Comptes Rendus
Thermoelectric mesoscopic phenomena / Phénomènes thermoélectriques mésoscopiques
Nanostructuration for thermoelectricity: The path to an unlimited reduction of phonon transport
[Nanostructuration pour la thermoélectricité : la voie vers une diminution illimitée du transport phonique]
Comptes Rendus. Physique, Volume 17 (2016) no. 10, pp. 1146-1153.

L'amélioration des propriétés thermoélectriques des matériaux massifs est souvent liée à la réduction de leur conductivité thermique, qui est principalement basée sur la propagation des phonons. Réduire encore plus le transport des phonons reste une tâche difficile, parce que les matériaux thermoélectriques usuels sont déjà de bons isolants thermiques, mais aussi du fait de la largeur du spectre de Planck des phonons. La nano-structuration a fourni de nouveaux moyens pour décroître la conduction thermique, particulièrement par le biais de structures diffusantes, qu'elles soient des nano-objets, des surfaces ou des interfaces. Dans ce chapitre, la physique des méthodes éprouvées visant les échelles nanométriques pour réduire la conduction thermique est décrite, accompagnée d'illustrations directement tirées des simulations.

Improvements of the thermoelectric properties in bulk materials have very often relied on the reduction of thermal conductivity, which is mostly based on phonon propagation. Reducing further phonon transport has remained a difficult task due to the fact that current thermoelectric materials are already efficient thermal insulators, and also because of the broadness of the Planckian phonon spectrum. Nanostructuring has provided new paths for decreasing thermal conduction, especially by means of scatterers, be them nano-objects, surfaces, or interfaces. In this chapter, the physics of demonstrated nanoscale methodologies for the reduction of thermal conduction will be proposed together with illustrations from direct simulations.

Publié le :
DOI : 10.1016/j.crhy.2016.08.009
Keywords: Hybridization, Alloying, Resonators
Mot clés : Hybridation, Alliage, Résonateurs
Shiyun Xiong 1 ; Sebastian Volz 1

1 Laboratoire d'énergétique moléculaire et macroscopique, combustion, UPR CNRS 288, CentraleSupélec, 92295 Châtenay Malabry, France
@article{CRPHYS_2016__17_10_1146_0,
     author = {Shiyun Xiong and Sebastian Volz},
     title = {Nanostructuration for thermoelectricity: {The} path to an unlimited reduction of phonon transport},
     journal = {Comptes Rendus. Physique},
     pages = {1146--1153},
     publisher = {Elsevier},
     volume = {17},
     number = {10},
     year = {2016},
     doi = {10.1016/j.crhy.2016.08.009},
     language = {en},
}
TY  - JOUR
AU  - Shiyun Xiong
AU  - Sebastian Volz
TI  - Nanostructuration for thermoelectricity: The path to an unlimited reduction of phonon transport
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 1146
EP  - 1153
VL  - 17
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.08.009
LA  - en
ID  - CRPHYS_2016__17_10_1146_0
ER  - 
%0 Journal Article
%A Shiyun Xiong
%A Sebastian Volz
%T Nanostructuration for thermoelectricity: The path to an unlimited reduction of phonon transport
%J Comptes Rendus. Physique
%D 2016
%P 1146-1153
%V 17
%N 10
%I Elsevier
%R 10.1016/j.crhy.2016.08.009
%G en
%F CRPHYS_2016__17_10_1146_0
Shiyun Xiong; Sebastian Volz. Nanostructuration for thermoelectricity: The path to an unlimited reduction of phonon transport. Comptes Rendus. Physique, Volume 17 (2016) no. 10, pp. 1146-1153. doi : 10.1016/j.crhy.2016.08.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.08.009/

[1] G.J. Snyder; E.S. Toberer Complex thermoelectric materials, Nat. Mater., Volume 7 (2008), p. 105

[2] P. Chen; N.A. Katcho; J.P. Feser; W. Li; M. Glaser; O.G. Schmidt; D.G. Cahill; N. Mingo; A. Rastelli Role of surface-segregation-driven intermixing on the thermal transport through planar Si=Ge superlattices, Phys. Rev. Lett., Volume 111 (2013)

