[Interactions entre polaritons dans des microcavités semiconductrices]
Dans cet article de synthèse, nous nous efforcerons de présenter les résultats qui ont été obtenus en matière d'interactions entre polaritons. Nous décrirons les échantillons, les systèmes expérimentaux et certains résultats importants. Nous donnerons aussi quelques éclaircissements quant à la description théorique de ces résultats. Un des principaux sujets qui seront abordés ici est l'observation de la résonance de Feshbach pour les polaritons et son interprétation à travers le couplage de deux polaritons bas vers un biexciton.
In this review, we will try to summarize the results that we have obtained on the measurement of polariton interactions. We will describe here the samples, the experimental systems and some of the important results. We will also give a few highlights on the theoretical description of these results. One of the main topics of this review will be the observation of the Feshbach resonance for polaritons, and its interpretation through the coupling of two lower polaritons into a biexciton.
Mot clés : Exciton, Polariton, Microcavité, Spectroscopie, Semiconducteur, Interaction
Benoit Deveaud 1
@article{CRPHYS_2016__17_8_874_0, author = {Benoit Deveaud}, title = {Polariton interactions in semiconductor microcavities}, journal = {Comptes Rendus. Physique}, pages = {874--892}, publisher = {Elsevier}, volume = {17}, number = {8}, year = {2016}, doi = {10.1016/j.crhy.2016.05.004}, language = {en}, }
Benoit Deveaud. Polariton interactions in semiconductor microcavities. Comptes Rendus. Physique, Volume 17 (2016) no. 8, pp. 874-892. doi : 10.1016/j.crhy.2016.05.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.05.004/
[1] Observation of the coupled exciton–photon mode splitting in a semiconductor quantum microcavity, Phys. Rev. Lett., Volume 69 (1992), pp. 3314-3317
[2] On the condensation of polaritons, J. Opt. Soc. Am. B, Opt. Phys., Volume 29 (2012), p. A138-A145
[3] Exciton–polariton Bose condensates, Annu. Rev. Condens. Matter Phys., Volume 6 (2015), pp. 155-176
[4] Exciton–polariton condensates, Nat. Phys., Volume 10 (2014), pp. 803-813
[5] Bose–Einstein condensation of exciton polaritons, Nature, Volume 443 (2006), p. 409
[6] Bose–Einstein condensation of microcavity polaritons in a trap, Science, Volume 316 (2007), p. 1007
[7] Room-temperature polariton lasing in semiconductor microcavities, Phys. Rev. Lett., Volume 98 (2007)
[8] Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer, Nat. Mater., Volume 13 (2014), p. 247
[9] Nonlinear interactions in an organic polariton condensate, Nat. Mater., Volume 13 (2014), p. 272
[10] Collective fluid dynamics of a polariton condensate in a semiconductor microcavity, Nature, Volume 457 (2009), pp. 291-295
[11] Superfluidity of polaritons in semiconductor microcavities, Nat. Phys., Volume 5 (2009), p. 805
[12] Quantum turbulence in a polariton fluid, Nat. Phys., Volume 7 (2011), p. 635
[13] Polariton superfluids reveal quantum hydrodynamical solitons, Science, Volume 332 (2011), p. 1167
[14] Soliton instabilities and vortex streets formation in a polariton quantum fluid, Phys. Rev. Lett., Volume 107 (2011)
[15] Half-solitons in a polariton quantum fluid behave like magnetic monopoles, Nat. Phys., Volume 8 (2012), pp. 724-728
[16] From single particle to superfluid excitations in a polariton gas, Phys. Rev. Lett., Volume 106 (2011)
[17] Four-wave mixing excitations in a dissipative polariton quantum fluid, Phys. Rev. B, Volume 86 (2012)
[18] Optical bistability in semiconductor microcavities in the nondegenerate parametric oscillation regime: analogy with the optical parametric oscillator, Phys. Rev. B, Volume 70 (2004)
