When biased at a voltage just below a superconductor's energy gap, a tunnel junction between this superconductor and a normal metal cools the latter. While the study of such devices has long been focused to structures of submicron size and consequently cooling power in the picowatt range, we have led a thorough study of devices with a large cooling power up to the nanowatt range. Here we describe how their performance can be optimized by using a quasi-particle drain and tuning the cooling junctions' tunnel barrier.
Polarisée à une tension juste inférieure à la bande interdite du supraconducteur, une jonction tunnel entre ce supraconducteur et un métal normal peut refroidir ce dernier. Alors que les études de ces dispositifs se sont longtemps concentrées sur des structures de taille submicronique, en conséquence avec des puissances de refroidissement de l'ordre du picowatt, nous avons mené une étude complète de jonctions NIS avec une forte puissance de refroidissement, de l'ordre du nanowatt. Dans cette revue, nous décrivons comment leurs performances peuvent être optimisées par l'ajout d'un drain pour les quasi-particles et l'ajustement de la barrière tunnel des jonctions réfrigérantes.
Mot clés : Jonctions tunnel, Refroidissement électronique, Thermoélectricité
Hervé Courtois 1, 2; Hung Q. Nguyen 3, 4; Clemens B. Winkelmann 1, 2; Jukka P. Pekola 4
@article{CRPHYS_2016__17_10_1139_0, author = {Herv\'e Courtois and Hung Q. Nguyen and Clemens B. Winkelmann and Jukka P. Pekola}, title = {High-performance electronic cooling with superconducting tunnel junctions}, journal = {Comptes Rendus. Physique}, pages = {1139--1145}, publisher = {Elsevier}, volume = {17}, number = {10}, year = {2016}, doi = {10.1016/j.crhy.2016.08.010}, language = {en}, }
TY - JOUR AU - Hervé Courtois AU - Hung Q. Nguyen AU - Clemens B. Winkelmann AU - Jukka P. Pekola TI - High-performance electronic cooling with superconducting tunnel junctions JO - Comptes Rendus. Physique PY - 2016 SP - 1139 EP - 1145 VL - 17 IS - 10 PB - Elsevier DO - 10.1016/j.crhy.2016.08.010 LA - en ID - CRPHYS_2016__17_10_1139_0 ER -
%0 Journal Article %A Hervé Courtois %A Hung Q. Nguyen %A Clemens B. Winkelmann %A Jukka P. Pekola %T High-performance electronic cooling with superconducting tunnel junctions %J Comptes Rendus. Physique %D 2016 %P 1139-1145 %V 17 %N 10 %I Elsevier %R 10.1016/j.crhy.2016.08.010 %G en %F CRPHYS_2016__17_10_1139_0
Hervé Courtois; Hung Q. Nguyen; Clemens B. Winkelmann; Jukka P. Pekola. High-performance electronic cooling with superconducting tunnel junctions. Comptes Rendus. Physique, Volume 17 (2016) no. 10, pp. 1139-1145. doi : 10.1016/j.crhy.2016.08.010. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.08.010/
[1] Opportunities for mesoscopics in thermometry and refrigeration: physics and applications, Rev. Mod. Phys., Volume 78 (2006), p. 217
[2] Micrometre-scale refrigerators, Rep. Prog. Phys., Volume 75 (2012)
[3] Electronic coolers based on superconducting tunnel junctions: fundamentals and applications, J. Low Temp. Phys., Volume 175 (2014), p. 799
[4] Electronic microrefrigerator based on a normal-insulator-superconductor tunnel junction, Appl. Phys. Lett., Volume 65 (1994), p. 3123
[5] Efficient Peltier refrigeration by a pair of normal metal/insulator/superconductor junctions, Appl. Phys. Lett., Volume 68 (1996), p. 1996
[6] Peltier effect in normal-metal-superconductor microcontacts, Phys. Rev. B, Volume 52 (1995), p. 12873
[7] Electron cooling by diffusive normal metal-superconductor tunnel junctions, Phys. Rev. B, Volume 81 (2010)
[8] Andreev current-induced dissipation in a hybrid superconducting tunnel junction, Phys. Rev. Lett., Volume 100 (2008)
[9] Electron and phonon cooling in a superconductor – normal metal – superconductor tunnel junction, Phys. Rev. Lett., Volume 99 (2007)
[10] Phonon cooling of nanomechanical beams with tunnel junctions, Phys. Rev. Lett., Volume 102 (2009)
[11] Existence of an independent phonon bath in a quantum device, Phys. Rev. B, Volume 88 (2013)
[12] Trapping of quasiparticles of a nonequilibrium superconductor, Appl. Phys. Lett., Volume 76 (2000), p. 2782
[13] Measurement of recombination lifetimes in superconductors, Phys. Rev. Lett., Volume 19 (1967), p. 27
[14] Quasiparticle-diffusion-based heating in superconductor tunneling microcoolers, Phys. Rev. B, Volume 80 (2009)
[15] Nonequilibrium phenomena in multiple normal-superconducting tunnel heterostructures, Phys. Rev. B, Volume 72 (2005)
[16] Quantitative study of quasiparticle traps using the single-Cooper-pair transistor, Phys. Rev. B, Volume 77 (2008)
[17] Measurement and control of quasiparticle dynamics in a superconducting qubit, Nat. Commun., Volume 5 (2014), p. 5836
[18] Magnetic-field-induced stabilization of non-equilibrium superconductivity in a normal-metal/insulator/superconductor junction, Phys. Rev. B, Volume 84 (2011)
[19] High resolution x-ray transition-edge sensor cooled by tunnel junction refrigerators, Appl. Phys. Lett., Volume 92 (2008), p. 163501
[20] A nanoscale refrigerator for macroscale objects, Appl. Phys. Lett., Volume 102 (2013)
[21] Measurement and modeling of a large-area normal-metal/insulator/superconductor refrigerator with improved cooling, Phys. Rev. B, Volume 85 (2012)
[22] Etching suspended superconducting tunnel junctions from a multilayer, Appl. Phys. Lett., Volume 100 (2012), p. 252602
[23] Ultra-sensitive hot electron microbolometer, Appl. Phys. Lett., Volume 63 (1993), p. 3075
[24] Trapping hot quasi-particles in a high-power superconducting electronic cooler, New J. Phys., Volume 15 (2013)
[25] Sub-50 mK electronic cooling with large-area superconducting tunnel junctions, Phys. Rev. Appl., Volume 2 (2014)
[26] Practical electron-tunneling refrigerator, Appl. Phys. Lett., Volume 84 (2004), p. 625
[27] A cascade electronic refrigerator using superconducting tunnel junctions | arXiv
[28] Superconducting cascade electron refrigerator, Appl. Phys. Lett., Volume 104 (2014), p. 192601
[29] Efficient electron refrigeration using superconductor/spin-filter devices, Appl. Phys. Lett., Volume 103 (2013)
Cited by Sources:
Comments - Policy