[Action spectrale, gravitation et modèles cosmologiques]
Cet article passe en revue les travaux récents de l'auteure et de ses collaborateurs sur les modèles cosmologiques basés sur la fonctionnelle d'action spectrale de la gravitation. Une présentation plus détaillée des sujets abordés ici sera proposée dans un livre à venir [1].
This paper surveys recent work of the author and collaborators on cosmological models based on the spectral action functional of gravity. A more detailed presentation of the topics surveyed here will be available in a forthcoming book [1].
Mot clés : Gravité modifiée, Action spectrale, Opérateur de Dirac, Inflation cosmique
Matilde Marcolli 1
@article{CRPHYS_2017__18_3-4_226_0, author = {Matilde Marcolli}, title = {Spectral action gravity and cosmological models}, journal = {Comptes Rendus. Physique}, pages = {226--234}, publisher = {Elsevier}, volume = {18}, number = {3-4}, year = {2017}, doi = {10.1016/j.crhy.2017.03.001}, language = {en}, }
Matilde Marcolli. Spectral action gravity and cosmological models. Comptes Rendus. Physique, Volume 18 (2017) no. 3-4, pp. 226-234. doi : 10.1016/j.crhy.2017.03.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2017.03.001/
[1] Noncommutative Cosmology, World Scientific, September 2017 (in press) (ISBN: 978-981-3202-83-2)
[2] Modified gravity and cosmology, Phys. Rep., Volume 513 (2012) no. 1, pp. 1-189
[3] Cosmological tests of modified gravity, Rep. Prog. Phys., Volume 79 (2016) no. 4
[4] The spectral action principle, Commun. Math. Phys., Volume 186 (1997) no. 3, pp. 731-750
[5] Gravity and the standard model with neutrino mixing, Adv. Theor. Math. Phys., Volume 11 (2007), pp. 991-1090
[6] Resilience of the spectral standard model, J. High Energy Phys., Volume 1209 (2012)
[7] Asymptotic safety, hypergeometric functions, and the Higgs mass in spectral action models, Int. J. Geom. Methods Mod. Phys., Volume 10 (2013) no. 7, p. 1350036
[8] Supersymmetry and Noncommutative Geometry, Springer Briefs in Mathematical Physics, 2015
[9] Beyond the spectral standard model: emergence of Pati–Salam unification, J. High Energy Phys., Volume 1311 (2013)
[10] The Dirac operator and gravitation, Commun. Math. Phys., Volume 166 (1995) no. 3, pp. 633-643
[11] The uncanny precision of the spectral action, Commun. Math. Phys., Volume 293 (2010) no. 3, pp. 867-897
[12] Making the case for conformal gravity, Found. Phys., Volume 42 (2012) no. 3, pp. 388-420
[13] Constraining the noncommutative spectral action via astrophysical observations, Phys. Rev. Lett., Volume 105 (2010)
[14] Gravitational waves in the spectral action of noncommutative geometry, Phys. Rev. D, Volume 82 (2010)
[15] Noncommutative Geometry, Quantum Fields, and Motives, Colloq. Publ., vol. 55, American Mathematical Society, 2008
[16] Renormalization-group study of the standard model and its extensions: the standard model, Phys. Rev. D, Volume 46 (1992) no. 9, pp. 3945-3965
[17] Covariant Methods for the Calculation of the Effective Action in Quantum Field Theory and Investigation of Higher-Derivative Quantum Gravity, Moscow University, 1986 (PhD Thesis) | arXiv
[18] Fixed points of higher derivative gravity, Phys. Rev. Lett., Volume 97 (2006)
[19] General relativity as an effective field theory: the leading quantum corrections, Phys. Rev. D, Volume 50 (1994) no. 6, pp. 3874-3888
[20] Boundary conditions of the RGE flow in the noncommutative geometry approach to particle physics and cosmology, Phys. Lett. B, Volume 693 (2010), pp. 166-174
