[Rayonnement non classique émis par un conducteur cohérent]
Nous rapportons des preuves expérimentales de ce que le champ électromagnétique micro-ondes généré par un conducteur normal, une jonction tunnel placée à ultra-basse température, peut avoir un comportement non classique. Nous démontrons l'existence de compression d'état ainsi que d'enchevêtrement dans cette radiation en mesurant les quadratures du champ électromagnétique à une ou deux fréquences de l'ordre du GHz. Dans une expérience, nous observons que la variance d'une quadrature du bruit photo-assisté généré par la jonction descend sous son niveau de vide. Dans une deuxième expérience, nous démontrons l'existence de corrélations entre les quadratures observées à deux fréquences, corrélations qui peuvent être supérieures à ce qui est permis par la mécanique classique, prouvant que la radiation à ces deux fréquences est enchevêtrée.1
We report experimental evidence that the microwave electromagnetic field generated by a normal conductor, here a tunnel junction placed at ultra-low temperature, can be non-classical. By measuring the quadratures of the electromagnetic field at one or two frequencies in the GHz range, we demonstrate the existence of squeezing as well as entanglement in such radiation. In one experiment, we observe that the variance of one quadrature of the photo-assisted noise generated by the junction goes below its vacuum level. In the second experiment, we demonstrate the existence of correlations between the quadratures taken at two frequencies, which can be stronger than allowed by classical mechanics, proving that the radiation at those two frequencies are entangled.1
Mot clés : Micro-ondes quantiques, Enchevêtrement, Compression d'état, Bruit Quantique, Bruit de grenaille, Jonction tunnel
Jean-Charles Forgues 1 ; Gabriel Gasse 1 ; Christian Lupien 1 ; Bertrand Reulet 1
@article{CRPHYS_2016__17_7_718_0, author = {Jean-Charles Forgues and Gabriel Gasse and Christian Lupien and Bertrand Reulet}, title = {Non-classical radiation emission by a coherent conductor}, journal = {Comptes Rendus. Physique}, pages = {718--728}, publisher = {Elsevier}, volume = {17}, number = {7}, year = {2016}, doi = {10.1016/j.crhy.2016.07.004}, language = {en}, }
TY - JOUR AU - Jean-Charles Forgues AU - Gabriel Gasse AU - Christian Lupien AU - Bertrand Reulet TI - Non-classical radiation emission by a coherent conductor JO - Comptes Rendus. Physique PY - 2016 SP - 718 EP - 728 VL - 17 IS - 7 PB - Elsevier DO - 10.1016/j.crhy.2016.07.004 LA - en ID - CRPHYS_2016__17_7_718_0 ER -
Jean-Charles Forgues; Gabriel Gasse; Christian Lupien; Bertrand Reulet. Non-classical radiation emission by a coherent conductor. Comptes Rendus. Physique, Volume 17 (2016) no. 7, pp. 718-728. doi : 10.1016/j.crhy.2016.07.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.07.004/
[1] Observation of squeezing in the electron quantum shot noise of a tunnel junction, Phys. Rev. Lett., Volume 111 (2013) | DOI
[2] Experimental violation of Bell-like inequalities by electronic shot noise, Phys. Rev. Lett., Volume 114 (2015) | DOI
[3] Quantum information with continuous variables, Rev. Mod. Phys., Volume 77 (2005), pp. 513-577 | DOI
[4] Gaussian quantum information, Rev. Mod. Phys., Volume 84 (2012), pp. 621-669 | DOI
[5] Quantum-mechanical noise in an interferometer, Phys. Rev. D, Volume 23 (1981), pp. 1693-1708 | DOI
[6] The Quantum Theory of Light, Oxford University Press, Oxford, 2000
[7] Quantum Noise, Springer, New York, 2004
[8] Quantum Measurement and Control, Cambridge University Press, Cambridge, UK, 2009
[9] Inseparability criterion for continuous variable systems, Phys. Rev. Lett., Volume 84 (2000), pp. 2722-2725 | DOI
[10] Observation of squeezed states generated by four-wave mixing in an optical cavity, Phys. Rev. Lett., Volume 55 (1985), pp. 2409-2412 | DOI
[11] Observation of 4.2-k equilibrium-noise squeezing via a Josephson-parametric amplifier, Phys. Rev. Lett., Volume 60 (1988), pp. 764-767 | DOI
[12] Observation of zero-point noise squeezing via a Josephson-parametric amplifier, Phys. Rev. Lett., Volume 65 (1990), pp. 1419-1422 | DOI
