[Condensats de polaritons à température ambiante]
Cette article de revue est consacré aux récents développements de la physique des polaritons dans les microcavités présentant le couplage fort exciton–photon à température ambiante, aboutissant à la réalisation de condensats de polaritons à température ambiante. De telles cavités contiennent des couches actives spécifiques, dont les excitons présentent une grande énergie de liaison et une grande force d'oscillateur, i.e. des semiconducteurs à grand gap ou organiques, ou des molécules organiques. Les différents systèmes étudiés à ce jour sont comparés, sur la base de leurs figures de mérites et de leurs propriétés communes liées à leur grande force d'oscillateur. Cette comparaison s'étend ensuite aux différentes démonstrations de laser à polariton, et aux diagrammes des phases correspondant. Le fonctionnement à température ambiante permet en effet une étude détaillée des régimes thermodynamique vs hors d'équilibre du processus de condensation. Le rôle crucial de la dynamique spatiale de formation du condensat est aussi abordé, ainsi que la question encore débattue du mécanisme de relaxation stimulée depuis le réservoir jusqu'au condensat dans le cas de l'excitation non résonante. Enfin, les enjeux des dispositifs polaritoniques sont présentés.
We review the recent developments of the polariton physics in microcavities featuring the exciton–photon strong coupling at room temperature, and leading to the achievement of room-temperature polariton condensates. Such cavities embed active layers with robust excitons that present a large binding energy and a large oscillator strength, i.e. wide bandgap inorganic or organic semiconductors, or organic molecules. These various systems are compared, in terms of figures of merit and of common features related to their strong oscillator strength. The various demonstrations of polariton laser are compared, as well as their condensation phase diagrams. The room-temperature operation indeed allows a detailed investigation of the thermodynamic and out-of-equilibrium regimes of the condensation process. The crucial role of the spatial dynamics of the condensate formation is discussed, as well as the debated issue of the mechanism of stimulated relaxation from the reservoir to the condensate under non-resonant excitation. Finally the prospects of polariton devices are presented.
Thierry Guillet 1 ; Christelle Brimont 1
@article{CRPHYS_2016__17_8_946_0, author = {Thierry Guillet and Christelle Brimont}, title = {Polariton condensates at room temperature}, journal = {Comptes Rendus. Physique}, pages = {946--956}, publisher = {Elsevier}, volume = {17}, number = {8}, year = {2016}, doi = {10.1016/j.crhy.2016.07.002}, language = {en}, }
Thierry Guillet; Christelle Brimont. Polariton condensates at room temperature. Comptes Rendus. Physique, Volume 17 (2016) no. 8, pp. 946-956. doi : 10.1016/j.crhy.2016.07.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.07.002/
[1] Strong exciton–photon coupling in an organic semiconductor microcavity, Nature, Volume 395 (1998), pp. 53-55 | DOI
[2] Observation of Rabi splitting in a bulk GaN microcavity grown on silicon, Phys. Rev. B, Volume 68 (2003) | DOI
[3] Strong light-matter coupling at room temperature in simple geometry GaN microcavities grown on silicon, Appl. Phys. Lett., Volume 87 (2005) | DOI
[4] Room-temperature polariton luminescence from a bulk GaN microcavity, Phys. Rev. B, Volume 73 (2006) | DOI
[5] Cavity polaritons in ZnO-based hybrid microcavities, Appl. Phys. Lett., Volume 92 (2008) | DOI
[6] Relaxation and emission of Bragg-mode and cavity-mode polaritons in a ZnO microcavity at room temperature, Appl. Phys. Lett., Volume 95 (2009) | DOI
[7] Observation of exciton polaritons in a ZnO microcavity with HfO2/SiO2 distributed Bragg reflectors, J. Phys. Soc. Jpn., Volume 77 (2008) | DOI
[8] Exciton–polariton formation at room temperature in a planar ZnO resonator structure, Appl. Phys. B, Volume 93 (2008), pp. 331-337 | DOI
[9] Strong exciton–photon coupling in a monolithic ZnO/(Zn, Mg)O multiple quantum well microcavity, Appl. Phys. Lett., Volume 99 (2011) | DOI
