Comptes Rendus
Prix de la femme scientifique de l'année 2015 (ministère chargé de l'Enseignement supérieur et de la Recherche)
Geometric aspects of ordering phenomena
[Aspects géométriques des phénomènes d'ordre]
Comptes Rendus. Physique, Volume 18 (2017) no. 1, pp. 5-18.

Si un système macroscopique préparé dans une phase désordonnée est refroidi brusquement à une température inférieure à celle où, à l'équilibre, il y a une transition du second ordre, il subit alors un processus de coarsening au cours duquel il prend localement l'une des structures ordonnées stables à l'équilibre. L'étude de l'évolution de la morphologie des structures ordonnées en deux dimensions a récemment révélé deux propriétés génériques intéressantes. D'une part, la dynamique approche d'abord un état critique de percolation grâce à la croissance d'une nouvelle échelle de longueur, et vérifie des relations d'échelle vis-à-vis de celle-ci. Le temps nécessaire pour rejoindre l'état critique de percolation diverge avec la taille du système, moins faiblement que le temps nécessaire pour atteindre l'équilibre. D'autre part, après avoir atteint l'état critique de percolation, les propriétés géométriques et statistiques aux échelles plus longues que la longueur dynamique de croissance habituelle demeurent celles de la percolation critique. Ces observations sont communes aux différents types microscopiques de dynamique (retournement de spin simple, échange de spin local ou non, électeur) dans les systèmes purs ou faiblement désordonnés. On discute ces résultats et on renvoie aux publications originales pour davantage de détails.

A macroscopic system prepared in a disordered phase and quenched across a second-order phase transition into an ordered phase undergoes a coarsening process whereby it orders locally in one of the equilibrium states. The study of the evolution of the morphology of the ordered structures in two dimensions has recently unveiled two interesting and generic features. On the one hand, the dynamics first approach a critical percolating state via the growth of a new lengthscale and satisfying scaling properties with respect to it. The time needed to reach the critical percolating state diverges with the system size, though more weakly than the equilibration time. On the other hand, once the critical percolating structures established, the geometrical and statistical properties at larger scales than the one established by the usual dynamic growing length remain the ones of critical percolation. These observations are common to different microscopic dynamics (single spin flip, local and non-local spin exchange, voter) in pure or weakly disordered systems. We discuss these results and we refer to the relevant publications for details.

Publié le :
DOI : 10.1016/j.crhy.2016.10.002
Mots clés : Coarsening, Percolation, Dynamic scaling
Leticia F. Cugliandolo 1

1 Sorbonne Universités, Université Pierre-et-Marie-Curie, Laboratoire de physique théorique et hautes énergies, tour 13, 5
@article{CRPHYS_2017__18_1_5_0,
     author = {Leticia F. Cugliandolo},
     title = {Geometric aspects of ordering phenomena},
     journal = {Comptes Rendus. Physique},
     pages = {5--18},
     publisher = {Elsevier},
     volume = {18},
     number = {1},
     year = {2017},
     doi = {10.1016/j.crhy.2016.10.002},
     language = {en},
}
TY  - JOUR
AU  - Leticia F. Cugliandolo
TI  - Geometric aspects of ordering phenomena
JO  - Comptes Rendus. Physique
PY  - 2017
SP  - 5
EP  - 18
VL  - 18
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.10.002
LA  - en
ID  - CRPHYS_2017__18_1_5_0
ER  - 
%0 Journal Article
%A Leticia F. Cugliandolo
%T Geometric aspects of ordering phenomena
%J Comptes Rendus. Physique
%D 2017
%P 5-18
%V 18
%N 1
%I Elsevier
%R 10.1016/j.crhy.2016.10.002
%G en
%F CRPHYS_2017__18_1_5_0
Leticia F. Cugliandolo. Geometric aspects of ordering phenomena. Comptes Rendus. Physique, Volume 18 (2017) no. 1, pp. 5-18. doi : 10.1016/j.crhy.2016.10.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.10.002/

[1] A.J. Bray Adv. Phys., 43 (1994), p. 357

[2] A. Onuki Phase Transition Dynamics, Cambridge University Press, Cambridge, UK, 2004