[19] Optical bistability in a GaAs-based polariton diode, Phys. Rev. Lett., Volume 101 (2008)
[20] Optical circuits based on polariton neurons in semiconductor microcavities, Phys. Rev. Lett., Volume 101 (2008)
[21] Exciton–polariton spin switches, Nat. Photonics, Volume 4 (2010), p. 361
[22] Half vortices in exciton polariton condensates, Phys. Rev. Lett., Volume 99 (2007)
[23] Observation of half-quantum vortices in an exciton–polariton condensate, Science, Volume 326 (2009), pp. 974-977
[24] Optical spin Hall effect, Phys. Rev. Lett., Volume 95 (2005)
[25] Observation of the optical spin Hall effect, Nat. Photonics, Volume 3 (2007), p. 628
[26] Resonant polariton–polariton scattering in semiconductor microcavities, Phys. Rev. B, Volume 76 (2007)
[27] Polaritonic Feshbach resonance, Nat. Phys., Volume 10 (2014), p. 500
[28] Polarization multistability of cavity polaritons, Phys. Rev. Lett., Volume 98 (2007)
[29] Multistability of a coherent spin ensemble in a semiconductor microcavity, Nat. Mater., Volume 9 (2010), p. 655
[30] Room-temperature continuous wave characteristics of a GaAs vertical cavity surface emitting laser, Appl. Phys. Lett., Volume 55 (1989), p. 221
[31] Dynamic polarization and transverse mode characteristics of vertical cavity surface emitting lasers, IEEE J. Quantum Electron., Volume 27 (1991), p. 1402
[32] Room-temperature cavity polaritons in a semiconductor microcavity, Phys. Rev. B, Volume 49 (1994), p. 16761
[33] Microcavity exciton–polariton splitting in the linear regime, Phys. Rev. B, Volume 51 (1995), p. 14437
[34] Measurement of cavity-polariton dispersion curve from angle-resolved photoluminescence experiments, Phys. Rev. Lett., Volume 73 (1994), p. 2043
[35] Strong exciton–photon coupling in open semiconductor microcavities, Appl. Phys. Lett., Volume 104 (2014), p. 192107
[36] Polariton boxes in a tunable fiber cavity, Phys. Rev. Appl., Volume 3 (2015)
[37] Design and characterization of high optical quality InGaAs/GaAs/AlGaAs-based polariton microcavities, Appl. Phys. Lett., Volume 106 (2015)
[38] Multiple polariton modes originating from the coupling of quantum wells in planar microcavity, Phys. Rev. B, Volume 92 (2015)
[39] Polariton condensation in a strain-compensated planar microcavity with InGaAs quantum wells, Appl. Phys. Lett., Volume 105 (2014), p. 191118
[40] et al. Dynamical d-wave condensation of exciton–polaritons in a two-dimensional square-lattice potential, Nat. Phys., Volume 7 (2011), pp. 681-686
[41] Size dependence of confined optical modes in photonic quantum dots, Phys. Rev. Lett., Volume 78 (1997), p. 378
[42] Acoustic black hole in a stationary hydrodynamic flow of microcavity polaritons, Phys. Rev. Lett., Volume 114 (2015) (See for example:)
[43] Phase resolved imaging of exciton polaritons, 2011 (PhD thesis EPFL N°5002)
[44] Polariton quantum boxes in semiconductor microcavities, Appl. Phys. Lett., Volume 88 (2006)
[45] Engineering the spatial confinement of exciton–polaritons in semiconductors, Phys. Rev. B, Volume 74 (2006)
[46] Ultrafast control and Rabi oscillations of polaritons, Phys. Rev. Lett., Volume 113 (2014)
[47] Heterodyne spectral interferometry for multidimensional nonlinear spectroscopy of individual quantum systems, Opt. Lett., Volume 31 (2006), pp. 1151-1153
[48] Up on the Jaynes–Cummings ladder of a quantum-dot/microcavity system, Nat. Mater., Volume 9 (2010), pp. 304-308
[49] On the physics of polariton interactions, 2015 (PhD thesis EPFL N°XXX)
[50] The effect of a noisy driving field on a bistable polariton system, Phys. Rev. B, Volume 92 (2015), p. 165303