[10] Giant Rabi splitting in a bulk CuCl microcavity, Phys. Rev. B, Volume 78 (2008) | DOI
[11] Observation of strong exciton–photon coupling at temperatures up to 410 K, New J. Phys., Volume 11 (2009) | DOI
[12] Robust exciton–polariton effect in a ZnO whispering gallery microcavity at high temperature, Appl. Phys. Lett., Volume 100 (2012) | DOI
[13] Excitons in a II–VI semiconductor microcavity in the strong-coupling regime, Phys. Rev. B, Volume 52 (1995), p. R5491-R5494 | DOI
[14] Large room temperature Rabi-splitting in a ZnSe/(Zn, Cd)Se semiconductor microcavity structure, Solid State Commun., Volume 123 (2002), pp. 235-238 | DOI
[15] Optical polariton properties in ZnSe-based planar and pillar structured microcavities, Eur. Phys. J. B, Volume 84 (2011), pp. 381-384 | DOI
[16] Polariton lasing in high-quality selenide-based micropillars in the strong coupling regime, Appl. Phys. Lett., Volume 107 (2015) | DOI
[17] Characteristics of cavity polaritons in a CuBr microcavity, Eur. Phys. J. B, Volume 85 (2012) | DOI
[18] Strong exciton–photon coupling in a microcavity containing layered perovskite semiconductors, Appl. Phys. Lett., Volume 89 (2006), p. 171110 | DOI
[19] Optical spectroscopy of two-dimensional layered (C_6H_5C_2H_4-NH_3)_2-PbI_4 perovskite, Opt. Express, Volume 18 (2010), p. 5912 | DOI
[20] Room temperature polariton emission from strongly coupled organic semiconductor microcavities, Phys. Rev. Lett., Volume 82 (1999), pp. 3316-3319 | DOI
[21] Strong exciton–photon coupling in an organic single crystal microcavity, Phys. Rev. Lett., Volume 101 (2008) | DOI
[22] Nonlinear interactions in an organic polariton condensate, Nat. Mater., Volume 13 (2014), pp. 271-278 | DOI
[23] Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer, Nat. Mater., Volume 13 (2013), pp. 247-252 | DOI
[24] Crack-free highly reflective AlInN/AlGaN Bragg mirrors for UV applications, Appl. Phys. Lett., Volume 88 (2006) | DOI
[25] Patterned silicon substrates: a common platform for room temperature GaN and ZnO polariton lasers, Appl. Phys. Lett., Volume 104 (2014) | DOI
[26] Top-mirror migration for the fabrication of high- Q planar microcavities containing fragile active materials, Appl. Phys. Express, Volume 6 (2013), p. 106701 | DOI
[27] Fabrication and characterization of a room-temperature ZnO polariton laser, Appl. Phys. Lett., Volume 102 (2013), p. 191118 | DOI
[28] Exciton polaritons confined in a ZnO nanowire cavity, Phys. Rev. Lett., Volume 97 (2006) | DOI
[29] Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation, Appl. Phys. Lett., Volume 93 (2008) | DOI
[30] Refractive index dispersion deduced from lasing modes in ZnO microtetrapods, Appl. Phys. Lett., Volume 95 (2009), p. 171101 | DOI
[31] From strong to weak coupling regime in a single GaN microwire up to room temperature, New J. Phys., Volume 14 (2012)
[32] Direct observation of whispering gallery mode polaritons and their dispersion in a ZnO tapered microcavity, Phys. Rev. Lett., Volume 100 (2008) | DOI
[33] One-dimensional ZnO exciton polaritons with negligible thermal broadening at room temperature, Phys. Rev. B, Volume 83 (2011) | DOI
[34] Whispering gallery mode lasing in zinc oxide microwires, Appl. Phys. Lett., Volume 92 (2008), p. 241102 | DOI
[35] Propagation and amplification dynamics of 1D polariton condensates, Phys. Rev. Lett., Volume 109 (2012) | DOI
[36] Optically pumped nanowire lasers: invited review, Semicond. Sci. Technol., Volume 25 (2010) | DOI
[37] Controlled exciton–photon interaction in semiconductor bulk microcavities, Phys. Rev. Lett., Volume 75 (1995), pp. 3906-3909 | DOI
[38] Strong coupling in bulk GaN microcavities grown on silicon, Phys. Status Solidi C, Volume 4 (2007), pp. 108-111 | DOI
[39] Maxwell consideration of polaritonic quasi-particle Hamiltonians in multi-level systems, Appl. Phys. Lett., Volume 107 (2015), p. 231104 | DOI
[40] Experimental observation of strong light-matter coupling in ZnO microcavities: influence of large excitonic absorption, Phys. Rev. B, Volume 79 (2009) | DOI
[41] Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities, Phys. Rev. B, Volume 78 (2008) | DOI
