Comptes Rendus
Quantum magnonics: The magnon meets the superconducting qubit
[La magnonique des quanta : Le magnon rencontre le qubit supraconducteur]
Comptes Rendus. Physique, Volume 17 (2016) no. 7, pp. 729-739.

Nous appliquons les techniques de l'optique quantique micro-onde aux excitations collectives des spins d'une sphère macroscopique d'un isolant ferromagnétique. Nous mettons en évidence, dans la limite d'une unique excitation magnonique, le couplage fort entre un mode magnétostatique de la sphère et un mode d'une cavité micro-onde. En outre, nous avons ajouté un bit quantique supraconducteur à la cavité, ce qui permet de coupler ce bit quantique au mode de magnon, via l'échange virtuel d'un photon. Nous observons ainsi un anticroisement des fréquences de résonance du magnon et de la cavité. Cette plateforme hybride permet la création et la caratérisation d'états non classiques de magnons.

The techniques of microwave quantum optics are applied to collective spin excitations in a macroscopic sphere of a ferromagnetic insulator. We demonstrate, in the single-magnon limit, strong coupling between a magnetostatic mode in the sphere and a microwave cavity mode. Moreover, we introduce a superconducting qubit in the cavity and couple the qubit with the magnon excitation via the virtual photon excitation. We observe the magnon–vacuum-induced Rabi splitting. The hybrid quantum system enables generation and characterization of non-classical quantum states of magnons.

Publié le :
DOI : 10.1016/j.crhy.2016.07.009
Keywords: Magnon, Ferromagnet, Yttrium-iron garnet, Superconducting qubit, Microwave, Quantum optics
Mot clés : Magnon, Ferromagnétisme, Grenat de fer et d'yttrium, Bits quantiques supraconducteurs, Micro-ondes, Optique quantique
Yutaka Tabuchi 1 ; Seiichiro Ishino 1 ; Atsushi Noguchi 1 ; Toyofumi Ishikawa 1 ; Rekishu Yamazaki 1 ; Koji Usami 1 ; Yasunobu Nakamura 1, 2

1 Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
2 Center for Emergent Matter Science (CEMS), RIKEN, Wako, Saitama 351-0198, Japan
@article{CRPHYS_2016__17_7_729_0,
     author = {Yutaka Tabuchi and Seiichiro Ishino and Atsushi Noguchi and Toyofumi Ishikawa and Rekishu Yamazaki and Koji Usami and Yasunobu Nakamura},
     title = {Quantum magnonics: {The} magnon meets the superconducting qubit},
     journal = {Comptes Rendus. Physique},
     pages = {729--739},
     publisher = {Elsevier},
     volume = {17},
     number = {7},
     year = {2016},
     doi = {10.1016/j.crhy.2016.07.009},
     language = {en},
}
TY  - JOUR
AU  - Yutaka Tabuchi
AU  - Seiichiro Ishino
AU  - Atsushi Noguchi
AU  - Toyofumi Ishikawa
AU  - Rekishu Yamazaki
AU  - Koji Usami
AU  - Yasunobu Nakamura
TI  - Quantum magnonics: The magnon meets the superconducting qubit
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 729
EP  - 739
VL  - 17
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.07.009
LA  - en
ID  - CRPHYS_2016__17_7_729_0
ER  - 
%0 Journal Article
%A Yutaka Tabuchi
%A Seiichiro Ishino
%A Atsushi Noguchi
%A Toyofumi Ishikawa
%A Rekishu Yamazaki
%A Koji Usami
%A Yasunobu Nakamura
%T Quantum magnonics: The magnon meets the superconducting qubit
%J Comptes Rendus. Physique
%D 2016
%P 729-739
%V 17
%N 7
%I Elsevier
%R 10.1016/j.crhy.2016.07.009
%G en
%F CRPHYS_2016__17_7_729_0
Yutaka Tabuchi; Seiichiro Ishino; Atsushi Noguchi; Toyofumi Ishikawa; Rekishu Yamazaki; Koji Usami; Yasunobu Nakamura. Quantum magnonics: The magnon meets the superconducting qubit. Comptes Rendus. Physique, Volume 17 (2016) no. 7, pp. 729-739. doi : 10.1016/j.crhy.2016.07.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.07.009/

[1] R.J. Schoelkopf; S.M. Girvin Wiring up quantum systems, Nature, Volume 451 (2008), pp. 664-669

[2] J.Q. You; F. Nori Atomic physics and quantum optics using superconducting circuits, Nature, Volume 474 (2011), pp. 589-597

[3] M.H. Devoret; R.J. Schoelkopf Superconducting circuits for quantum information: an outlook, Science, Volume 339 (2013), pp. 1169-1174

