Comptes Rendus
Polariton physics/Physique des polaritons
Polariton interactions in semiconductor microcavities
[Interactions entre polaritons dans des microcavités semiconductrices]
Comptes Rendus. Physique, Volume 17 (2016) no. 8, pp. 874-892.

Dans cet article de synthèse, nous nous efforcerons de présenter les résultats qui ont été obtenus en matière d'interactions entre polaritons. Nous décrirons les échantillons, les systèmes expérimentaux et certains résultats importants. Nous donnerons aussi quelques éclaircissements quant à la description théorique de ces résultats. Un des principaux sujets qui seront abordés ici est l'observation de la résonance de Feshbach pour les polaritons et son interprétation à travers le couplage de deux polaritons bas vers un biexciton.

In this review, we will try to summarize the results that we have obtained on the measurement of polariton interactions. We will describe here the samples, the experimental systems and some of the important results. We will also give a few highlights on the theoretical description of these results. One of the main topics of this review will be the observation of the Feshbach resonance for polaritons, and its interpretation through the coupling of two lower polaritons into a biexciton.

Publié le :
DOI : 10.1016/j.crhy.2016.05.004
Keywords: Exciton, Polariton, Microcavity, Spectroscopy, Semiconductor, Interaction
Mot clés : Exciton, Polariton, Microcavité, Spectroscopie, Semiconducteur, Interaction
Benoit Deveaud 1

1 EPFL, Physics Institute, CH-1015 Lausanne, Switzerland
@article{CRPHYS_2016__17_8_874_0,
     author = {Benoit Deveaud},
     title = {Polariton interactions in semiconductor microcavities},
     journal = {Comptes Rendus. Physique},
     pages = {874--892},
     publisher = {Elsevier},
     volume = {17},
     number = {8},
     year = {2016},
     doi = {10.1016/j.crhy.2016.05.004},
     language = {en},
}
TY  - JOUR
AU  - Benoit Deveaud
TI  - Polariton interactions in semiconductor microcavities
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 874
EP  - 892
VL  - 17
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.05.004
LA  - en
ID  - CRPHYS_2016__17_8_874_0
ER  - 
%0 Journal Article
%A Benoit Deveaud
%T Polariton interactions in semiconductor microcavities
%J Comptes Rendus. Physique
%D 2016
%P 874-892
%V 17
%N 8
%I Elsevier
%R 10.1016/j.crhy.2016.05.004
%G en
%F CRPHYS_2016__17_8_874_0
Benoit Deveaud. Polariton interactions in semiconductor microcavities. Comptes Rendus. Physique, Volume 17 (2016) no. 8, pp. 874-892. doi : 10.1016/j.crhy.2016.05.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.05.004/

[1] C. Weisbuch; N. Nishioka; A. Ishikawa; Y. Arakawa Observation of the coupled exciton–photon mode splitting in a semiconductor quantum microcavity, Phys. Rev. Lett., Volume 69 (1992), pp. 3314-3317

[2] B. Deveaud-Plédran On the condensation of polaritons, J. Opt. Soc. Am. B, Opt. Phys., Volume 29 (2012), p. A138-A145

[3] B. Deveaud Exciton–polariton Bose condensates, Annu. Rev. Condens. Matter Phys., Volume 6 (2015), pp. 155-176

[4] T. Byrnes; Na Young Kim; Y. Yamamoto Exciton–polariton condensates, Nat. Phys., Volume 10 (2014), pp. 803-813

[5] J. Kasprzak; M. Richard; S. Kundermann; A. Baas; P. Jeambrun; J. Keeling; F.M. Marchetti; M.H. Szymańska; R. André; J.L. Staehli; V. Savona; P.B. Littlewood; B. Deveaud Le Si Dang Bose–Einstein condensation of exciton polaritons, Nature, Volume 443 (2006), p. 409

[6] R. Balili; V. Hartwell; D. Snoke; L. Pfeiffer; K. West Bose–Einstein condensation of microcavity polaritons in a trap, Science, Volume 316 (2007), p. 1007

[7] S. Christopoulos; G. Baldassarri Höger von Högersthal; A.J.D. Grundy; P.G. Lagoudakis; A.V. Kavokin; J.J. Baumberg; G. Christmann; R. Butté; E. Feltin; J.-F. Carlin; N. Grandjean Room-temperature polariton lasing in semiconductor microcavities, Phys. Rev. Lett., Volume 98 (2007)

[8] J.D. Plumhof; T. Stoferle; L. Mai; U. Scherf; R.F. Mahrt Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer, Nat. Mater., Volume 13 (2014), p. 247

