Comptes Rendus
Isotropization of the universe during inflation
[Isotropisation de l'univers pendant l'inflation]
Comptes Rendus. Physique, Volume 16 (2015) no. 10, pp. 1027-1037.

Une phase d'inflation primordiale permet d'effacer une possible expansion anisotrope grâce au théorème de calvitie cosmique. S'il n'y a pas de tenseur des contraintes global, alors le taux d'expansion anisotrope tend à décroître. Quelles sont les conséquences observationnelles de cette possible phase anisotrope ? Nous passons d'abord en revue la dynamique des univers anisotropes et donnons des approximations analytiques. Nous discutons ensuite la structure des équations dynamiques régissant l'évolution des perturbations et les propriétés statistiques des observables, ainsi que l'implication d'une phase anisotrope primordiale sur la quantification de ces perturbations pendant l'inflation. Pour terminer, nous examinons brièvement des modèles basés sur des champs vectoriels primordiaux qui permettent de contourner le théorème de calvitie.

A primordial inflationary phase allows one to erase any possible anisotropic expansion thanks to the cosmic no-hair theorem. If there is no global anisotropic stress, then the anisotropic expansion rate tends to decrease. What are the observational consequences of a possible early anisotropic phase? We first review the dynamics of anisotropic universes and report analytic approximations. We then discuss the structure of dynamical equations for perturbations and the statistical properties of observables, as well as the implication of a primordial anisotropy on the quantization of these perturbations during inflation. Finally we review briefly models based on primordial vector field that evade the cosmic no-hair theorem.

Publié le :
DOI : 10.1016/j.crhy.2015.09.002
Keywords: Cosmology, Inflation, Spatial anisotropy
Mot clés : Cosmologie, Inflation, Anisotropie spatiale
Thiago Pereira 1 ; Cyril Pitrou 2

1 Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid, km 380, 86057-970, Londrina – PR, Brazil
2 CNRS, Institut d'astrophysique de Paris (IAP), Sorbonne Universités, UPMC (Université Paris-6), 98bis, boulevard Arago, 75014 Paris, France
@article{CRPHYS_2015__16_10_1027_0,
     author = {Thiago Pereira and Cyril Pitrou},
     title = {Isotropization of the universe during inflation},
     journal = {Comptes Rendus. Physique},
     pages = {1027--1037},
     publisher = {Elsevier},
     volume = {16},
     number = {10},
     year = {2015},
     doi = {10.1016/j.crhy.2015.09.002},
     language = {en},
}
TY  - JOUR
AU  - Thiago Pereira
AU  - Cyril Pitrou
TI  - Isotropization of the universe during inflation
JO  - Comptes Rendus. Physique
PY  - 2015
SP  - 1027
EP  - 1037
VL  - 16
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.09.002
LA  - en
ID  - CRPHYS_2015__16_10_1027_0
ER  - 
%0 Journal Article
%A Thiago Pereira
%A Cyril Pitrou
%T Isotropization of the universe during inflation
%J Comptes Rendus. Physique
%D 2015
%P 1027-1037
%V 16
%N 10
%I Elsevier
%R 10.1016/j.crhy.2015.09.002
%G en
%F CRPHYS_2015__16_10_1027_0
Thiago Pereira; Cyril Pitrou. Isotropization of the universe during inflation. Comptes Rendus. Physique, Volume 16 (2015) no. 10, pp. 1027-1037. doi : 10.1016/j.crhy.2015.09.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.09.002/

[1] A.H. Guth The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D, Volume 23 (1981), pp. 347-356

[2] A.D. Linde Inflationary cosmology, Lect. Notes Phys., Volume 738 (2008), pp. 1-54

[3] C.L. Bennett et al. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: are there cosmic microwave background anomalies?, Astron. Astrophys. Suppl. Ser., Volume 192 (2011), p. 17

[4] P.A.R. Ade et al. Planck 2013 results, XXIII: isotropy and statistics of the CMB, Astron. Astrophys., Volume 571 (2014)

[5] P.A.R. Ade, et al., Planck 2015 results, XVI: isotropy and statistics of the CMB, 2015.