[3] Kinetics of Phase Transitions (S. Puri; V. Wadhawan, eds.), Taylor and Francis Group, 2009

[4] M. Henkel; M. Pleimling Non-equilibrium Phase Transitions: Ageing and Dynamical Scaling Far from Equilibrium, Springer-Verlag, 2010

[5] P.L. Krapivsky; S. Redner; E. Ben-Naim A Kinetic View of Statistical Physics, Cambridge University Press, Cambridge, UK, 2010

[6] C. R. Physique, 16 (2015), p. 255

[7] P. Calabrese; A. Gambassi J. Phys. A, 38 (2005)

[8] F. Corberi; E. Lippiello; M. Zannetti J. Stat. Mech. (2007)

[9] F. Family J. Stat. Phys., 36 (1984), p. 881

[10] H. Kroger Phys. Rep., 323 (2000), p. 81

[11] J. Cardy Ann. Phys., 318 (2005), p. 81

[12] B. Duplantier Conformal random geometry (A. Bovier; F. Dunlop; F. den Hollander; A. van Enter; J. Dalibard, eds.), Mathematical Statistical Physics, Les Houches, vol. LXXXIII, Elsevier, France, 2006

[13] W. Werner Some recent aspects of random conformally invariant systems (A. Bovier; F. Dunlop; F. den Hollander; A. van Enter; J. Dalibard, eds.), Mathematical Statistical Physics, Les Houches, vol. LXXXIII, Elsevier, 2006

[14] I.M. Lifshitz; V.V. Slyozov J. Phys. Chem. Solids, 19 (1961), p. 35

[15] C. Wagner Z. Elektrochem., 65 (1961), p. 581

[16] H. Frost; C.V. Thompson; D. Walton Grain Growth in Polycrystalline Materials (G. Abbruzzese; P. Brosso, eds.), Trans Tech Publications, Brookfield, VT, 1992

[17] K.L. Babcock; R. Seshadri; R.M. Westervelt Phys. Rev. A, 41 (1990), p. 1952

[18] J. Stavans Rep. Prog. Phys., 56 (1993), p. 733

[19] D. Weaire; N. Rivier Contemp. Phys., 50 (2009), p. 199

[20] M.S. Alber; M.A. Kiskowski; J.A. Glazier; Y. Jiang On Cellular Automaton Approaches to Modeling Biological Cells, Springer-Verlag, New York, 2002

[21] J.C.M. Mombach; M.A.Z. Vasconcellos; R.M.C. de Almeida J. Phys. D, Appl. Phys., 23 (1990), p. 600

[22] A. del Campo; T.W.B. Kibble; W.H. Zurek J. Phys. C, 25 (2013), p. 404210

[23] J.W. Cahn; J.E. Hilliard J. Chem. Phys., 28 (1958), p. 258

[24] D.A. Huse Phys. Rev. B, 34 (1986), p. 7845

[25] J. Olejarz; P.L. Krapivsky; S. Redner J. Stat. Mech. (2013)

[26] T.M. Liggett Interacting Particle Systems, Springer, New York, 1985

[27] C.W. Gardiner; J.R. Anglin; T.I.A. Fudge J. Phys. B, 35 (2002), p. 1555

[28] C.W. Gardiner; M.J. Davis J. Phys. B, 36 (2003), p. 4731

[29] P.J. Flory J. Am. Chem. Soc., 63 (1941), p. 3083

[30] P.-G. de Gennes Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, NY, USA, 1979

[31] D. Stauffer; A. Aharony Introduction to Percolation Theory, Taylor and Francis, London, 1994

[32] A.A. Saberi Phys. Rep., 578 (2015), p. 1

[33] R. Zallen Phys. Rev. B, 16 (1977), p. 1426

[34] H. Takano; S. Miyashita Phys. Rev. B, 48 (1993), p. 7221

[35] T. Blanchard, L.F. Cugliandolo, M. Picco, A. Tartaglia, Critical percolation in bidimensional kinetic spin models, (2016), in preparation.