[3] M.S. Dresselhaus; G. Chen; M.Y. Tang; R. Yang; H. Lee; D. Wang; Z. Ren; J.-P. Fleurial; P. Gogna New directions for low-dimensional thermoelectric materials, Adv. Mater., Volume 19 (2007), pp. 1043-1053

[4] I. Savic; D. Donadio; F. Gygi; G. Galli Dimensionality and heat transport in Si–Ge superlattices, Appl. Phys. Lett., Volume 102 (2013)

[5] A.J. Minnich; J.A. Johnson; A.J. Schmidt; K. Esfarjani; M.S. Dresselhaus; K.A. Nelson; G. Chen Thermal conductivity spectroscopy technique to measure phonon mean free paths, Phys. Rev. Lett., Volume 107 (2011)

[6] K.T. Regner; D.P. Sellan; Z. Su; C.H. Amon; A.J.H. McGaughey; J.A. Malen Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance, Nat. Commun., Volume 4 (2013), p. 1640

[7] K. Biswas; J. He; I.D. Blum; C.-I. Wu; T.P. Hogan; D.N. Seidman; V.P. Dravid; M.G. Kanatzidis High-performance bulk thermoelectrics with all-scale hierarchical architectures, Nature, Volume 489 (2012), pp. 414-418

[8] G. Joshi; H. Lee; Y. Lan; X. Wang; G. Zhu; D. Wang; R.W. Gould; D.C. Cuff; M.Y. Tang; M.S. Dresselhaus; G. Chen; Z. Ren Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys, Nano Lett., Volume 8 (2008), pp. 4670-4674

[9] G. Pernot; M. Stoffel; I. Savic; F. Pezzoli; P. Chen; G. Savelli; A. Jacquot; J. Schumann; U. Denker; I. Mnch; C. Deneke; O.G. Schmidt; J.-M. Rampnoux; S. Wang; M. Plissonnier; A. Rastelli; S. Dilhaire; N. Mingo Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers, Nat. Mater., Volume 9 (2010), pp. 491-495

[10] J.-K. Yu; S. Mitrovič; D. Tham; J. Varghese; J.R. Heath Reduction of thermal conductivity in phononic nanomesh structures, Nat. Nanotechnol., Volume 5 (2010), pp. 718-721

[11] J. Tang; H.-T. Wang; D.H. Lee; M. Fardy; Z. Huo; T.P. Russell; P. Yang Holey silicon as an efficient thermoelectric material, Nano Lett., Volume 10 (2010), pp. 4279-4283

[12] Z. Liu; X. Zhang; Y. Mao; Y.Y. Zhu; Z. Yang; C.T. Chan; P. Sheng Locally resonant sonic materials, Science, Volume 289 (2000), pp. 1734-1736

[13] Y.A. Kosevich Capillary phenomena and macroscopic dynamics of complex two-dimensional defects in crystals, Prog. Surf. Sci., Volume 55 (1997), pp. 1-57

[14] B.L. Davis; M.I. Hussein Nanophononic metamaterial: thermal conductivity reduction by local resonance, Phys. Rev. Lett., Volume 112 (2014)

[15] Yu.A. Kosevich Multichannel propagation and scattering of phonons and photons in low-dimensional nanostructures, Phys. Usp., Volume 51 (2008), pp. 848-859

[16] Y. Chen et al. Phys. Rev. B, 72 (2005)

[17] Q. Xiong; J. Wang; P.C. Eklund Nano Lett., 6 (2006), p. 2736

[18] S. Xiong; Y.A. Kosevich; K. Saaskilahti; Y. Ni; S. Volz Phys. Rev. B, 90 (2014)

[19] S. Xiong; K. Sääskilahti; Y.A. Kosevich; H. Han; D. Donadio; S. Volz Blocking phonon transport by structural resonances in alloy-based nanophononic metamaterials leads to ultralow thermal conductivity, Phys. Rev. Lett., Volume 117 (2016) no. 2 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Reduction of phonon mean free path: From low-temperature physics to room temperature applications in thermoelectricity

Olivier Bourgeois; Dimitri Tainoff; Adib Tavakoli; ...

C. R. Phys (2016)


Linear and nonlinear mesoscopic thermoelectric transport with coupling with heat baths

Jian-Hua Jiang; Yoseph Imry

C. R. Phys (2016)