[6] D.S. Goldwirth On inhomogeneous initial conditions for inflation, Phys. Rev. D, Volume 43 (1991), pp. 3204-3213

[7] N. Deruelle; D.S. Goldwirth Conditions for inflation in an initially inhomogeneous universe, Phys. Rev. D, Volume 51 (1995), pp. 1563-1568

[8] C. Pitrou; T.S. Pereira; J.-P. Uzan Predictions from an anisotropic inflationary era, J. Cosmol. Astropart. Phys., Volume 0804 (2008)

[9] L. Kofman; J.-P. Uzan; C. Pitrou Perturbations of generic Kasner spacetimes and their stability, J. Cosmol. Astropart. Phys., Volume 1105 (2011)

[10] A.D. Linde Chaotic inflation, Phys. Lett. B, Volume 129 (1983), pp. 177-181

[11] P. Peter; J.-P. Uzan Primordial Cosmology, Oxford University Press, 2013

[12] A.E. Gumrukcuoglu; C.R. Contaldi; M. Peloso Inflationary perturbations in anisotropic backgrounds and their imprint on the CMB, J. Cosmol. Astropart. Phys., Volume 0711 (2007)

[13] T.S. Pereira; C. Pitrou; J.-P. Uzan Theory of cosmological perturbations in an anisotropic universe, J. Cosmol. Astropart. Phys., Volume 0709 (2007)

[14] V.F. Mukhanov; H.A. Feldman; R.H. Brandenberger Theory of cosmological perturbations, part 1: classical perturbations; part 2: quantum theory of perturbations; part 3: extensions, Phys. Rep., Volume 215 (1992), pp. 203-333

[15] A.E. Gumrukcuoglu; B. Himmetoglu; M. Peloso Scalar–scalar, scalar–tensor, and tensor–tensor correlators from anisotropic inflation, Phys. Rev. D, Volume 81 (2010)

[16] T.S. Pereira, C. Pitrou, J.-P. Uzan, Weak-lensing B-modes as a probe of the isotropy of the universe, 2015.

[17] C. Pitrou; T.S. Pereira; J.-P. Uzan Weak-lensing by the large scale structure in a spatially anisotropic universe: theory and predictions, Phys. Rev. D, Volume 92 (2015) no. 2

[18] J. Martin; D.J. Schwarz WKB approximation for inflationary cosmological perturbations, Phys. Rev. D, Volume 67 (2003)

[19] J.-P. Uzan Dark energy, gravitation and the Copernican principle, Dark Energy: Observational and Theoretical Approaches, 2010

[20] A. de Oliveira-Costa; M. Tegmark; M. Zaldarriaga; A. Hamilton The significance of the largest scale CMB fluctuations in WMAP, Phys. Rev. D, Volume 69 (2004)

[21] D.J. Schwarz; G.D. Starkman; D. Huterer; C.J. Copi Is the low-l microwave background cosmic?, Phys. Rev. Lett., Volume 93 (2004)

[22] H.K. Eriksen; F.K. Hansen; A.J. Banday; K.M. Gorski; P.B. Lilje Asymmetries in the cosmic microwave background anisotropy field, Astrophys. J., Volume 605 (2004), pp. 14-20 (Erratum Astrophys. J., 609, 2004, pp. 1198)

[23] K. Land; J. Magueijo The axis of evil, Phys. Rev. Lett., Volume 95 (2005)

[24] C.J. Copi, D. Huterer, D.J. Schwarz, G.D. Starkman, Lack of large-angle TT correlations persists in WMAP and Planck, 2013.

[25] C.J. Copi; D. Huterer; D.J. Schwarz; G.D. Starkman Large-scale alignments from WMAP and Planck, Mon. Not. R. Astron. Soc., Volume 449 (2015) no. 4, pp. 3458-3470

[26] A. Bernui; A.F. Oliveira; T.S. Pereira North–South non-Gaussian asymmetry in PLANCK CMB maps, J. Cosmol. Astropart. Phys., Volume 1410 (2014) no. 10

[27] Y. Akrami; Y. Fantaye; A. Shafieloo; H.K. Eriksen; F.K. Hansen; A.J. Banday; K.M. Górski Power asymmetry in WMAP and Planck temperature sky maps as measured by a local variance estimator, Astrophys. J., Volume 784 (2014)

[28] C.J. Copi; D. Huterer; D.J. Schwarz; G.D. Starkman Large angle anomalies in the CMB, Adv. Astron., Volume 2010 (2010), p. 847541

[29] T.R. Jaffe; S. Hervik; A.J. Banday; K.M. Gorski On the viability of Bianchi type VIIh models with dark energy, Astrophys. J., Volume 644 (2006), pp. 701-708

[30] L. Campanelli; P. Cea; L. Tedesco Ellipsoidal universe can solve the CMB quadrupole problem, Phys. Rev. Lett., Volume 97 (2006) (Erratum Phys. Rev. Lett., 97, 2006, 209903)

[31] C.G. Boehmer; D.F. Mota CMB anisotropies and inflation from non-standard spinors, Phys. Lett. B, Volume 663 (2008), pp. 168-171

[32] D.C. Rodrigues Anisotropic cosmological constant and the CMB quadrupole anomaly, Phys. Rev. D, Volume 77 (2008)