[51] Dynamics of interactions of confined microcavity polaritons, 2010 (PhD thesis, EPFL N° 4726)
[52] Polariton–polariton interaction constants in microcavities, Phys. Rev. B, Volume 82 (2010)
[53] Heterodyne spectroscopy of polariton spinor interactions, Phys. Rev. B, Volume 90 (2014), p. 195307
[54] Polariton–polariton scattering: exact results through a novel approach, Europhys. Lett., Volume 79 (2007), p. 17001
[55] Polariton–polariton interaction constants in microcavities, Phys. Rev. B, Volume 82 (2010)
[56] Dephasing effects on coherent exciton–polaritons and the breaking of the strong coupling regime, Phys. Rev. B, Volume 92 (2015)
[57] Heterodyne spectroscopy of polariton spinor interactions, Phys. Rev. B, Volume 90 (2014), p. 195307
[58] Resonant polariton–polariton scattering in semiconductor microcavities, Phys. Rev. B, Volume 76 (2007)
[59] Two-photon generation of excitonic molecules in CuCl: an exactly solvable bipolariton model and high-precision experiments, Phys. Rev. B, Volume 52 (1995), p. 11017
[60] Giant two-photon absorption due to excitonic molecule, Solid State Commun., Volume 12 (1973), p. 951
[61] Feshbach blockade: single-photon nonlinear optics using resonantly enhanced cavity polariton scattering from biexciton states, Europhys. Lett., Volume 90 (2010), p. 37001
[62] Role of the exchange of carriers in elastic exciton–exciton scattering in quantum wells, Phys. Rev. B, Volume 58 (1998), p. 7926
[63] The exciton–exciton continuum and its contribution to four-wave mixing signal, Phys. Status Solidi, B, Volume 206 (1998), p. 189
[64] Exciton–exciton correlation in the nonlinear optical regime, Phys. Rev. Lett., Volume 74 (1995), p. 4698
[65] Evidence of nonperturbative continuum correlations in two-dimensional exciton systems in semiconductor microcavities, Phys. Rev. Lett., Volume 87 (2001)
[66] T-matrix analysis of biexcitonic correlations in the nonlinear optical response of semiconductor quantum wells, Eur. Phys. J. B, Volume 25 (2002), p. 445
[67] Theory of the angle-resonant polariton amplifier, Phys. Rev. B, Volume 62 (2000)
[68] Polariton–polariton interaction potentials determination by pump-probe degenerate scattering in a multiple microcavity, Phys. Rev. B, Volume 89 (2014), p. 155308
[69] Observation of Feshbach resonances in a Bose–Einstein condensate, Nature, Volume 392 (1998) no. 6672, pp. 151-154
[70] Dynamics of collapsing and exploding Bose–Einstein condensates, Nature, Volume 412 (2001) no. 6844, pp. 295-299
[71] Emergence of a molecular Bose–Einstein condensate from a Fermi gas, Nature, Volume 426 (2003) no. 6966, pp. 537-540
[72] Tuning the scattering length with an optically induced Feshbach resonance, Phys. Rev. Lett., Volume 93 (2004)
[73] Resonant polariton–polariton scattering in semiconductor microcavities, Phys. Rev. B, Volume 76 (2007)
[74] Two-photon generation of excitonic molecules in CuCl: an exactly solvable bipolariton model and high-precision experiments, Phys. Rev. B, Volume 52 (1995), pp. 11017-11033
[75] et al. Polarization controlled nonlinear transmission of light through semiconductor microcavities, Phys. Rev. B, Volume 79 (2009)
[76] et al. Polariton–polariton scattering in microcavities: a microscopic theory, Phys. Rev. B, Volume 80 (2009), p. 155306
[77] et al. Renormalized bosonic interaction of excitons, Phys. Rev. B, Volume 61 (2000)
[78] et al. Third-order exciton–correlation and nonlinear cavity-polariton effects in semiconductor microcavities, Phys. Rev. B, Volume 64 (2001)
[79] Crossover from exciton to biexciton polaritons in semiconductor microcavities, Phys. Rev. Lett., Volume 85 (2000), pp. 385-388
Cité par Sources :
Commentaires - Politique