[21] Running neutrino mass parameters in see-saw scenarios, J. High Energy Phys., Volume 03 (2005)
[22] Early universe models from noncommutative geometry, Adv. Theor. Math. Phys., Volume 14 (2010), pp. 1373-1432
[23] Primordial black holes, Astron. Astrophys., Volume 80 (1979), pp. 104-109
[24] Gravitational memory?, Phys. Rev. D, Volume 46 (1992) no. 8
[25] Primordial black holes as a probe of the early universe and a varying gravitational constant | arXiv
[26] Gamma-ray bursts from evaporating primordial black holes, Radiophys. Quantum Electron., Volume 41 (1996) no. 1, pp. 22-27
[27] Gauge theories, time-dependence of the gravitational constant and antigravity in the early universe, Phys. Lett. B, Volume 93 (1980) no. 4, pp. 394-396
[28] Gravity balls in induced gravity models – ‘gravitational lens’ effects, Gravit. Cosmol. (1998) no. 1, pp. 1-10
[29] A new theory of gravitation, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., Volume 282 (1964) no. 1389, pp. 191-207
[30] Evolution of the scale factor with a variable cosmological term, Phys. Rev. D, Volume 58 (1998)
[31] Running inflation in the standard model, Phys. Lett. B, Volume 678 (2009) no. 1, pp. 1-8
[32] Inflation in models with conformally coupled scalar fields: an application to the noncommutative spectral action, Phys. Rev. D, Volume 82 (2010)
[33] Inflation mechanism in asymptotic noncommutative geometry, Phys. Lett. B, Volume 680 (2009), pp. 263-266
[34] Cosmic topology, Phys. Rep., Volume 254 (1995), pp. 135-214
[35] A new analysis of the Poincaré dodecahedral space model, Astron. Astrophys., Volume 476 (2007) no. 2, pp. 691-696
[36] Constraining the topology of the universe, Phys. Rev. Lett., Volume 92 (2004)
[37] Topological lensing in spherical spaces, Class. Quantum Gravity, Volume 18 (2001), pp. 5155-5186
[38] Detectability of cosmic topology in almost flat universes, Class. Quantum Gravity, Volume 18 (2001), pp. 4461-4476
[39] Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background, Nature, Volume 425 (2003), pp. 593-595
[40] Simulating cosmic microwave background maps in multi-connected spaces, Phys. Rev. D, Volume 69 (2004)
[41] No evidence for anomalously low variance circles on the sky | arXiv
[42] A search for concentric circles in the 7-year WMAP temperature sky maps, Astrophys. J. Lett., Volume 733 (2011) no. 2
[43] The spectral action and cosmic topology, Commun. Math. Phys., Volume 304 (2011) no. 1, pp. 125-174
[44] The coupling of topology and inflation in noncommutative cosmology, Commun. Math. Phys., Volume 309 (2012) no. 2, pp. 341-369
[45] Coupling of gravity to matter, spectral action and cosmic topology, J. Noncommut. Geom., Volume 8 (2014) no. 2, pp. 473-504
[46] Nonperturbative spectral action of round coset spaces of , J. Noncommut. Geom., Volume 7 (2013) no. 3, pp. 677-708
[47] The Dirac operator on space forms of positive curvature, J. Math. Soc. Jpn., Volume 48 (1996) no. 1, pp. 69-83
[48] The η-invariant of twisted Dirac operators of , Geom. Dedic., Volume 84 (2001), pp. 207-228
[49] The Dirac Spectrum, Lect. Notes Math., vol. 1976, Springer, 2009
[50] Small-scale cosmic microwave background anisotropies as a probe of the geometry of the universe, Astrophys. J., Volume 426 (1994)
[51] Reconstructing the inflaton potential – an overview, Rev. Mod. Phys., Volume 69 (1997), pp. 373-410
[52] Direct detection of the inflationary gravitational wave background, Phys. Rev. D, Volume 73 (2006) no. 2