[33] L.R. Abramo; T.S. Pereira Testing gaussianity, homogeneity and isotropy with the cosmic microwave background, Adv. Astron., Volume 2010 (2010), p. 378203

[34] A.R. Pullen; M. Kamionkowski Cosmic microwave background statistics for a direction-dependent primordial power spectrum, Phys. Rev. D, Volume 76 (2007)

[35] L. Dai; D. Jeong; M. Kamionkowski; J. Chluba The Pesky power asymmetry, Phys. Rev. D, Volume 87 (2013) no. 12

[36] A. Mazumdar; L. Wang CMB dipole asymmetry from a fast roll phase, J. Cosmol. Astropart. Phys., Volume 1310 (2013)

[37] S.M. Carroll; C.-Y. Tseng; M.B. Wise Translational invariance and the anisotropy of the cosmic microwave background, Phys. Rev. D, Volume 81 (2010)

[38] F. Schmidt; L. Hui Cosmic microwave background power asymmetry from non-Gaussian modulation, Phys. Rev. Lett., Volume 110 (2013) (Erratum Phys. Rev. Lett., 110, 2013, 059902)

[39] F. Schmidt; M. Kamionkowski Halo clustering with non-local non-gaussianity, Phys. Rev. D, Volume 82 (2010)

[40] R.M. Wald Asymptotic behavior of homogeneous cosmological models in the presence of a positive cosmological constant, Phys. Rev. D, Volume 28 (1983), pp. 2118-2120

[41] M.-a. Watanabe; S. Kanno; J. Soda Inflationary universe with anisotropic hair, Phys. Rev. Lett., Volume 102 (2009)

[42] S. Yokoyama; J. Soda Primordial statistical anisotropy generated at the end of inflation, J. Cosmol. Astropart. Phys., Volume 0808 (2008)

[43] L.H. Ford Inflation driven by a vector field, Phys. Rev. D, Volume 40 (1989), p. 967

[44] A. Golovnev; V. Mukhanov; V. Vanchurin Vector inflation, J. Cosmol. Astropart. Phys., Volume 0806 (2008)

[45] T. Koivisto; D.F. Mota Vector field models of inflation and dark energy, J. Cosmol. Astropart. Phys., Volume 0808 (2008)

[46] G. Esposito-Farese; C. Pitrou; J.-P. Uzan Vector theories in cosmology, Phys. Rev. D, Volume 81 (2010)

[47] J. Martin; J. Yokoyama Generation of large-scale magnetic fields in single-field inflation, J. Cosmol. Astropart. Phys., Volume 0801 (2008)

[48] P. Fleury; J.P.B. Almeida; C. Pitrou; J.-P. Uzan On the stability and causality of scalar-vector theories, J. Cosmol. Astropart. Phys., Volume 1411 (2014) no. 11

[49] J.P. Mimoso; P. Crawford Shear – free anisotropic cosmological models, Class. Quantum Gravity, Volume 10 (1993), pp. 315-326

[50] A. Abebe, D. Momeni, R. Myrzakulov, Shear-free anisotropic cosmological models in f(R) gravity, 2015.

[51] J.D. Barrow Cosmological limits on slightly skew stresses, Phys. Rev. D, Volume 55 (1997), pp. 7451-7460

[52] J.D. Barrow; R. Maartens Anisotropic stresses in inhomogeneous universes, Phys. Rev. D, Volume 59 (1999)

[53] G.F. Ellis; R. Maartens; M.A. MacCallum Relativistic Cosmology, Cambridge University Press, 2012

[54] S. Carneiro; G.A. Mena Marugan Anisotropic cosmologies containing isotropic background radiation, Phys. Rev. D, Volume 64 (2001)

[55] T.S. Pereira; S. Carneiro; G.A.M. Marugan Inflationary perturbations in anisotropic, shear-free universes, J. Cosmol. Astropart. Phys., Volume 1205 (2012)

[56] T.S. Pereira; G.A.M. Marugán; S. Carneiro Cosmological signatures of anisotropic spatial curvature, J. Cosmol. Astropart. Phys., Volume 1507 (2015)

[57] D.H. Lyth; A. Woszczyna Large scale perturbations in the open universe, Phys. Rev. D, Volume 52 (1995), pp. 3338-3357

[58] J. Garcia-Bellido; A.R. Liddle; D.H. Lyth; D. Wands The open universe Grishchuk–Zeldovich effect, Phys. Rev. D, Volume 52 (1995), pp. 6750-6759

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Inflation in the standard cosmological model

Jean-Philippe Uzan

C. R. Phys (2015)


Causal structures in inflation

George F.R. Ellis; Jean-Philippe Uzan

C. R. Phys (2015)


Bouncing alternatives to inflation

Marc Lilley; Patrick Peter

C. R. Phys (2015)