Comptes Rendus
Non-classical radiation emission by a coherent conductor
Comptes Rendus. Physique, Volume 17 (2016) no. 7, pp. 718-728.

We report experimental evidence that the microwave electromagnetic field generated by a normal conductor, here a tunnel junction placed at ultra-low temperature, can be non-classical. By measuring the quadratures of the electromagnetic field at one or two frequencies in the GHz range, we demonstrate the existence of squeezing as well as entanglement in such radiation. In one experiment, we observe that the variance of one quadrature of the photo-assisted noise generated by the junction goes below its vacuum level. In the second experiment, we demonstrate the existence of correlations between the quadratures taken at two frequencies, which can be stronger than allowed by classical mechanics, proving that the radiation at those two frequencies are entangled.1

Nous rapportons des preuves expérimentales de ce que le champ électromagnétique micro-ondes généré par un conducteur normal, une jonction tunnel placée à ultra-basse température, peut avoir un comportement non classique. Nous démontrons l'existence de compression d'état ainsi que d'enchevêtrement dans cette radiation en mesurant les quadratures du champ électromagnétique à une ou deux fréquences de l'ordre du GHz. Dans une expérience, nous observons que la variance d'une quadrature du bruit photo-assisté généré par la jonction descend sous son niveau de vide. Dans une deuxième expérience, nous démontrons l'existence de corrélations entre les quadratures observées à deux fréquences, corrélations qui peuvent être supérieures à ce qui est permis par la mécanique classique, prouvant que la radiation à ces deux fréquences est enchevêtrée.1

Published online:
DOI: 10.1016/j.crhy.2016.07.004
Keywords: Quantum microwaves, Entanglement, Squeezing, Quantum noise, Shot noise, Tunnel junction
Mot clés : Micro-ondes quantiques, Enchevêtrement, Compression d'état, Bruit Quantique, Bruit de grenaille, Jonction tunnel

Jean-Charles Forgues 1; Gabriel Gasse 1; Christian Lupien 1; Bertrand Reulet 1

1 Département de physique, Université de Sherbrooke, 2500, bd de l'Université, Sherbrooke, Québec, Canada, J1K 2R1
@article{CRPHYS_2016__17_7_718_0,
     author = {Jean-Charles Forgues and Gabriel Gasse and Christian Lupien and Bertrand Reulet},
     title = {Non-classical radiation emission by a coherent conductor},
     journal = {Comptes Rendus. Physique},
     pages = {718--728},
     publisher = {Elsevier},
     volume = {17},
     number = {7},
     year = {2016},
     doi = {10.1016/j.crhy.2016.07.004},
     language = {en},
}
TY  - JOUR
AU  - Jean-Charles Forgues
AU  - Gabriel Gasse
AU  - Christian Lupien
AU  - Bertrand Reulet
TI  - Non-classical radiation emission by a coherent conductor
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 718
EP  - 728
VL  - 17
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.07.004
LA  - en
ID  - CRPHYS_2016__17_7_718_0
ER  - 
%0 Journal Article
%A Jean-Charles Forgues
%A Gabriel Gasse
%A Christian Lupien
%A Bertrand Reulet
%T Non-classical radiation emission by a coherent conductor
%J Comptes Rendus. Physique
%D 2016
%P 718-728
%V 17
%N 7
%I Elsevier
%R 10.1016/j.crhy.2016.07.004
%G en
%F CRPHYS_2016__17_7_718_0
Jean-Charles Forgues; Gabriel Gasse; Christian Lupien; Bertrand Reulet. Non-classical radiation emission by a coherent conductor. Comptes Rendus. Physique, Volume 17 (2016) no. 7, pp. 718-728. doi : 10.1016/j.crhy.2016.07.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.07.004/

[1] G. Gasse; C. Lupien; B. Reulet Observation of squeezing in the electron quantum shot noise of a tunnel junction, Phys. Rev. Lett., Volume 111 (2013) | DOI

[2] J.-C. Forgues; C. Lupien; B. Reulet Experimental violation of Bell-like inequalities by electronic shot noise, Phys. Rev. Lett., Volume 114 (2015) | DOI

[3] S.L. Braunstein; P. van Loock Quantum information with continuous variables, Rev. Mod. Phys., Volume 77 (2005), pp. 513-577 | DOI

[4] C. Weedbrook; S. Pirandola; R. García-Patrón; N.J. Cerf; T.C. Ralph; J.H. Shapiro; S. Lloyd Gaussian quantum information, Rev. Mod. Phys., Volume 84 (2012), pp. 621-669 | DOI