[13] Colloquium: stimulating uncertainty: amplifying the quantum vacuum with superconducting circuits, Rev. Mod. Phys., Volume 84 (2012), pp. 1-24 | DOI
[14] Generating entangled microwave radiation over two transmission lines, Phys. Rev. Lett., Volume 109 (2012) | DOI
[15] Shot noise in mesoscopic conductors, Phys. Rep., Volume 336 (2000) no. 1–2, pp. 1-166 http://www.sciencedirect.com/science/article/pii/S0370157399001234 | DOI
[16] Quantum Noise in Mesoscopic Physics, vol. II/97, Kluwer Academic Publishers, 2003
[17] Noise in an ac biased junction: nonstationary Aharonov–Bohm effect, Phys. Rev. Lett., Volume 72 (1994), pp. 538-541 | DOI
[18] Observation of “photon-assisted” shot noise in a phase-coherent conductor, Phys. Rev. Lett., Volume 80 (1998), pp. 2437-2440 | DOI
[19] Observation of photon-assisted noise in a diffusive normal metal–superconductor junction, Phys. Rev. Lett., Volume 84 (2000), pp. 3398-3401 | DOI
[20] Dynamics of quantum noise in a tunnel junction under ac excitation, Phys. Rev. Lett., Volume 100 (2008) | DOI
[21] The noise susceptibility of a photo-excited coherent conductor, Jan. 2008 | arXiv
[22] Thermal agitation of electricity in conductors, Phys. Rev., Volume 32 (1928) no. 1, p. 97 | DOI
[23] Thermal agitation of electric charge in conductors, Phys. Rev., Volume 32 (1928), pp. 110-113 | DOI
[24] Thermal and quantum noise, Proc. IEEE, Volume 53 (1965) no. 5, pp. 436-454 | DOI
[25] Irreversibility and generalized noise, Phys. Rev., Volume 83 (1951), pp. 34-40 | DOI
[26] Counting statistics of photons produced by electronic shot noise, Phys. Rev. Lett., Volume 86 (2001), pp. 700-703 | DOI
[27] Antibunched photons emitted by a quantum point contact out of equilibrium, Phys. Rev. Lett., Volume 93 (2004) | DOI
[28] Statistics of radiation emitted from a quantum point contact, Phys. Rev. B, Volume 81 (2010) | DOI
[29] Quantum optics theory of electronic noise in coherent conductors, Phys. Rev. Lett., Volume 116 (2016) | DOI
[30] Cavity squeezing by a quantum conductor, New J. Phys., Volume 17 (2015) no. 11 http://stacks.iop.org/1367-2630/17/i=11/a=113014
[31] Shaping a time-dependent excitation to minimize the shot noise in a tunnel junction, Phys. Rev. B, Volume 87 (2013) | DOI
[32] The noise susceptibility of a coherent conductor, Fluctuations and Noise in Materials, Volume 6600-25 (2007) no. 25 | DOI
[33] Noise intensity–intensity correlations and the fourth cumulant of photo-assisted shot noise, Sci. Rep., Volume 3 (2013), p. 2869 | DOI
[34] Emission of microwave photon pairs by a tunnel junction, Phys. Rev. Lett., Volume 113 (2014) | DOI
[35] Observation of two-mode squeezing in the microwave frequency domain, Phys. Rev. Lett., Volume 107 (2011) | DOI
[36] Quantum interference between two single photons of different microwave frequencies, Phys. Rev. Lett., Volume 108 (2012) | DOI
[37] Nonsymmetrized correlations in quantum noninvasive measurements, Phys. Rev. Lett., Volume 110 (2013) | DOI
[38] Dual-path state reconstruction scheme for propagating quantum microwaves and detector noise tomography, Phys. Rev. Lett., Volume 105 (2010) | DOI
[39] Planck spectroscopy and quantum noise of microwave beam splitters, Phys. Rev. Lett., Volume 105 (2010) | DOI
[40] Path entanglement of continuous-variable quantum microwaves, Phys. Rev. Lett., Volume 109 (2012) | DOI
[41] Antibunching of microwave-frequency photons observed in correlation measurements using linear detectors, Nat. Phys., Volume 7 (2011) no. 2, pp. 154-158 | DOI
[42] Experimental state tomography of itinerant single microwave photons, Phys. Rev. Lett., Volume 106 (2011) | DOI
[43] Entanglement of formation for symmetric gaussian states, Phys. Rev. Lett., Volume 91 (2003) | DOI
[44] Experimental characterization of gaussian quantum-communication channels, Phys. Rev. A, Volume 76 (2007) | DOI
[45] Discrete photon statistics from continuous microwave measurements (ArXiv e-prints) | arXiv
[46] J.-O. Simoneau, S. Virally, C. Lupien, B. Reulet, Statistics of photon pairs generated by electron shot noise, unpublished.
Cité par Sources :
Commentaires - Politique