Comptes Rendus
Thermoelectric mesoscopic phenomena / Phénomènes thermoélectriques mésoscopiques
High-performance electronic cooling with superconducting tunnel junctions
[Refroidissement électronique à haute performance par jonction tunnel supraconductrice]
Comptes Rendus. Physique, Volume 17 (2016) no. 10, pp. 1139-1145.

Polarisée à une tension juste inférieure à la bande interdite du supraconducteur, une jonction tunnel entre ce supraconducteur et un métal normal peut refroidir ce dernier. Alors que les études de ces dispositifs se sont longtemps concentrées sur des structures de taille submicronique, en conséquence avec des puissances de refroidissement de l'ordre du picowatt, nous avons mené une étude complète de jonctions NIS avec une forte puissance de refroidissement, de l'ordre du nanowatt. Dans cette revue, nous décrivons comment leurs performances peuvent être optimisées par l'ajout d'un drain pour les quasi-particles et l'ajustement de la barrière tunnel des jonctions réfrigérantes.

When biased at a voltage just below a superconductor's energy gap, a tunnel junction between this superconductor and a normal metal cools the latter. While the study of such devices has long been focused to structures of submicron size and consequently cooling power in the picowatt range, we have led a thorough study of devices with a large cooling power up to the nanowatt range. Here we describe how their performance can be optimized by using a quasi-particle drain and tuning the cooling junctions' tunnel barrier.

Publié le :
DOI : 10.1016/j.crhy.2016.08.010
Keywords: Electronic cooling, Superconducting tunnel junctions, Thermo-electricity
Mot clés : Jonctions tunnel, Refroidissement électronique, Thermoélectricité

Hervé Courtois 1, 2 ; Hung Q. Nguyen 3, 4 ; Clemens B. Winkelmann 1, 2 ; Jukka P. Pekola 4

1 Université Grenoble Alpes, Institut Néel, 38000 Grenoble, France
2 CNRS, Institut Néel, 38000 Grenoble, France
3 Nano and Energy Center, Hanoi University of Science, VNU, Hanoi, Viet Nam
4 Low Temperature Laboratory, Department of Applied Physics, Aalto University School of Science, 00076 Aalto, Finland
@article{CRPHYS_2016__17_10_1139_0,
     author = {Herv\'e Courtois and Hung Q. Nguyen and Clemens B. Winkelmann and Jukka P. Pekola},
     title = {High-performance electronic cooling with superconducting tunnel junctions},
     journal = {Comptes Rendus. Physique},
     pages = {1139--1145},
     publisher = {Elsevier},
     volume = {17},
     number = {10},
     year = {2016},
     doi = {10.1016/j.crhy.2016.08.010},
     language = {en},
}
TY  - JOUR
AU  - Hervé Courtois
AU  - Hung Q. Nguyen
AU  - Clemens B. Winkelmann
AU  - Jukka P. Pekola
TI  - High-performance electronic cooling with superconducting tunnel junctions
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 1139
EP  - 1145
VL  - 17
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.08.010
LA  - en
ID  - CRPHYS_2016__17_10_1139_0
ER  - 
%0 Journal Article
%A Hervé Courtois
%A Hung Q. Nguyen
%A Clemens B. Winkelmann
%A Jukka P. Pekola
%T High-performance electronic cooling with superconducting tunnel junctions
%J Comptes Rendus. Physique
%D 2016
%P 1139-1145
%V 17
%N 10
%I Elsevier
%R 10.1016/j.crhy.2016.08.010
%G en
%F CRPHYS_2016__17_10_1139_0
Hervé Courtois; Hung Q. Nguyen; Clemens B. Winkelmann; Jukka P. Pekola. High-performance electronic cooling with superconducting tunnel junctions. Comptes Rendus. Physique, Volume 17 (2016) no. 10, pp. 1139-1145. doi : 10.1016/j.crhy.2016.08.010. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.08.010/

[1] F. Giazotto; T.T. Heikkilä; A. Luukanen; A.M. Savin; J.P. Pekola Opportunities for mesoscopics in thermometry and refrigeration: physics and applications, Rev. Mod. Phys., Volume 78 (2006), p. 217

[2] J.T. Muhonen; M. Meschke; J.P. Pekola Micrometre-scale refrigerators, Rep. Prog. Phys., Volume 75 (2012)

[3] H. Courtois; F.W.J. Hekking; H.Q. Nguyen; C.B. Winkelmann Electronic coolers based on superconducting tunnel junctions: fundamentals and applications, J. Low Temp. Phys., Volume 175 (2014), p. 799

[4] M. Nahum; T.M. Eiles; J.M. Martinis Electronic microrefrigerator based on a normal-insulator-superconductor tunnel junction, Appl. Phys. Lett., Volume 65 (1994), p. 3123

[5] M.M. Leivo; J.P. Pekola; D.V. Averin Efficient Peltier refrigeration by a pair of normal metal/insulator/superconductor junctions, Appl. Phys. Lett., Volume 68 (1996), p. 1996

[6] A. Bardas; D. Averin Peltier effect in normal-metal-superconductor microcontacts, Phys. Rev. B, Volume 52 (1995), p. 12873

[7] A.S. Vasenko; E.V. Bezuglyi; H. Courtois; F.W.J. Hekking Electron cooling by diffusive normal metal-superconductor tunnel junctions, Phys. Rev. B, Volume 81 (2010)