[5] C.M. Caves Quantum-mechanical noise in an interferometer, Phys. Rev. D, Volume 23 (1981), pp. 1693-1708 | DOI

[6] R. Loudon The Quantum Theory of Light, Oxford University Press, Oxford, 2000

[7] C. Gardiner; P. Zoller Quantum Noise, Springer, New York, 2004

[8] H.M. Wiseman; G.J. Milburn Quantum Measurement and Control, Cambridge University Press, Cambridge, UK, 2009

[9] L.-M. Duan; G. Giedke; J.I. Cirac; P. Zoller Inseparability criterion for continuous variable systems, Phys. Rev. Lett., Volume 84 (2000), pp. 2722-2725 | DOI

[10] R.E. Slusher; L.W. Hollberg; B. Yurke; J.C. Mertz; J.F. Valley Observation of squeezed states generated by four-wave mixing in an optical cavity, Phys. Rev. Lett., Volume 55 (1985), pp. 2409-2412 | DOI

[11] B. Yurke; P.G. Kaminsky; R.E. Miller; E.A. Whittaker; A.D. Smith; A.H. Silver; R.W. Simon Observation of 4.2-k equilibrium-noise squeezing via a Josephson-parametric amplifier, Phys. Rev. Lett., Volume 60 (1988), pp. 764-767 | DOI

[12] R. Movshovich; B. Yurke; P.G. Kaminsky; A.D. Smith; A.H. Silver; R.W. Simon; M.V. Schneider Observation of zero-point noise squeezing via a Josephson-parametric amplifier, Phys. Rev. Lett., Volume 65 (1990), pp. 1419-1422 | DOI

[13] P.D. Nation; J.R. Johansson; M.P. Blencowe; F. Nori Colloquium: stimulating uncertainty: amplifying the quantum vacuum with superconducting circuits, Rev. Mod. Phys., Volume 84 (2012), pp. 1-24 | DOI

[14] E. Flurin; N. Roch; F. Mallet; M.H. Devoret; B. Huard Generating entangled microwave radiation over two transmission lines, Phys. Rev. Lett., Volume 109 (2012) | DOI

[15] Y. Blanter; M. Büttiker Shot noise in mesoscopic conductors, Phys. Rep., Volume 336 (2000) no. 1–2, pp. 1-166 http://www.sciencedirect.com/science/article/pii/S0370157399001234 | DOI

[16] Y. Nazarov Quantum Noise in Mesoscopic Physics, vol. II/97, Kluwer Academic Publishers, 2003

[17] G.B. Lesovik; L.S. Levitov Noise in an ac biased junction: nonstationary Aharonov–Bohm effect, Phys. Rev. Lett., Volume 72 (1994), pp. 538-541 | DOI

[18] R.J. Schoelkopf; A.A. Kozhevnikov; D.E. Prober; M.J. Rooks Observation of “photon-assisted” shot noise in a phase-coherent conductor, Phys. Rev. Lett., Volume 80 (1998), pp. 2437-2440 | DOI

[19] A.A. Kozhevnikov; R.J. Schoelkopf; D.E. Prober Observation of photon-assisted noise in a diffusive normal metal–superconductor junction, Phys. Rev. Lett., Volume 84 (2000), pp. 3398-3401 | DOI

[20] J. Gabelli; B. Reulet Dynamics of quantum noise in a tunnel junction under ac excitation, Phys. Rev. Lett., Volume 100 (2008) | DOI

[21] J. Gabelli; B. Reulet The noise susceptibility of a photo-excited coherent conductor, Jan. 2008 | arXiv

[22] J.B. Johnson Thermal agitation of electricity in conductors, Phys. Rev., Volume 32 (1928) no. 1, p. 97 | DOI

[23] H. Nyquist Thermal agitation of electric charge in conductors, Phys. Rev., Volume 32 (1928), pp. 110-113 | DOI

[24] B.M. Oliver Thermal and quantum noise, Proc. IEEE, Volume 53 (1965) no. 5, pp. 436-454 | DOI

[25] H.B. Callen; T.A. Welton Irreversibility and generalized noise, Phys. Rev., Volume 83 (1951), pp. 34-40 | DOI

[26] C.W.J. Beenakker; H. Schomerus Counting statistics of photons produced by electronic shot noise, Phys. Rev. Lett., Volume 86 (2001), pp. 700-703 | DOI

[27] C.W.J. Beenakker; H. Schomerus Antibunched photons emitted by a quantum point contact out of equilibrium, Phys. Rev. Lett., Volume 93 (2004) | DOI

[28] A.V. Lebedev; G.B. Lesovik; G. Blatter Statistics of radiation emitted from a quantum point contact, Phys. Rev. B, Volume 81 (2010) | DOI