[42] Room-temperature polariton lasing in semiconductor microcavities, Phys. Rev. Lett., Volume 98 (2007) | DOI
[43] Polariton condensation phase diagram in wide-band-gap planar microcavities: GaN versus ZnO, Phys. Rev. B, Volume 93 (2016) | DOI
[44] Kinetic phase diagrams of GaN-based polariton lasers, J. Appl. Phys., Volume 103 (2008) | DOI
[45] Spontaneous polarization buildup in a room-temperature polariton laser, Phys. Rev. Lett., Volume 101 (2008) | DOI
[46] Room temperature electrically injected polariton laser, Phys. Rev. Lett., Volume 112 (2014) | DOI
[47] Cavity polaritons in InGaN microcavities at room temperature, Phys. Rev. Lett., Volume 92 (2004) | DOI
[48] Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity, Appl. Phys. Lett., Volume 93 (2008) | DOI
[49] Condensation phase diagram of cavity polaritons in GaN-based microcavities: experiment and theory, Phys. Rev. B, Volume 81 (2010) | DOI
[50] Room temperature current injection polariton light emitting diode with a hybrid microcavity, Nano Lett., Volume 11 (2011), pp. 2791-2795 | DOI
[51] Polariton lasing in a hybrid bulk ZnO microcavity, Appl. Phys. Lett., Volume 99 (2011), p. 161104 | DOI
[52] Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity, Opt. Express, Volume 20 (2012), pp. 5530-5537 | DOI
[53] From excitonic to photonic polariton condensate in a ZnO-based microcavity, Phys. Rev. Lett., Volume 110 (2013) | DOI
[54] Ballistic propagation of exciton–polariton condensates in a ZnO-based microcavity, New J. Phys., Volume 14 (2012) | DOI
[55] Theory of exciton–polariton lasing at room temperature in ZnO microcavities, Appl. Phys. Lett., Volume 93 (2008), p. 211105 | DOI
[56] Optical amplifier based on guided polaritons in GaN and ZnO, Appl. Phys. Lett., Volume 105 (2014), p. 231102 | DOI
[57] Interplay between tightly focused excitation and ballistic propagation of polariton condensates in a ZnO microcavity, Phys. Rev. B, Volume 92 (2015) | DOI
[58] Cavity polariton condensate in a disordered environment, Phys. Rev. B, Volume 93 (2016) | DOI
[59] Exciton–polariton microphotoluminescence and lasing from ZnO whispering-gallery mode microcavities, Appl. Phys. Lett., Volume 98 (2011) | DOI
[60] Polariton lasing in a ZnO microwire above 450 K, Appl. Phys. Lett., Volume 104 (2014) | DOI
[61] Room-temperature polariton parametric scattering driven by a one-dimensional polariton condensate, Phys. Rev. Lett., Volume 108 (2012) | DOI
[62] Long-range correlations in a 97% excitonic one-dimensional polariton condensate, Phys. Rev. B, Volume 88 (2013) | DOI
[63] Parametric relaxation in whispering gallery mode exciton–polariton condensates, Phys. Rev. B, Volume 91 (2015) | DOI
[64] Weak lasing in one-dimensional polariton superlattices, Proc. Natl. Acad. Sci., Volume 112 (2015), p. E1516-E1519 | DOI
[65] Exciton–polariton gas as a nonequilibrium coolant, Phys. Rev. Lett., Volume 114 (2015) | DOI
[66] Control of exciton–photon interactions in CuCl microcavities, Phys. Rev. B, Volume 83 (2011) | DOI
[67] Light squeezing via a biexciton in a semiconductor microcavity, Phys. Rev. B, Volume 83 (2011) | DOI
[68] Photoluminescence characteristics of polariton condensation in a CuBr microcavity, Appl. Phys. Lett., Volume 105 (2014) | DOI
[69] Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature, Appl. Phys. Lett., Volume 104 (2014) | DOI
[70] Organic and inorganic quantum wells in a microcavity: Frenkel–Wannier–Mott excitons hybridization and energy transformation, Solid State Commun., Volume 102 (1997), pp. 631-636 | DOI
[71] Cavity polaritons in microcavities containing disordered organic semiconductors, Phys. Rev. B, Volume 67 (2003) | DOI
[72] Simulation of J-aggregate microcavity photoluminescence, Phys. Rev. B, Volume 77 (2008) | DOI
[73] Room-temperature polariton lasing in an organic single-crystal microcavity, Nat. Photonics, Volume 4 (2010), pp. 371-375 | DOI
[74] Spatial coherence and stability in a disordered organic polariton condensate, Phys. Rev. Lett., Volume 115 (2015) | DOI
[75] Index of refraction of ZnO, J. Appl. Phys., Volume 39 (1968), pp. 3049-3052 | DOI
[76] Optical and excitonic properties of ZnO films, Opt. Mater., Volume 31 (2009), pp. 532-536