[36] M.F. Sykes; D.S. Gaunt J. Phys. A, Math. Gen., 9 (1976), p. 2131

[37] A. Coniglio; W. Klein J. Phys. A, Math. Gen., 13 (1980), p. 2775

[38] H. Müller-Krumbhaar Phys. Lett. A, 50 (1974), p. 27

[39] J. Cardy; R.M. Ziff J. Stat. Phys., 110 (2003), p. 1

[40] A. Sicilia; J.J. Arenzon; A.J. Bray; L.F. Cugliandolo Phys. Rev. E, 76 (2007)

[41] H. Pinson J. Stat. Phys., 75 (1994), p. 1167

[42] G.M.T. Watts J. Phys. A, Math. Gen., 29 (1996), p. 363

[43] J. Olejarz; P.L. Krapivsky; S. Redner Phys. Rev. Lett., 109 (2012)

[44] S.M. Allen; J.W. Cahn Acta Metall., 27 (1979), p. 1085

[45] E.E. Ferrero; J.P.D. Francesco; N. Wolovick; S.A. Cannas Comput. Phys. Commun., 183 (2012), p. 1578

[46] L. Frachebourg; P.L. Krapivsky Phys. Rev. E, 53 (1996)

[47] D.S. Fisher; D.A. Huse Phys. Rev. B, 38 (1988), p. 373

[48] H. Park; M. Pleimling Phys. Rev. B, 82 (2010)

[49] S. Majumder; S.K. Das Phys. Rev. E, 84 (2011)

[50] J.L. Iguain; S. Bustingorry; A.B. Kolton; L.F. Cugliandolo Phys. Rev. B, 80 (2009)

[51] F. Corberi; L.F. Cugliandolo; H. Yoshino Growing length scales in aging systems (L. Berthier; J.-P. Bouchaud; G. Biroli; L. Cipelletti; W. van Saarloos, eds.), Dynamical Heterogeneities in Glasses, Colloids, and Granular Media, Oxford University Press, 2011

[52] J.J. Arenzon; A.J. Bray; L.F. Cugliandolo; A. Sicilia Phys. Rev. Lett., 98 (2007)

[53] T. Blanchard; F. Corberi; L.F. Cugliandolo; M. Picco Europhys. Lett., 106 (2014), p. 66001

[54] A. Sicilia; Y. Sarrazin; J.J. Arenzon; A.J. Bray; L.F. Cugliandolo Phys. Rev. E, 80 (2009)

[55] H. Takeuchi; Y. Mizuno; K. Dehara Phys. Rev. A, 92 (2015)

[56] A. Tartaglia; L.F. Cugliandolo; M. Picco Phase separation and critical percolation in bidimensional spin-exchange models, Europhys. Lett. (2016) (submitted for publication) | arXiv

[57] A. Tartaglia; L.F. Cugliandolo; M. Picco Phys. Rev. E, 92 (2015)

[58] M.P.O. Loureiro; J.J. Arenzon; L.F. Cugliandolo; A. Sicilia Phys. Rev. E, 81 (2010)

[59] M.P.O. Loureiro; J.J. Arenzon; L.F. Cugliandolo Phys. Rev. E, 85 (2012)

[60] F. Insalata, F. Corberi, L.F. Cugliandolo, M. Picco, Coarsening and percolation in a disordered ferromagnet, (2016), in preparation.

[61] A.J. Bray; K. Humayun J. Phys. A, 24 (1991)

[62] S.P.B. Biswal; D. Chodwdhury Physica A, 229 (1996), p. 72

[63] C. Aron; C. Chamon; L.F. Cugliandolo; M. Picco J. Stat. Mech. (2008)

[64] F. Corberi; E. Lippiello; A. Mukherjee; S. Puri; M. Zannetti Phys. Rev. E, 85 (2012)

[65] S. Chakraborty; S.K. Das Eur. Phys. J. B, 88 (2015), p. 160

[66] R. Bausch; H.K. Janssen; H. Wagner Z. Phys. B, 24 (1976), p. 113

[67] H.K. Janssen; B. Schaub; B. Schmittmann Z. Phys. B, 73 (1989), p. 539

[68] M. Nightingale; H. Bloöte Phys. Rev. Lett., 76 (1996), p. 4589

[69] T. Blanchard; L.F. Cugliandolo; M. Picco J. Stat. Mech. (2012)

[70] A. Sicilia; J.J. Arenzon; A.J. Bray; L.F. Cugliandolo Europhys. Lett., 82 (2008), p. 10001