[9] K.S. Daskalakis; S.A. Maier; R. Murray; S. Kena-Cohen Nonlinear interactions in an organic polariton condensate, Nat. Mater., Volume 13 (2014), p. 272

[10] A. Amo; D. Sanvitto; F.P. Laussi; D. Ballarini; E. del Valle; M.D. Martin; A. Lemaître; J. Bloch; D.N. Krizhanovskii; M.S. Skolnick; C. Tejedor; L. Viña Collective fluid dynamics of a polariton condensate in a semiconductor microcavity, Nature, Volume 457 (2009), pp. 291-295

[11] A. Amo; J. Lefrère; S. Pigeon; C. Adrados; C. Ciuti; I. Carusotto; R. Houdré; E. Giacobino; A. Bramati Superfluidity of polaritons in semiconductor microcavities, Nat. Phys., Volume 5 (2009), p. 805

[12] G. Nardin; G. Grosso; Y. Leger; B. Pietka; F. Morier-Genoud; Benoit Deveaud-Plédran Quantum turbulence in a polariton fluid, Nat. Phys., Volume 7 (2011), p. 635

[13] A. Amo; S. Pigeon; D. Sanvitto; V.G. Sala; R. Hivet; I. Carusotto; F. Pisanello; G. Lemenager; R. Houdre; E. Giacobino; C. Ciuti; A. Bramati Polariton superfluids reveal quantum hydrodynamical solitons, Science, Volume 332 (2011), p. 1167

[14] G. Grosso; G. Nardin; Y. Léger; F. Morier-Genoud; B. Deveaud-Plédran Soliton instabilities and vortex streets formation in a polariton quantum fluid, Phys. Rev. Lett., Volume 107 (2011)

[15] R. Hivet; H. Flayac; D.D. Solnyskhov; D. Tanese; T. Boulier; D. Andreoli; J. Bloch; E. Giacobino; A. Kavokin; A. Bramati; G. Malpuech; A. Amo Half-solitons in a polariton quantum fluid behave like magnetic monopoles, Nat. Phys., Volume 8 (2012), pp. 724-728

[16] V. Kohnle; Y. Léger; M. Wouters; M. Richard; M.T. Portela-Oberli; B. Deveaud-Plédran From single particle to superfluid excitations in a polariton gas, Phys. Rev. Lett., Volume 106 (2011)

[17] V. Kohnle; Y. Leger; M. Wouters; M. Richard; M.T. Portella-Oberli; B. Deveaud Four-wave mixing excitations in a dissipative polariton quantum fluid, Phys. Rev. B, Volume 86 (2012)

[18] A. Baas; J.P. Karr; M. Romanelli; A. Bramati; E. Giacobino Optical bistability in semiconductor microcavities in the nondegenerate parametric oscillation regime: analogy with the optical parametric oscillator, Phys. Rev. B, Volume 70 (2004)

[19] D. Bajoni; E. Semenova; A. Lemaitre; S. Bouchoule; E. Wertz; P. Senellart; S. Barbay; R. Kuszelewicz; J. Bloch Optical bistability in a GaAs-based polariton diode, Phys. Rev. Lett., Volume 101 (2008)

[20] T.C.H. Liew; A.V. Kavokin; I.A. Shelykh Optical circuits based on polariton neurons in semiconductor microcavities, Phys. Rev. Lett., Volume 101 (2008)

[21] A. Amo; T.C.H. Liew; C. Adrados; R. Houdre; E. Giacobino; A.V. Kavokin; A. Bramati Exciton–polariton spin switches, Nat. Photonics, Volume 4 (2010), p. 361

[22] Y.G. Rubo Half vortices in exciton polariton condensates, Phys. Rev. Lett., Volume 99 (2007)

[23] K. Lagoudakis; T. Ostatnick; A.V. Kavokin; Y.G. Rubo; R. André; B. Deveaud-Plédran Observation of half-quantum vortices in an exciton–polariton condensate, Science, Volume 326 (2009), pp. 974-977

[24] A.V. Kavokin; G. Malpuech; M.M. Glazov Optical spin Hall effect, Phys. Rev. Lett., Volume 95 (2005)

[25] C. Leyder; M. Romanelli; J.Ph. Karr; E. Giacobino; T.C.H. Liew; M.M. Glazov; A.V. Kavokin; G. Malpuech; G.A. Bramati Observation of the optical spin Hall effect, Nat. Photonics, Volume 3 (2007), p. 628