[77] Polariton effects in the dielectric function of ZnO excitons obtained by ellipsometry, Appl. Phys. Lett., Volume 96 (2010) | DOI
[78] Laser emission with excitonic gain in a ZnO planar microcavity, Appl. Phys. Lett., Volume 98 (2011) | DOI
[79] Non-linear emission properties of ZnO microcavities, Phys. Status Solidi C, Volume 9 (2012), pp. 1225-1229 | DOI
[80] Room-temperature polariton lasers based on GaN microcavities, Appl. Phys. Lett., Volume 81 (2002), p. 412 | DOI
[81] Polariton relaxation bottleneck and its thermal suppression in bulk GaN microcavities, Appl. Phys. Lett., Volume 92 (2008) | DOI
[82] Bose-Einstein condensation of photons in an optical microcavity, Nature, Volume 468 (2010), pp. 545-548 | DOI
[83] Thermalization kinetics of light: from laser dynamics to equilibrium condensation of photons, Phys. Rev. A, Volume 92 (2015) | DOI
[84] Spatial and spectral shape of inhomogeneous nonequilibrium exciton–polariton condensates, Phys. Rev. B, Volume 77 (2008) | DOI
[85] LO-phonon-assisted polariton lasing in a ZnO-based microcavity, Phys. Rev. B, Volume 85 (2012) | DOI
[86] A hybrid-structure of a cavity polariton system and an optical-ring, Solid State Commun., Volume 211 (2015), pp. 16-18 | DOI
[87] Single vortex–antivortex pair in an exciton–polariton condensate, Nat. Phys., Volume 7 (2011), pp. 129-133 | DOI
[88] Stability and spatial coherence of nonresonantly pumped exciton–polariton condensates, Phys. Rev. B, Volume 90 (2014) | DOI
[89] Spontaneous coherent phase transition of polaritons in CdTe microcavities, Phys. Rev. Lett., Volume 94 (2005) | DOI
[90] Impact of disorder on high quality factor III–V nitride microcavities, Appl. Phys. Lett., Volume 89 (2006), p. 261101 | DOI
[91] Experimental evidence for nonequilibrium Bose condensation of exciton polaritons, Phys. Rev. B, Volume 72 (2005) | DOI
[92] Impact of biexcitons on the relaxation mechanisms of polaritons in III-nitride based multiple quantum well microcavities, Phys. Rev. B, Volume 85 (2012) | DOI
[93] Spontaneous emission due to exciton–electron scattering in semiconductors, Phys. Status Solidi B, Volume 78 (1976), pp. 599-608 | DOI
[94] Optical properties of highly excited direct gap semiconductors, Phys. Rep., Volume 70 (1981), pp. 315-398 | DOI
[95] High temperature excitonic stimulated emission from ZnO epitaxial layers, Appl. Phys. Lett., Volume 73 (1998), pp. 1038-1040 | DOI
[96] Lasing dynamics in single ZnO nanorods, Opt. Express, Volume 16 (2008), pp. 1125-1131 | DOI
[97] Room-temperature stimulated emission of ZnO: alternatives to excitonic lasing, Phys. Rev. B, Volume 75 (2007)
[98] Crossover from polariton lasing to exciton lasing in a strongly coupled ZnO microcavity, Sci. Rep., Volume 6 (2016), p. 20581 | DOI
[99] Impact of saturation on the polariton renormalization in III-nitride based planar microcavities, Phys. Rev. B, Volume 88 (2013) | DOI
[100] Theory of an electrically injected bulk polariton laser, Appl. Phys. Lett., Volume 94 (2009) | DOI
[101] Exciton–polariton spin switches, Nat. Photonics, Volume 4 (2010), pp. 361-366 | DOI
[102] Polariton condensate transistor switch, Phys. Rev. B, Volume 85 (2012) | DOI
[103] Realization of a double-barrier resonant tunneling diode for cavity polaritons, Phys. Rev. Lett., Volume 110 (2013) | DOI
[104] Ultra-low-power hybrid light-matter solitons, Nat. Commun., Volume 6 (2015), p. 8317 | DOI
[105] Polariton laser based on a ZnO photonic crystal slab, Appl. Phys. Lett., Volume 99 (2011), p. 111110 | DOI
[106] Photonic crystal architecture for room-temperature equilibrium Bose–Einstein condensation of exciton polaritons, Phys. Rev. X, Volume 4 (2014) | DOI
[107] Exciton–polariton condensate induced by evaporative cooling in a three-dimensionally confined microcavity, Phys. Rev. B, Volume 91 (2015) | DOI
[108] Strong coupling and hybridization of Frenkel and Wannier–Mott excitons in an organic–inorganic optical microcavity, Phys. Rev. B, Volume 74 (2006) | DOI
[109] Temperature dependence of polariton lasing in a crystalline anthracene microcavity, Phys. Rev. B, Volume 86 (2012) | DOI
Cité par Sources :
Commentaires - Politique