[29] A.L. Grimsmo; F. Qassemi; B. Reulet; A. Blais Quantum optics theory of electronic noise in coherent conductors, Phys. Rev. Lett., Volume 116 (2016) | DOI

[30] U.C. Mendes; C. Mora Cavity squeezing by a quantum conductor, New J. Phys., Volume 17 (2015) no. 11 http://stacks.iop.org/1367-2630/17/i=11/a=113014

[31] J. Gabelli; B. Reulet Shaping a time-dependent excitation to minimize the shot noise in a tunnel junction, Phys. Rev. B, Volume 87 (2013) | DOI

[32] J. Gabelli; B. Reulet The noise susceptibility of a coherent conductor, Fluctuations and Noise in Materials, Volume 6600-25 (2007) no. 25 | DOI

[33] J.-C. Forgues; F.B. Sane; S. Blanchard; L. Spietz; C. Lupien; B. Reulet Noise intensity–intensity correlations and the fourth cumulant of photo-assisted shot noise, Sci. Rep., Volume 3 (2013), p. 2869 | DOI

[34] J.-C. Forgues; C. Lupien; B. Reulet Emission of microwave photon pairs by a tunnel junction, Phys. Rev. Lett., Volume 113 (2014) | DOI

[35] C. Eichler; D. Bozyigit; C. Lang; M. Baur; L. Steffen; J.M. Fink; S. Filipp; A. Wallraff Observation of two-mode squeezing in the microwave frequency domain, Phys. Rev. Lett., Volume 107 (2011) | DOI

[36] F. Nguyen; E. Zakka-Bajjani; R.W. Simmonds; J. Aumentado Quantum interference between two single photons of different microwave frequencies, Phys. Rev. Lett., Volume 108 (2012) | DOI

[37] A. Bednorz; C. Bruder; B. Reulet; W. Belzig Nonsymmetrized correlations in quantum noninvasive measurements, Phys. Rev. Lett., Volume 110 (2013) | DOI

[38] E.P. Menzel; F. Deppe; M. Mariantoni; M.A. Araque Caballero; A. Baust; T. Niemczyk; E. Hoffmann; A. Marx; E. Solano; R. Gross Dual-path state reconstruction scheme for propagating quantum microwaves and detector noise tomography, Phys. Rev. Lett., Volume 105 (2010) | DOI

[39] M. Mariantoni; E. Menzel; F. Deppe; M. Araque Caballero; A. Baust; T. Niemczyk; E. Hoffmann; E. Solano; A. Marx; R. Gross Planck spectroscopy and quantum noise of microwave beam splitters, Phys. Rev. Lett., Volume 105 (2010) | DOI

[40] E. Menzel; R. Di Candia; F. Deppe; P. Eder; L. Zhong; M. Ihmig; M. Haeberlein; A. Baust; E. Hoffmann; D. Ballester; K. Inomata; T. Yamamoto; Y. Nakamura; E. Solano; A. Marx; R. Gross Path entanglement of continuous-variable quantum microwaves, Phys. Rev. Lett., Volume 109 (2012) | DOI

[41] D. Bozyigit; C. Lang; L. Steffen; J.M. Fink; C. Eichler; M. Baur; R. Bianchetti; P.J. Leek; S. Filipp; M.P. da Silva; A. Blais; A. Wallraff Antibunching of microwave-frequency photons observed in correlation measurements using linear detectors, Nat. Phys., Volume 7 (2011) no. 2, pp. 154-158 | DOI

[42] C. Eichler; D. Bozyigit; C. Lang; L. Steffen; J. Fink; A. Wallraff Experimental state tomography of itinerant single microwave photons, Phys. Rev. Lett., Volume 106 (2011) | DOI

[43] G. Giedke; M.M. Wolf; O. Krüger; R.F. Werner; J.I. Cirac Entanglement of formation for symmetric gaussian states, Phys. Rev. Lett., Volume 91 (2003) | DOI

[44] J. DiGuglielmo; B. Hage; A. Franzen; J. Fiurášek; R. Schnabel Experimental characterization of gaussian quantum-communication channels, Phys. Rev. A, Volume 76 (2007) | DOI

[45] S. Virally; J. Olivier Simoneau; C. Lupien; B. Reulet Discrete photon statistics from continuous microwave measurements (ArXiv e-prints) | arXiv

[46] J.-O. Simoneau, S. Virally, C. Lupien, B. Reulet, Statistics of photon pairs generated by electron shot noise, unpublished.

Cited by Sources:

Comments - Policy