[4] D. Riste; M. Dukalski; C.A. Watson; G. de Lange; M.J. Tiggelman; Y.M. Blanter; K.W. Lehnert; R.N. Schouten; L. DiCarlo Deterministic entanglement of superconducting qubits by parity measurement and feedback, Nature, Volume 502 (2013), pp. 350-354

[5] S.J. Weber; A. Chantasri; J. Dressel; A.N. Jordan; K.W. Murch; I. Siddiqi Mapping the optimal route between two quantum states, Nature, Volume 511 (2014), pp. 570-573

[6] J. Kelly; R. Barends; A.G. Fowler; A. Megrant; E. Jeffrey; T.C. White; D. Sank; J.Y. Mutus; B. Campbell; Y. Chen; Z. Chen; B. Chiaro; A. Dunsworth; I.-C. Hoi; C. Neill; P.J.J. O'Malley; C. Quintana; P. Roushan; A. Vainsencher; J. Wenner; A.N. Cleland; J.M. Martinis State preservation by repetitive error detection in a superconducting quantum circuit, Nature, Volume 519 (2015), pp. 66-69

[7] M. Hofheinz; H. Wang; M. Ansmann; R.C. Bialczak; E. Lucero; M. Neeley; A.D. O'Connell; D. Sank; J. Wenner; J.M. Martinis; A.N. Cleland Synthesizing arbitrary quantum states in a superconducting resonator, Nature, Volume 459 (2009), pp. 546-549

[8] E. Flurin; N. Roch; F. Mallet; M.H. Devoret; B. Huard Generating entangled microwave radiation over two transmission lines, Phys. Rev. Lett., Volume 109 (2012)

[9] C. Lang; C. Eichler; L. Steffen; J.M. Fink; M.J. Woolley; A. Blais; A. Wallraff Correlations, indistinguishability and entanglement in Hong-Ou-Mandel experiments at microwave frequencies, Nat. Phys., Volume 9 (2013), pp. 345-348

[10] Z. Leghtas; S. Touzard; I.M. Pop; A. Kou; B. Vlastakis; A. Petrenko; K.M. Sliwa; A. Narla; S. Shankar; M.J. Hatridge; M. Reagor; L. Frunzio; R.J. Schoelkopf; M. Mirrahimi; M.H. Devoret Confining the state of light to a quantum manifold by engineered two-photon loss, Science, Volume 347 (2015), pp. 853-857

[11] X. Zhu; S. Saito; A. Kemp; K. Kakuyanagi; S. Karimoto; H. Nakano; W.J. Munro; Y. Tokura; M.S. Everitt; K. Nemoto; M. Kasu; N. Mizuochi; K. Semba Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond, Nature, Volume 478 (2011), pp. 221-224

[12] Y. Kubo; C. Grezes; A. Dewes; T. Umeda; J. Isoya; H. Sumiya; N. Morishita; H. Abe; S. Onoda; T. Ohshima; V. Jacques; A. Dréau; J.-F. Roch; I. Diniz; A. Auffeves; D. Vion; D. Esteve; P. Bertet Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble, Phys. Rev. Lett., Volume 107 (2011)

[13] A.D. O'Connell; M. Hofheinz; M. Ansmann; R.C. Bialczak; M. Lenander; E. Lucero; M. Neeley; D. Sank; H. Wang; M. Weides; J. Wenner; J.M. Martinis; A.N. Cleland Quantum ground state and single-phonon control of a mechanical resonator, Nature, Volume 464 (2010), pp. 697-703

[14] J.-M. Pirkkalainen; S.U. Cho; Jian Li; G.S. Paraoanu; P.J. Hakonen; M.A. Sillanpaa Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator, Nature, Volume 494 (2013), pp. 211-215

[15] M.V. Gustafsson; T. Aref; A.F. Kockum; M.K. Ekstrom; G. Johansson; P. Delsing Propagating phonons coupled to an artificial atom, Science, Volume 346 (2014), pp. 207-211

[16] Y. Tabuchi; S. Ishino; T. Ishikawa; R. Yamazaki; K. Usami; Y. Nakamura Hybridizing ferromagnetic magnons and microwave photons in the quantum limit, Phys. Rev. Lett., Volume 113 (2014)

[17] Y. Tabuchi; S. Ishino; A. Noguchi; T. Ishikawa; R. Yamazaki; K. Usami; Y. Nakamura Coherent coupling between ferromagnetic magnon and superconducting qubit | arXiv

[18] T. Holstein; H. Primakoff Field dependence of the intrinsic domain magnetization of a ferromagnet, Phys. Rev., Volume 58 (1940), pp. 1098-1113