[26] M. Wouters Resonant polariton–polariton scattering in semiconductor microcavities, Phys. Rev. B, Volume 76 (2007)

[27] N. Takemura; S. Trebaol; M. Wouters; M.T. Portella-Oberli; B. Deveaud Polaritonic Feshbach resonance, Nat. Phys., Volume 10 (2014), p. 500

[28] N.A. Gippius; I.A. Shelykh; I.D.D. Solnyshkov; S.S. Gavrilov; Y.G. Rubo; A.V. Kavokin; S.G. Tikhodeev; G. Malpuech Polarization multistability of cavity polaritons, Phys. Rev. Lett., Volume 98 (2007)

[29] T.K. Paraïso; M. Wouters; Y. Léger; F. Morier-Genoud; B. Deveaud-Plédran Multistability of a coherent spin ensemble in a semiconductor microcavity, Nat. Mater., Volume 9 (2010), p. 655

[30] F. Koyama; S. Kinoshita; K. Iga Room-temperature continuous wave characteristics of a GaAs vertical cavity surface emitting laser, Appl. Phys. Lett., Volume 55 (1989), p. 221

[31] C.J. Chang-Hasnain; J.P. Harbison; G. Hasnain; A.C. Von Lehmen; L.T. Florez; N.G. Stiffel Dynamic polarization and transverse mode characteristics of vertical cavity surface emitting lasers, IEEE J. Quantum Electron., Volume 27 (1991), p. 1402

[32] R. Houdré; R.P. Stanley; U. Oesterle; M. Ilegems; C. Weisbuch Room-temperature cavity polaritons in a semiconductor microcavity, Phys. Rev. B, Volume 49 (1994), p. 16761

[33] S. Pau; G. Björk; J. Jacobson; H. Cao; Y. Yamamoto Microcavity exciton–polariton splitting in the linear regime, Phys. Rev. B, Volume 51 (1995), p. 14437

[34] R. Houdré; C. Weisbuch; R.P. Stanley; U. Oesterle; P. Pellandini; M. Ilegems Measurement of cavity-polariton dispersion curve from angle-resolved photoluminescence experiments, Phys. Rev. Lett., Volume 73 (1994), p. 2043

[35] S. Dufferwiel; F. Fras; A. Trichet; P.M. Walker; F. Li; L. Giriunas; M.N. Makhonin; L.R. Wilson; J.M. Smith; E. Clarke; M.S. Skolnick; D.N. Krizhanovskii Strong exciton–photon coupling in open semiconductor microcavities, Appl. Phys. Lett., Volume 104 (2014), p. 192107

[36] Benjamin Besga; Cyril Vaneph; Jakob Reichel; Jérôme Estève; Andreas Reinhard; Javier Miguel-Sánchez; Ataç Imamoğlu; Thomas Volz Polariton boxes in a tunable fiber cavity, Phys. Rev. Appl., Volume 3 (2015)

[37] L. Tinkler; P.M. Walker; E. Clarke; D.N. Krizhanovskii; F. Bastiman; M. Durska; M.S. Skolnick Design and characterization of high optical quality InGaAs/GaAs/AlGaAs-based polariton microcavities, Appl. Phys. Lett., Volume 106 (2015)

[38] C. Ouellet-Plamondon; G. Sallen; F. Jabeen; D.Y. Oberli; B. Deveaud Multiple polariton modes originating from the coupling of quantum wells in planar microcavity, Phys. Rev. B, Volume 92 (2015)

[39] P. Cilibrizzi; A. Askitopoulos; M. Silva; F. Bastiman; E. Clarke; J.M. Zajac; W. Langbein; P.G. Lagoudakis Polariton condensation in a strain-compensated planar microcavity with InGaAs quantum wells, Appl. Phys. Lett., Volume 105 (2014), p. 191118

[40] N.Y. Kim et al. Dynamical d-wave condensation of exciton–polaritons in a two-dimensional square-lattice potential, Nat. Phys., Volume 7 (2011), pp. 681-686

[41] J.P. Reithmaier; M. Röhner; H. Zull; F. Schäfer; A. Forchel; P.A. Knipp; T.L. Reinecke Size dependence of confined optical modes in photonic quantum dots, Phys. Rev. Lett., Volume 78 (1997), p. 378

[42] H.S. Nguyen; D. Gerace; I. Carusotto; D. Sanvitto; E. Galopin; A. Lemaître; I. Sagnes; J. Bloch; A. Amo Acoustic black hole in a stationary hydrodynamic flow of microcavity polaritons, Phys. Rev. Lett., Volume 114 (2015) (See for example:)