[53] Prescribing eigenvalues of the Dirac operator, Manuscr. Math., Volume 118 (2005), pp. 191-199
[54] Dirac eigenvalues for generic metrics on three-manifolds, Ann. Glob. Anal. Geom., Volume 24 (2003), pp. 95-100
[55] Rethinking Connes' approach to the standard model of particle physics via non-commutative geometry, New J. Phys., Volume 17 ( February 2015 )
[56] Multifield inflation after Planck: the case for nonminimal couplings, Phys. Rev. Lett., Volume 112 (2014)
[57] Spectral action for Robertson–Walker metrics, J. High Energy Phys. (2012) no. 10
[58] Rationality of spectral action for Robertson–Walker metrics, J. High Energy Phys. (2014) no. 12
[59] Spectral action for Bianchi type-IX cosmological models, J. High Energy Phys. (2015)
[60] Periods and motives in the spectral action of Robertson–Walker spacetimes | arXiv
[61] Periods, Mathematics Unlimited – 2001 and Beyond, Springer, 2001, pp. 771-808
[62] Triangulated categories of motives over a field, Cycles, Transfers, and Motivic Homology Theories, Ann. Math. Stud., vol. 143, Princeton University Press, 2000, pp. 188-238
[63] Feynman Motives, World Scientific, 2010
[64] Modular forms in the spectral action of Bianchi IX gravitational instantons | arXiv
[65] Self-dual -invariant Einstein metrics and modular dependence of theta-functions, Lett. Math. Phys., Volume 46 (1998), pp. 323-337
[66] Self-dual Einstein metrics from the Painlevé VI equation, Phys. Lett. A, Volume 190 (1994), pp. 221-224
[67] Big Bang, blowup, and modular curves: algebraic geometry in cosmology, SIGMA, Volume 10 (2014)
[68] Symbolic dynamics, modular curves, and Bianchi IX cosmologies, Ann. Fac. Sci. Toulouse, Volume XXV (2016) no. 2–3, pp. 313-338
[69] Quantum Cosmology (L.Z. Fang; R. Ruffini, eds.), World Scientific, 1987
[70] On the stochasticity in relativistic cosmology, J. Stat. Phys., Volume 38 (1985) no. 1/2, pp. 97-114
[71] Noncommutative mixmaster cosmologies, Int. J. Geom. Methods Mod. Phys., Volume 10 (2013) no. 1, p. 1250086
[72] Relaxation properties of the mixmaster universe, Phys. Lett. A, Volume 121 (1987) no. 8, 9, pp. 390-394
[73] Continued fractions, modular symbols, and noncommutative geometry, Selecta Math. (N.S.), Volume 8 (2002) no. 3, pp. 475-521
[74] Modular curves, -algebras, and chaotic cosmology, Frontiers in Number Theory, Physics, and Geometry. II, Springer, 2007, pp. 361-372
[75] Arithmetic Noncommutative Geometry, Univ. Lect. Ser., vol. 36, American Mathematical Society, 2005
[76] Large-scale density inhomogeneities in the universe, Nature, Volume 217 (1968), pp. 511-516
[77] Multifractal analysis of packed swiss cheese cosmologies, Gen. Relativ. Gravit., Volume 36 (2004) no. 1, pp. 151-184
[78] Scale-invariance of galaxy clustering, Phys. Rep., Volume 293 (1998) no. 2–4, pp. 61-226
[79] Spectral action models of gravity on packed swiss cheese cosmology, Class. Quantum Gravity, Volume 33 (2016), p. 115018
[80] Dirac operators and spectral triples for some fractal sets built on curves, Adv. Math., Volume 217 (2008) no. 1, pp. 42-78
[81] Apollonian circle packings: geometry and group theory III. Higher dimensions, Discrete Comput. Geom., Volume 35 (2006), pp. 37-72
[82] Fractal Geometry, Complex Dimensions and Zeta Functions. Geometry and Spectra of Fractal Strings, Springer, 2013
[83] Heat kernels and zeta functions on fractals, J. Phys. A, Math. Theor., Volume 45 (2012) no. 37, p. 374016
Cité par Sources :
Commentaires - Politique