J-aggregate microcavity photoluminescence, Phys. Rev. B, Volume 77 (2008) | DOI

[73] S. Kéna-Cohen; S.R. Forrest Room-temperature polariton lasing in an organic single-crystal microcavity, Nat. Photonics, Volume 4 (2010), pp. 371-375 | DOI

[74] K.S. Daskalakis; S.A. Maier; S. Kéna-Cohen Spatial coherence and stability in a disordered organic polariton condensate, Phys. Rev. Lett., Volume 115 (2015) | DOI

[75] Y.S. Park; J.R. Schneider Index of refraction of ZnO, J. Appl. Phys., Volume 39 (1968), pp. 3049-3052 | DOI

[76] M. Mihailovic; A.-L. Henneghien; S. Faure; P. Disseix; J. Leymarie; A. Vasson; D.A. Buell; F. Semond; C. Morhain; J. Zuniga-Perez Optical and excitonic properties of ZnO films, Opt. Mater., Volume 31 (2009), pp. 532-536

[77] M. Cobet; C. Cobet; M.R. Wagner; N. Esser; C. Thomsen; A. Hoffmann Polariton effects in the dielectric function of ZnO excitons obtained by ellipsometry, Appl. Phys. Lett., Volume 96 (2010) | DOI

[78] T. Guillet; C. Brimont; P. Valvin; B. Gil; T. Bretagnon; F. Médard; M. Mihailovic; J. Zuniga-Perez; M. Leroux; F. Semond; S. Bouchoule Laser emission with excitonic gain in a ZnO planar microcavity, Appl. Phys. Lett., Volume 98 (2011) | DOI

[79] T. Guillet; C. Brimont; P. Valvin; B. Gil; T. Bretagnon; F. Médard; M. Mihailovic; J. Zúñiga-Pérez; M. Leroux; F. Semond; S. Bouchoule Non-linear emission properties of ZnO microcavities, Phys. Status Solidi C, Volume 9 (2012), pp. 1225-1229 | DOI

[80] G. Malpuech; A. Di Carlo; A. Kavokin; J.J. Baumberg; M. Zamfirescu; P. Lugli Room-temperature polariton lasers based on GaN microcavities, Appl. Phys. Lett., Volume 81 (2002), p. 412 | DOI

[81] F. Stokker-Cheregi; A. Vinattieri; F. Semond; M. Leroux; I.R. Sellers; J. Massies; D. Solnyshkov; G. Malpuech; M. Colocci; M. Gurioli Polariton relaxation bottleneck and its thermal suppression in bulk GaN microcavities, Appl. Phys. Lett., Volume 92 (2008) | DOI

[82] J. Klaers; J. Schmitt; F. Vewinger; M. Weitz Bose-Einstein condensation of photons in an optical microcavity, Nature, Volume 468 (2010), pp. 545-548 | DOI

[83] J. Schmitt; T. Damm; D. Dung; F. Vewinger; J. Klaers; M. Weitz Thermalization kinetics of light: from laser dynamics to equilibrium condensation of photons, Phys. Rev. A, Volume 92 (2015) | DOI

[84] M. Wouters; I. Carusotto; C. Ciuti Spatial and spectral shape of inhomogeneous nonequilibrium exciton–polariton condensates, Phys. Rev. B, Volume 77 (2008) | DOI

[85] L. Orosz; F. Réveret; F. Médard; P. Disseix; J. Leymarie; M. Mihailovic; D. Solnyshkov; G. Malpuech; J. Zúñiga-Pérez; F. Semond; M. Leroux; S. Bouchoule; X. Lafosse; M. Mexis; C. Brimont; T. Guillet LO-phonon-assisted polariton lasing in a ZnO-based microcavity, Phys. Rev. B, Volume 85 (2012) | DOI

[86] J. Wang; W. Xie; L. Zhang; Y. Wang; J. Gu; T. Hu; L. Wu; Z. Chen A hybrid-structure of a cavity polariton system and an optical-ring, Solid State Commun., Volume 211 (2015), pp. 16-18 | DOI

[87] G. Roumpos; M.D. Fraser; A. Löffler; S. Höfling; A. Forchel; Y. Yamamoto Single vortex–antivortex pair in an exciton–polariton condensate, Nat. Phys., Volume 7 (2011), pp. 129-133 | DOI

[88] N. Bobrovska; E.A. Ostrovskaya; M. Matuszewski Stability and spatial coherence of nonresonantly pumped exciton–polariton condensates, Phys. Rev. B, Volume 90 (2014) | DOI

[89] M. Richard; J. Kasprzak; R. Romestain; R. André; L.S. Dang Spontaneous coherent phase transition of polaritons in CdTe microcavities, Phys. Rev. Lett., Volume 94 (2005) | DOI

[90] G. Christmann; D. Simeonov; R. Butté; E. Feltin; J.-F. Carlin; N. Grandjean Impact of disorder on high quality factor III–V nitride microcavities, Appl. Phys. Lett., Volume 89 (2006), p. 261101 | DOI

[91] M. Richard; J. Kasprzak; R. André; R. Romestain; L.S. Dang; G. Malpuech; A. Kavokin Experimental evidence for nonequilibrium Bose condensation of exciton polaritons, Phys. Rev. B, Volume 72 (2005) | DOI