[43] G. Nardin Phase resolved imaging of exciton polaritons, 2011 (PhD thesis EPFL N°5002)

[44] O. El Daïf; A. Baas; J.-P. Brantut; R. Idrissi Kaitouni; J.L. Staehli; F. Morier-Genoud; B. Deveaud; T. Guillet Polariton quantum boxes in semiconductor microcavities, Appl. Phys. Lett., Volume 88 (2006)

[45] R. Idrissi Kaitouni; O. El Daïf; M. Richard; P. Lugan; A. Baas; F. Morier-Genoud; J.D. Ganière; J.L. Staehli; T. Guillet; V. Savona; B. Deveaud Engineering the spatial confinement of exciton–polaritons in semiconductors, Phys. Rev. B, Volume 74 (2006)

[46] L. Dominici; D. Colas; S. Donati; J.P. Restrepo Cuartas; M. De Giorgi; D. Ballarini; G. Guirales; J.C. López Carreño; A. Bramati; G. Gigli; E. del Valle; F.P. Laussy; D. Sanvitto Ultrafast control and Rabi oscillations of polaritons, Phys. Rev. Lett., Volume 113 (2014)

[47] W. Langbein; B. Patton Heterodyne spectral interferometry for multidimensional nonlinear spectroscopy of individual quantum systems, Opt. Lett., Volume 31 (2006), pp. 1151-1153

[48] J. Kasprzak; S. Reitzenstein; E.A. Muljarov; C. Kistner; C. Schneider; M. Strauss; S. Höfling; A. Forchel; W. Langbein Up on the Jaynes–Cummings ladder of a quantum-dot/microcavity system, Nat. Mater., Volume 9 (2010), pp. 304-308

[49] Naotomo Takemura On the physics of polariton interactions, 2015 (PhD thesis EPFL N°XXX)

[50] H. Abbaspour; G. Sallen; S. Trebaol; F. Morier-Genoud; M.T. Portella-Oberli; B. Deveaud The effect of a noisy driving field on a bistable polariton system, Phys. Rev. B, Volume 92 (2015), p. 165303

[51] Taofiq Paraiso Dynamics of interactions of confined microcavity polaritons, 2010 (PhD thesis, EPFL N° 4726)

[52] M. Vladimirova; S. Cronenberger; D. Scalbert; K.V. Kavokin; A. Miard; A. Lemaître; J. Bloch; D. Solnyshkov; G. Malpuech; A.V. Kavokin Polariton–polariton interaction constants in microcavities, Phys. Rev. B, Volume 82 (2010)

[53] N. Takemura; S. Trebaol; M. Wouters; M.T. Portella-Oberli; B. Deveaud Heterodyne spectroscopy of polariton spinor interactions, Phys. Rev. B, Volume 90 (2014), p. 195307

[54] M. Combescot; M. Dupertuis; O. Betbeder-Matibet Polariton–polariton scattering: exact results through a novel approach, Europhys. Lett., Volume 79 (2007), p. 17001

[55] M. Vladimirova; S. Cronenberger; D. Scalbert; K.V. Kavokin; A. Miard; A. Lemaître; J. Bloch; D. Solnyshkov; G. Malpuech; A.V. Kavokin Polariton–polariton interaction constants in microcavities, Phys. Rev. B, Volume 82 (2010)

[56] N. Takemura; S. Trebaol; M.D. Anderson; S. Biswas; D.Y. Oberli; M.T. Portella-Oberli; B. Deveaud Dephasing effects on coherent exciton–polaritons and the breaking of the strong coupling regime, Phys. Rev. B, Volume 92 (2015)

[57] N. Takemura; S. Trebaol; M. Wouters; M.T. Portella-Oberli; B. Deveaud Heterodyne spectroscopy of polariton spinor interactions, Phys. Rev. B, Volume 90 (2014), p. 195307

[58] M. Wouters Resonant polariton–polariton scattering in semiconductor microcavities, Phys. Rev. B, Volume 76 (2007)

[59] A.L. Ivanov; M. Hasuo; N. Nagasawa; H. Haug Two-photon generation of excitonic molecules in CuCl: an exactly solvable bipolariton model and high-precision experiments, Phys. Rev. B, Volume 52 (1995), p. 11017

[60] E. Hanamura Giant two-photon absorption due to excitonic molecule, Solid State Commun., Volume 12 (1973), p. 951

[61] I. Carusotto; T. Volz; A. Imamoglu Feshbach blockade: single-photon nonlinear optics using resonantly enhanced cavity polariton scattering from biexciton states, Europhys. Lett., Volume 90 (2010), p. 37001