[8] S. Rajauria; P. Gandit; T. Fournier; F.W.J. Hekking; B. Pannetier; H. Courtois Andreev current-induced dissipation in a hybrid superconducting tunnel junction, Phys. Rev. Lett., Volume 100 (2008)

[9] S. Rajauria; P.S. Luo; F.W.J. Hekking; H. Courtois; B. Pannetier Electron and phonon cooling in a superconductor – normal metal – superconductor tunnel junction, Phys. Rev. Lett., Volume 99 (2007)

[10] P.J. Koppinen; I.J. Maasilta Phonon cooling of nanomechanical beams with tunnel junctions, Phys. Rev. Lett., Volume 102 (2009)

[11] L.M.A. Pascal; A. Fay; C.B. Winkelmann; H. Courtois Existence of an independent phonon bath in a quantum device, Phys. Rev. B, Volume 88 (2013)

[12] J.P. Pekola; D.V. Anghel; T.I. Suppula; J.K. Suoknuuti; A.J. Manninen; M. Manninen Trapping of quasiparticles of a nonequilibrium superconductor, Appl. Phys. Lett., Volume 76 (2000), p. 2782

[13] A. Rothwarf; B.N. Taylor Measurement of recombination lifetimes in superconductors, Phys. Rev. Lett., Volume 19 (1967), p. 27

[14] S. Rajauria; H. Courtois; B. Pannetier Quasiparticle-diffusion-based heating in superconductor tunneling microcoolers, Phys. Rev. B, Volume 80 (2009)

[15] J. Voutilainen; T.T. Heikkilä; N.B. Kopnin Nonequilibrium phenomena in multiple normal-superconducting tunnel heterostructures, Phys. Rev. B, Volume 72 (2005)

[16] N.A. Court; A.J. Ferguson; R. Lutchyn; R.G. Clark Quantitative study of quasiparticle traps using the single-Cooper-pair transistor, Phys. Rev. B, Volume 77 (2008)

[17] C. Wang; Y.Y. Gao; I.M. Pop; U. Vool; C. Axline; T. Brecht; R.W. Heeres; L. Frunzio; M.H. Devoret; G. Catelani; L.I. Glazman; R.J. Schoelkopf Measurement and control of quasiparticle dynamics in a superconducting qubit, Nat. Commun., Volume 5 (2014), p. 5836

[18] J.T. Peltonen; J.T. Muhonen; M. Meschke; N.B. Kopnin; J.P. Pekola Magnetic-field-induced stabilization of non-equilibrium superconductivity in a normal-metal/insulator/superconductor junction, Phys. Rev. B, Volume 84 (2011)

[19] N.A. Miller; G.C. O'Neil; J.A. Beall; G.C. Hilton; K.D. Irwin; D.R. Schmidt; L.R. Vale; J.N. Ullom High resolution x-ray transition-edge sensor cooled by tunnel junction refrigerators, Appl. Phys. Lett., Volume 92 (2008), p. 163501

[20] P.J. Lowell; G.C. O'Neil; J.M. Underwood; J.N. Ullom A nanoscale refrigerator for macroscale objects, Appl. Phys. Lett., Volume 102 (2013)

[21] G.C. O'Neil; P.J. Lowell; J.M. Underwood; J.N. Ullom Measurement and modeling of a large-area normal-metal/insulator/superconductor refrigerator with improved cooling, Phys. Rev. B, Volume 85 (2012)

[22] H.Q. Nguyen; L.M.A. Pascal; Z.H. Peng; O. Buisson; B. Gilles; C.B. Winkelmann; H. Courtois Etching suspended superconducting tunnel junctions from a multilayer, Appl. Phys. Lett., Volume 100 (2012), p. 252602

[23] M. Nahum; J.M. Martinis Ultra-sensitive hot electron microbolometer, Appl. Phys. Lett., Volume 63 (1993), p. 3075

[24] H.Q. Nguyen; T. Aref; V.J. Kauppila; M. Meschke; C.B. Winkelmann; H. Courtois; J.P. Pekola Trapping hot quasi-particles in a high-power superconducting electronic cooler, New J. Phys., Volume 15 (2013)

[25] H.Q. Nguyen; M. Meschke; H. Courtois; J.P. Pekola Sub-50 mK electronic cooling with large-area superconducting tunnel junctions, Phys. Rev. Appl., Volume 2 (2014)

[26] A.M. Clark; A. Williams; S.T. Ruggiero; M.L. van den Berg; J.N. Ullom Practical electron-tunneling refrigerator, Appl. Phys. Lett., Volume 84 (2004), p. 625

[27] H.Q. Nguyen; J.T. Peltonen; M. Meschke; J.P. Pekola A cascade electronic refrigerator using superconducting tunnel junctions | arXiv

[28] M. Camarasa-Gomez; A. Di Marco; F.W.J. Hekking; C.B. Winkelmann; H. Courtois; F. Giazotto Superconducting cascade electron refrigerator, Appl. Phys. Lett., Volume 104 (2014), p. 192601

[29] S. Kawabata; A. Ozaeta; A.S. Vasenko; F.W.J. Hekking; F.S. Bergeret Efficient electron refrigeration using superconductor/spin-filter devices, Appl. Phys. Lett., Volume 103 (2013)

Cité par Sources :

Commentaires - Politique