[92] P. Corfdir; J. Levrat; G. Rossbach; R. Butté; E. Feltin; J.-F. Carlin; G. Christmann; P. Lefebvre; J.-D. Ganière; N. Grandjean; B. Deveaud-Plédran Impact of biexcitons on the relaxation mechanisms of polaritons in III-nitride based multiple quantum well microcavities, Phys. Rev. B, Volume 85 (2012) | DOI

[93] B. Hönerlage; C. Klingshirn; J.B. Grun Spontaneous emission due to exciton–electron scattering in semiconductors, Phys. Status Solidi B, Volume 78 (1976), pp. 599-608 | DOI

[94] C. Klingshirn; H. Haug Optical properties of highly excited direct gap semiconductors, Phys. Rep., Volume 70 (1981), pp. 315-398 | DOI

[95] D.M. Bagnall; Y.F. Chen; Z. Zhu; T. Yao; M.Y. Shen; T. Goto High temperature excitonic stimulated emission from ZnO epitaxial layers, Appl. Phys. Lett., Volume 73 (1998), pp. 1038-1040 | DOI

[96] J. Fallert; F. Stelzl; H. Zhou; A. Reiser; K. Thonke; R. Sauer; C. Klingshirn; H. Kalt Lasing dynamics in single ZnO nanorods, Opt. Express, Volume 16 (2008), pp. 1125-1131 | DOI

[97] C. Klingshirn; R. Hauschild; J. Fallert; H. Kalt Room-temperature stimulated emission of ZnO: alternatives to excitonic lasing, Phys. Rev. B, Volume 75 (2007)

[98] Y.-Y. Lai; Y.-H. Chou; Y.-P. Lan; T.-C. Lu; S.-C. Wang; Y. Yamamoto Crossover from polariton lasing to exciton lasing in a strongly coupled ZnO microcavity, Sci. Rep., Volume 6 (2016), p. 20581 | DOI

[99] G. Rossbach; J. Levrat; E. Feltin; J.-F. Carlin; R. Butté; N. Grandjean Impact of saturation on the polariton renormalization in III-nitride based planar microcavities, Phys. Rev. B, Volume 88 (2013) | DOI

[100] D. Solnyshkov; E. Petrolati; A. Di Carlo; G. Malpuech Theory of an electrically injected bulk polariton laser, Appl. Phys. Lett., Volume 94 (2009) | DOI

[101] A. Amo; T.C.H. Liew; C. Adrados; R. Houdré; E. Giacobino; A.V. Kavokin; A. Bramati Exciton–polariton spin switches, Nat. Photonics, Volume 4 (2010), pp. 361-366 | DOI

[102] T. Gao; P.S. Eldridge; T.C.H. Liew; S.I. Tsintzos; G. Stavrinidis; G. Deligeorgis; Z. Hatzopoulos; P.G. Savvidis Polariton condensate transistor switch, Phys. Rev. B, Volume 85 (2012) | DOI

[103] H.S. Nguyen; D. Vishnevsky; C. Sturm; D. Tanese; D. Solnyshkov; E. Galopin; A. Lemaître; I. Sagnes; A. Amo; G. Malpuech; J. Bloch Realization of a double-barrier resonant tunneling diode for cavity polaritons, Phys. Rev. Lett., Volume 110 (2013) | DOI

[104] P.M. Walker; L. Tinkler; D.V. Skryabin; A. Yulin; B. Royall; I. Farrer; D.A. Ritchie; M.S. Skolnick; D.N. Krizhanovskii Ultra-low-power hybrid light-matter solitons, Nat. Commun., Volume 6 (2015), p. 8317 | DOI

[105] D.D. Solnyshkov; T. Weiss; G. Malpuech; N.A. Gippius Polariton laser based on a ZnO photonic crystal slab, Appl. Phys. Lett., Volume 99 (2011), p. 111110 | DOI

[106] J.-H. Jiang; S. John Photonic crystal architecture for room-temperature equilibrium Bose–Einstein condensation of exciton polaritons, Phys. Rev. X, Volume 4 (2014) | DOI

[107] J. Wang; W. Xie; L. Zhang; D. Xu; W. Liu; J. Lu; Y. Wang; J. Gu; Y. Chen; X. Shen; Z. Chen Exciton–polariton condensate induced by evaporative cooling in a three-dimensionally confined microcavity, Phys. Rev. B, Volume 91 (2015) | DOI

[108] R.J. Holmes; S. Kéna-Cohen; V.M. Menon; S.R. Forrest Strong coupling and hybridization of Frenkel and Wannier–Mott excitons in an organic–inorganic optical microcavity, Phys. Rev. B, Volume 74 (2006) | DOI

[109] M. Slootsky; Y. Zhang; S.R. Forrest Temperature dependence of polariton lasing in a crystalline anthracene microcavity, Phys. Rev. B, Volume 86 (2012) | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Soliton physics with semiconductor exciton–polaritons in confined systems

Maksym Sich; Dmitry V. Skryabin; Dmitry N. Krizhanovskii

C. R. Phys (2016)


Polariton interactions in semiconductor microcavities

Benoit Deveaud

C. R. Phys (2016)


Exciton-polaritons in lattices: A non-linear photonic simulator

Alberto Amo; Jacqueline Bloch

C. R. Phys (2016)