[62] C. Ciuti; V. Savona; C. Piermarocchi; A. Quattropani; P. Schwendimann Role of the exchange of carriers in elastic exciton–exciton scattering in quantum wells, Phys. Rev. B, Volume 58 (1998), p. 7926

[63] V. Axt; K. Victor; T. Kuhn The exciton–exciton continuum and its contribution to four-wave mixing signal, Phys. Status Solidi, B, Volume 206 (1998), p. 189

[64] T. Ostreich; K. Schönhammer; L.J. Sham Exciton–exciton correlation in the nonlinear optical regime, Phys. Rev. Lett., Volume 74 (1995), p. 4698

[65] N.H. Kwong; R. Takayama; I. Rumyantsev; M. Kuwata-Gonokami; R. Binder Evidence of nonperturbative continuum correlations in two-dimensional exciton systems in semiconductor microcavities, Phys. Rev. Lett., Volume 87 (2001)

[66] R. Takayama; N. Kwong; I. Rumyantsev; M. Kuwata-Gonokami; R. Binder T-matrix analysis of biexcitonic correlations in the nonlinear optical response of semiconductor quantum wells, Eur. Phys. J. B, Volume 25 (2002), p. 445

[67] C. Ciuti; P. Schwendimann; B. Deveaud; A. Quattropani Theory of the angle-resonant polariton amplifier, Phys. Rev. B, Volume 62 (2000)

[68] T. Lecomte; D. Taj; A. Lemaitre; J. Bloch; C. Delalande; J. Tignon; P. Roussignol Polariton–polariton interaction potentials determination by pump-probe degenerate scattering in a multiple microcavity, Phys. Rev. B, Volume 89 (2014), p. 155308

[69] S. Inouye; M.R. Andrews; J. Stenger; H.-J. Miesner; D.M. Stamper-Kurn; W. Ketterle Observation of Feshbach resonances in a Bose–Einstein condensate, Nature, Volume 392 (1998) no. 6672, pp. 151-154

[70] E.A. Donley; N.R. Claussen; S.L. Cornish; J.L. Roberts; E.A. Cornell; C.E. Wieman Dynamics of collapsing and exploding Bose–Einstein condensates, Nature, Volume 412 (2001) no. 6844, pp. 295-299

[71] M. Greiner; C.A. Regal; D.S. Jin Emergence of a molecular Bose–Einstein condensate from a Fermi gas, Nature, Volume 426 (2003) no. 6966, pp. 537-540

[72] M. Theis; G. Thalhammer; K. Winkler; M. Hellwig; G. Ruff; R. Grimm; J. Hecker Denschlag Tuning the scattering length with an optically induced Feshbach resonance, Phys. Rev. Lett., Volume 93 (2004)

[73] M. Wouters Resonant polariton–polariton scattering in semiconductor microcavities, Phys. Rev. B, Volume 76 (2007)

[74] A.L. Ivanov; M. Hasuo; N. Nagasawa; H. Haug Two-photon generation of excitonic molecules in CuCl: an exactly solvable bipolariton model and high-precision experiments, Phys. Rev. B, Volume 52 (1995), pp. 11017-11033

[75] M. Vladimirova et al. Polarization controlled nonlinear transmission of light through semiconductor microcavities, Phys. Rev. B, Volume 79 (2009)

[76] M.M. Glazov et al. Polariton–polariton scattering in microcavities: a microscopic theory, Phys. Rev. B, Volume 80 (2009), p. 155306

[77] J.I. Inoue et al. Renormalized bosonic interaction of excitons, Phys. Rev. B, Volume 61 (2000)

[78] N.H. Kwong et al. Third-order exciton–correlation and nonlinear cavity-polariton effects in semiconductor microcavities, Phys. Rev. B, Volume 64 (2001)

[79] M. Saba; F. Quochi; C. Ciuti; U. Oesterle; J.L. Staehli; B. Deveaud; G. Bongiovanni; A. Mura Crossover from exciton to biexciton polaritons in semiconductor microcavities, Phys. Rev. Lett., Volume 85 (2000), pp. 385-388

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Polariton condensates at room temperature

Thierry Guillet; Christelle Brimont

C. R. Phys (2016)


Soliton physics with semiconductor exciton–polaritons in confined systems

Maksym Sich; Dmitry V. Skryabin; Dmitry N. Krizhanovskii

C. R. Phys (2016)


Exciton-polaritons in lattices: A non-linear photonic simulator

Alberto Amo; Jacqueline Bloch

C. R. Phys (2016)