[Réseaux de diffraction : Un curieux phénomène]
Le papier décrit et explique le phénomène dʼanomalie de Wood le plus surprenant : lʼabsorption totale dʼune onde plane par un réseau métallique peu profond.
Après avoir fourni la démonstration numérique et expérimentale de lʼabsorption totale, nous développons une théorie phénoménologique quantitative. Prenant comme cause de lʼanomalie lʼexcitation de plasmons polaritons de surface, nous utilisons certains théorèmes sur les fonctions analytiques de la variable complexe pour donner une expression précise des amplitudes des ondes diffractées, grâce à une formule phénoménologique.
La théorie des réseaux rigoureuse et originale utilisée pour les calculs numériques est résumée et quelques applications pratiques des fortes absorptions sont décrites.
The paper describes and explains the most surprising Woodʼs anomaly: the total absorption of a plane wave by a shallow metallic grating.
After a numerical and experimental evidence of the total absorption, we develop a quantitative phenomenological theory. Assuming that the anomalies are caused by the excitation of surface plasmon polaritons on the grating surface, we use theorems on analytic functions of the complex variable for representing the amplitudes of the scattered waves accurately through a phenomenological formula.
The original rigorous grating theory used for numerical computations is outlined and some practical applications of strong absorptions are presented.
Mot clés : Optique électromagnétique, Diffraction, Réseaux de diffraction, Phénoménologie, Absorption de la lumiére, Blaze parfait
Daniel Maystre 1
@article{CRPHYS_2013__14_4_381_0, author = {Daniel Maystre}, title = {Diffraction gratings: {An} amazing phenomenon}, journal = {Comptes Rendus. Physique}, pages = {381--392}, publisher = {Elsevier}, volume = {14}, number = {4}, year = {2013}, doi = {10.1016/j.crhy.2013.02.003}, language = {en}, }
Daniel Maystre. Diffraction gratings: An amazing phenomenon. Comptes Rendus. Physique, Volume 14 (2013) no. 4, pp. 381-392. doi : 10.1016/j.crhy.2013.02.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.02.003/
[1] On a remarkable case of uneven distribution of light in a diffraction grating spectrum, Proc. Philos. Mag., Volume 4 (1902), pp. 396-402
[2] Extraordinary optical transmission through subwavelength hole arrays, Nature, Volume 391 (1998), pp. 667-669
[3] Negative refraction makes a perfect lens, Phys. Rev. Lett., Volume 85 (2000), pp. 3966-3969
[4] Perfect lenses made with left-handed materials: Aliceʼs mirror?, J. Opt. Soc. Amer. A, Volume 21 (2004), pp. 122-131
[5] Omnidirectional absorption in nanostructured metal surface, Nat. Photon., Volume 2 (2008), pp. 299-301
[6] Brewster incidence for metallic gratings, Opt. Commun., Volume 17 (1976), pp. 196-200
[7] The total absorption of light by a diffraction grating, Opt. Commun., Volume 19 (1976), pp. 431-436
[8] General study of grating anomalies from electromagnetic surface modes (A.D. Boardman, ed.), Electromagnetic Surface Modes, John Wiley and Sons Ltd., 1982 (Ch. 17)
[9] Rigorous vector theories of diffraction gratings (E. Wolf, ed.), Progress in Optics I, North-Holland, 1984
[10] Electromagnetic Theory of Gratings (R. Petit, ed.), Springer-Verlag, 1980
[11] On the dynamical theory of gratings, Proc. Roy. Soc. A, Volume 79 (1907), pp. 399-416
[12] The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeldʼs waves), J. Opt. Soc. Amer., Volume 31 (1941), pp. 213-222
[13] Numerical methods for the analysis of scattering from non-planar periodic structures, Alta Freq., Volume 38 (1969), pp. 282-285
[14] Sur la diffraction dʼune onde plane par un réseau métallique de conductivité finie, Opt. Commun., Volume 6 (1972), pp. 50-54
[15] A new general integral theory for dielectric coated gratings, J. Opt. Soc. Amer., Volume 68 (1978), pp. 490-495
[16] On single integral equations for the transmission problem of acoustics, SIAM J. Appl. Math., Volume 48 (1988), pp. 307-325
[17] Single integral equation for wave scattering, J. Math. Phys., Volume 23 (1982), pp. 1057-1065
[18] Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics, vol. 111, Springer-Verlag, 1988
[19] The Theory of Functions, Oxford University Press, 1939
[20] Note on the remarkable case of diffraction spectra described by Prof. Wood, Philos. Mag., Volume 14 (1907), pp. 60-65
[21] Dielectric coated gratings – curious property, Appl. Opt., Volume 16 (1977), pp. 3009-3011
[22] Phenomenological theory of filtering by resonant dielectric gratings, J. Opt. Soc. Amer. A, Volume 19 (2002), pp. 1136-1144
[23] M. Nevière, D. Maystre, G.H. Derrick, R.C. McPhedran, M.C. Hutley, On the total absorption of unpolarized monochromatic light, in: Proceedings of I.C.O. XI Conference, Madrid, Spain, 1978, pp. 609–612.
[24] Total absorption of light by lamellar metallic gratings, Opt. Express, Volume 16 (2008), pp. 15431-15438
[25] Diffraction Gratings, Academic Press, 1982
[26] Crossed gratings: A theory and its applications, Appl. Phys., Volume 18 (1979), pp. 39-52
[27] Exploitation of localized surface plasmon resonance, Adv. Mater., Volume 16 (2004) no. 19, pp. 1685-1706
[28] Comparison of plasmon surface waves on shallow and deep metallic 1D and 2D gratings, Opt. Express, Volume 15 (2007), pp. 4224-4237
[29] Electromagnetic study of the surface-plasmon-resonance contribution to surface-enhanced Raman scattering, Phys. Rev. B, Volume 26 (1982), pp. 5403-5408
[30] Electromagnetic theory of diffraction in nonlinear optics and surface enhanced nonlinear optical effects, Phys. Rev., Volume 28 (1983), pp. 1870-1885
[31] Diffraction grating characterization using multiple-wavelength excitation of surface-plasmon polaritons, J. Mod. Opt., Volume 42 (1995), pp. 1343-1349
[32] Propagation and localization of a surface plasmon polariton on a finite grating, J. Opt. Soc. Amer. B, Volume 13 (1996), pp. 1499-1509
[33] Photonic surfaces for surface-plasmon polaritons, J. Opt. Soc. Amer. A, Volume 14 (1997), pp. 1654-1661
[34] Surface plasmon resonance imaging as a tool to monitor biomolecular interactions in an array based format, Appl. Spectr., Volume 57 (2003), p. 320A-332A
[35] A direct surface plasmon-polariton immunosensor: preliminary investigation of the non-specific adsorption of serum components to the sensor surface, Sens. Actuators B, Volume 1 (1990), pp. 576-579
[36] Localization of light by randomly rough surfaces: Concept of localiton, J. Opt. Soc. Amer. A, Volume 11 (1994), pp. 680-690
Cité par Sources :
Commentaires - Politique