[Transfert d'énergie sans fil : antennes diélectriques pour la mise en forme des faisceaux dans les applications de transfert d'énergie sans fil]
Dans la compétition actuelle entre les systèmes sans fil, la dernière frontière reste la coupure du cordon électrique. Dans ce sens, l'intérêt des technologies de transfert d'énergie sans fil a crû exponentiellement au cours des dernières années. Cependant, de nombreux défis à surmonter demeurent pour qu'on puisse déployer à son plein potentiel le transfert d'énergie sans fil. L'un des objectifs poursuivis dans le cadre du développement de tels systèmes est la conception d'antennes à très haut gain, très efficaces, qui permettraient de compenser les pertes liées à la propagation des signaux radio dans l'air. Dans cet article, nous explorons la conception et la fabrication de lentilles diélectriques, réalisées à l'aide d'une imprimante 3D de bureau de qualité professionnelle. Les antennes à lentilles sont utilisées en vue d'accroître l'efficacité du réseau et donc de maximiser celle d'un système de transfert d'énergie actif aux fréquences des micro-ondes dans la bande . Les mesures réalisées sur deux prototypes mettent en évidence une grande directivité, ainsi que les simulations le prédisaient.
In the current contest of wireless systems, the last frontier remains the cut of the power cord. In that sense, the interest over wireless energy transfer technologies in the past years has grown exponentially. However, there are still many challenges to be overcome in order to enable wireless energy transfer full potential. One of the focus in the development of such systems is the design of very-high-gain, highly efficient, antennas that can compensate for the propagation loss of radio signals over the air.
In this paper, we explore the design and manufacturing process of dielectric lenses, fabricated using a professional-grade desktop 3D printer. Lens antennas are used in order to increase beam efficiency and therefore maximize the efficiency of a wireless power-transfer system operating at microwave frequencies in the band. Measurements of two fabricated prototypes showcase a large directivity, as predicted with simulations.
Mot clés : Antennes lentilles, Transfert d'énergie sans fil, Impression 3D
Ricardo Gonçalves 1, 2 ; Nuno B. Carvalho 1, 2 ; Pedro Pinho 2, 3
@article{CRPHYS_2017__18_2_78_0, author = {Ricardo Gon\c{c}alves and Nuno B. Carvalho and Pedro Pinho}, title = {Wireless energy transfer: {Dielectric} lens antennas for beam shaping in wireless power-transfer applications}, journal = {Comptes Rendus. Physique}, pages = {78--85}, publisher = {Elsevier}, volume = {18}, number = {2}, year = {2017}, doi = {10.1016/j.crhy.2016.11.004}, language = {en}, }
TY - JOUR AU - Ricardo Gonçalves AU - Nuno B. Carvalho AU - Pedro Pinho TI - Wireless energy transfer: Dielectric lens antennas for beam shaping in wireless power-transfer applications JO - Comptes Rendus. Physique PY - 2017 SP - 78 EP - 85 VL - 18 IS - 2 PB - Elsevier DO - 10.1016/j.crhy.2016.11.004 LA - en ID - CRPHYS_2017__18_2_78_0 ER -
%0 Journal Article %A Ricardo Gonçalves %A Nuno B. Carvalho %A Pedro Pinho %T Wireless energy transfer: Dielectric lens antennas for beam shaping in wireless power-transfer applications %J Comptes Rendus. Physique %D 2017 %P 78-85 %V 18 %N 2 %I Elsevier %R 10.1016/j.crhy.2016.11.004 %G en %F CRPHYS_2017__18_2_78_0
Ricardo Gonçalves; Nuno B. Carvalho; Pedro Pinho. Wireless energy transfer: Dielectric lens antennas for beam shaping in wireless power-transfer applications. Comptes Rendus. Physique, Volume 18 (2017) no. 2, pp. 78-85. doi : 10.1016/j.crhy.2016.11.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.11.004/
[1] Smart surfaces: large area electronics systems for internet of things enabled by energy harvesting, Proc. IEEE, Volume 102 (2014) no. 11, pp. 1723-1746 | DOI
[2] Wireless charging for electric vehicle with microwaves, EDPC (2013), pp. 1-4 | DOI
[3] Mid-distance wireless power transmission for electric truck via microwaves, EMTS (2013), pp. 841-843
[4] Microwave WPT to a rover using active integrated phased array antennas, EUCAP (2011), pp. 3909-3912
[5] Research on solar power satellites and microwave power transmission in Japan, IEEE Microw. Mag., Volume 3 (2002) no. 4, pp. 36-45 | DOI
[6] Beam control technologies with a high-efficiency phased array for microwave power transmission in Japan, Proc. IEEE, Volume 101 (2013) no. 6, pp. 1448-1463 | DOI
[7] 3D printed plastic 60 GHz lens: enabling innovative millimeter wave antenna solution and system, IMS2014 (2014), pp. 1-4 | DOI
[8] Millimeter wave Luneburg lens antenna fabricated by polymer jetting rapid prototyping, IRMMW-THz (2014) (pp. 1) | DOI
[9] Design and fabrication of 3D-printed planar Fresnel zone plate lens, Electron. Lett., Volume 52 (2016) no. 10, pp. 833-835 | DOI
[10] Antenna Handbook, vol. II, Van Nostrand Reinhold, 1993 (Chapter 16)
[11] Compact ka-band lens antennas for LEO satellites, IEEE Trans. Antennas Propag., Volume 56 (2008) no. 5, pp. 1251-1258 | DOI
[12] A complete procedure for the design and optimization of arbitrarily shaped integrated lens antennas, IEEE Trans. Antennas Propag., Volume 54 (2006) no. 4, pp. 1122-1133 | DOI
[13] Complex permittivity determination from propagation constant measurements, IEEE Microw. Guided Wave Lett., Volume 9 (1999) no. 2, pp. 76-78 | DOI
[14] Environmental high-frequency characterization of fabrics based on a novel surrogate modelling antenna technique, IEEE Trans. Antennas Propag., Volume 61 (2013) no. 10, pp. 5200-5213 | DOI
[15] Dissipation factor and permittivity estimation of dielectric substrates using a single microstrip line measurement, Appl. Comput. Electromagn. Soc. J., Volume 31 (2016) no. 2, pp. 118-125
[16] Design and characterization of single- and multiple-beam mm-wave circularly polarized substrate lens antennas for wireless communications, IEEE Trans. Microw. Theory Tech., Volume 49 (2001) no. 3, pp. 431-441 | DOI
Cité par Sources :
Commentaires - Politique