[71] A. Sicilia et al. Phys. Rev. Lett., 101 (2008)

[72] B. Derrida; R. Zeitak Phys. Rev. E, 54 (1996), p. 2513

[73] P.L. Krapivsky; E. Ben-Naim Phys. Rev. E, 56 (1997), p. 3788

[74] K. Ouchi; N. Tsukamoto; T. Horita; H. Fujisaka Phys. Rev. E, 76 (2007)

[75] P. Le Doussal Exact results and open questions in first principle functional RG | arXiv

[76] D. Bouttes; E. Gouillart; E. Boller; D. Dalmas; D. Vandembroucq Phys. Rev. Lett., 112 (2014)

[77] V.M. Kaganer; W. Braun; K.K. Sabelfeld Phys. Rev. B, 76 (2007)

[78] P. Streitenberger; D. Zöllner Acta Mater., 88 (2015), p. 334

[79] J. von Neumann Metal Interfaces, Americal Society for Metals, Cleveland, OH, USA, 1952, p. 108 (written discussion)

[80] G. Szabó; I. Borsos Phys. Rep., 624 (2016), p. 1

[81] P.P. Avelino; D. Bazeia; L. Losano; J. Menezes Phys. Rev. E, 86 (2012)

[82] A. Roman; D. Dasgupta; M. Pleimling Phys. Rev. E, 87 (2013)

[83] V. Spirin; P.L. Krapivsky; S. Redner Phys. Rev. E, 63 (2001)

[84] V. Spirin; P.L. Krapivsky; S. Redner Phys. Rev. E, 65 (2002)

[85] K. Barros; P.L. Krapivsky; S. Redner Phys. Rev. E, 80 (2009)

[86] J. Olejarz; P.L. Krapivsky; S. Redner Phys. Rev. E, 83 (2011)

[87] T. Blanchard; M. Picco Phys. Rev. E, 88 (2013)

[88] J. Cardy J. Phys. A, 25 (1992)

[89] L.-P. Arguin; Y. Saint-Aubin Phys. Lett. B, 541 (2002), p. 384

[90] J. Olejarz; P.L. Krapivsky; S. Redner Phys. Rev. E, 83 (2011)

[91] H. Ricateau, L.F. Cugliandolo, M. Picco, (2016), in preparation.

[92] C. Toninelli; G. Biroli; D.S. Fisher Phys. Rev. Lett., 96 (2006)

[93] G. Biroli; C. Toninelli J. Stat. Phys., 130 (2008), p. 83

[94] F. Corberi; L.F. Cugliandolo J. Stat. Mech. (2009)

[95] Z. Budrikis et al. New J. Phys., 14 (2012)

[96] D. Levis; L.F. Cugliandolo Europhys. Lett., 97 (2012), p. 30002

[97] C. Godrèche; M. Pleimling J. Stat. Mech. Theory Exp., 2015 (2015)

[98] C. Godrèche, M. Picco, M. Pleimling, (2016), in preparation.

[99] F. Family; D.P. Landau Kinetics of Aggregation and Gelation, North Holland, Amsterdam, 1984

[100] R. Jullien; R. Botet Aggregation and Fractal Aggregates, World Scientific, Singapore, 1987

[101] T. Vicsek Fractal Growth Phenomena, World Scientific, Singapore, 1989

[102] A. Hasmy; R. Jullien Phys. Rev. E, 53 (1996), p. 1789

[103] R. Botet; M. Ploszajczak Phys. Rev. Lett., 95 (2005)

[104] I. Dierking J. Phys., Condens. Matter., 12 (2000), p. 8035

[105] G.B. Deepa; R. Pratibha Phys. Rev. E, 89 (2014)

[106] M. Castro; R. Cuerno; M.M. García-Hernández; L. Vázquez Phys. Rev. Lett., 112 (2014)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Coarsening phenomena

Leticia F. Cugliandolo

C. R. Phys (2015)


Coarsening in inhomogeneous systems

Federico Corberi

C. R. Phys (2015)


Coarsening in fluid phase transitions

Subir K. Das; Sutapa Roy; Jiarul Midya

C. R. Phys (2015)