[19] L.R. Walker Magnetostatic modes in ferromagnetic resonance, Phys. Rev., Volume 105 (1957), pp. 390-399

[20] L.R. Walker Resonant modes of ferromagnetic spheroids, J. Appl. Phys., Volume 29 (1958), pp. 318-323

[21] P.C. Fletcher; R.O. Bell Ferrimagnetic resonance modes in spheres, J. Appl. Phys., Volume 30 (1959), pp. 687-698

[22] M. Sparks Ferromagnetic-Relaxation Theory, McGraw–Hill, 1964

[23] A.G. Gurevich; G.A. Melkov Magnetization Oscillations and Waves, CRC Press, 1996

[24] T. Kasuya; R.C. LeCraw Relaxation mechanisms in ferromagnetic resonance, Phys. Rev. Lett., Volume 6 (1961), pp. 223-225

[25] R. Teale; K. Tweedale Ytterbium-ion relaxation in ferrimagnetic resonance, Phys. Lett., Volume 1 (1962), pp. 298-300

[26] J.H. Van Vleck Ferrimagnetic resonance of rare-earth-doped iron garnets, J. Appl. Phys., Volume 35 (1964), pp. 882-888

[27] M. Sparks; R. Loudon; C. Kittel Ferromagnetic relaxation. I. Theory of relaxation of uniform precession and degenerate spectrum in insulators at low temperatures, Phys. Rev., Volume 122 (1961), pp. 791-803

[28] H. Huebl; C.W. Zollitsch; J. Lotze; F. Hocke; M. Greifenstein; A. Marx; R. Gross; S.T.B. Goennenwein High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids, Phys. Rev. Lett., Volume 111 (2013)

[29] X. Zhang; C.-L. Zou; L. Jiang; H.X. Tang Strongly coupled magnons and cavity microwave photons, Phys. Rev. Lett., Volume 113 (2014)

[30] M. Goryachev; W.G. Farr; D.L. Creedon; Y. Fan; M. Kostylev; M.E. Tobar High-cooperativity cavity QED with magnons at microwave frequencies, Phys. Rev. Appl., Volume 2 (2014)

[31] V. Cherepanov; I. Kolokolov; V. L'vov The saga of YIG: spectra, thermodynamics, interaction and relaxation of magnons in a complex magnet, Phys. Rep., Volume 229 (1993), pp. 81-144

[32] S.O. Demokritov; V.E. Demidov; O. Dzyapko; G.A. Melkov; A.A. Serga; B. Hillebrands; A.N. Slavin Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping, Nature, Volume 443 (2006), pp. 430-433

[33] K. Uchida; J. Xiao; H. Adachi; J. Ohe; S. Takahashi; J. Ieda; T. Ota; Y. Kajiwara; H. Umezawa; H. Kawai; G.E.W. Bauer; S. Maekawa; E. Saitoh Spin Seebeck insulator, Nat. Matter., Volume 9 (2010), pp. 894-897

[34] Y. Kajiwara; K. Harii; S. Takahashi; J. Ohe; K. Uchida; M. Mizuguchi; H. Umezawa; H. Kawai; K. Ando; K. Takanashi; S. Maekawa; E. Saitoh Transmission of electrical signals by spin–wave interconversion in a magnetic insulator, Nature, Volume 464 (2010), pp. 262-266

[35] A.D. O'Connell; M. Ansmann; R.C. Bialczak; M. Hofheinz; N. Katz; E. Lucero; C. McKenney; M. Neeley; H. Wang; E.M. Weig; A.N. Cleland; J.M. Martinis Microwave dielectric loss at single photon energies and millikelvin temperatures, Appl. Phys. Lett., Volume 92 (2008)

[36] J. Gao The physics of superconducting microwave resonators, 2008 http://thesis.library.caltech.edu/2530/ (PhD dissertation, Pasadena, CA, USA)

[37] I. Scholz; J.D. van Beek; M. Ernst Operator-based floquet theory in solid-state NMR, Solid State Nucl. Magn., Volume 37 (2010), pp. 39-59

[38] A. Imamoğlu Cavity QED based on collective magnetic dipole coupling: spin ensembles as hybrid two-level systems, Phys. Rev. Lett., Volume 102 (2009)

[39] J.J. Longdell; E. Fraval; M.J. Sellars; N.B. Manson Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid, Phys. Rev. Lett., Volume 95 (2005)

[40] K. Hammerer; A.S. Sørensen; E.S. Polzik Quantum interface between light and atomic ensembles, Rev. Mod. Phys., Volume 82 (2010), pp. 1041-1093

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Towards a spin-ensemble quantum memory for superconducting qubits

Cécile Grezes; Yuimaru Kubo; Brian Julsgaard; ...

C. R. Phys (2016)