Comptes Rendus
Testing quantum gravity with cosmology / Tester les théories de la gravitation quantique à l'aide de la cosmologie
Evolution of universes in causal set cosmology
[Évolution des univers en cosmologie des ensembles causaux]
Comptes Rendus. Physique, Volume 18 (2017) no. 3-4, pp. 246-253.

L'application de l'approche des ensembles causaux au problème de la gravitation quantique est basée sur l'hypothèse que l'espace-temps est fondamentalement discret. Le caractère discret de l'espace-temps ouvre la voie à de nouveaux types de lois dynamiques pour la cosmologie, et les modèles de croissance séquentielle classique (CSG) de Rideout et Sorkin constituent une classe intéressante de lois de ce type. Il a été démontré qu'une renormalisation des paramètres dynamiques du modèle CSG survient à chaque fois que l'univers subit un rebond de Big Crunch–Big Bang. Nous proposons dans cet article un moyen de modéliser la création d'un nouvel univers après la singularité d'un trou noir. Nous montrons que la renormalisation des paramètres dynamiques se produit dans un modèle CSG après un tel événement de création. Nous spéculons sur le fait que cela pourrait réaliser certains aspects de la sélection naturelle cosmologique proposée par Smolin.

The causal set approach to the problem of quantum gravity is based on the hypothesis that spacetime is fundamentally discrete. Spacetime discreteness opens the door to novel types of dynamical law for cosmology and the Classical Sequential Growth (CSG) models of Rideout and Sorkin form an interesting class of such laws. It has been shown that a renormalisation of the dynamical parameters of a CSG model occurs whenever the universe undergoes a Big Crunch–Big Bang bounce. In this paper we propose a way to model the creation of a new universe after the singularity of a black hole. We show that renormalisation of dynamical parameters occurs in a CSG model after such a creation event. We speculate that this could realise aspects of Smolin's Cosmological Natural Selection proposal.

Publié le :
DOI : 10.1016/j.crhy.2017.03.002
Keywords: Quantum gravity, Causal sets, Cosmology
Mot clés : Gravitation quantique, Ensembles causaux, Cosmologie
Fay Dowker 1 ; Stav Zalel 1

1 Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2AZ, UK
@article{CRPHYS_2017__18_3-4_246_0,
     author = {Fay Dowker and Stav Zalel},
     title = {Evolution of universes in causal set cosmology},
     journal = {Comptes Rendus. Physique},
     pages = {246--253},
     publisher = {Elsevier},
     volume = {18},
     number = {3-4},
     year = {2017},
     doi = {10.1016/j.crhy.2017.03.002},
     language = {en},
}
TY  - JOUR
AU  - Fay Dowker
AU  - Stav Zalel
TI  - Evolution of universes in causal set cosmology
JO  - Comptes Rendus. Physique
PY  - 2017
SP  - 246
EP  - 253
VL  - 18
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crhy.2017.03.002
LA  - en
ID  - CRPHYS_2017__18_3-4_246_0
ER  - 
%0 Journal Article
%A Fay Dowker
%A Stav Zalel
%T Evolution of universes in causal set cosmology
%J Comptes Rendus. Physique
%D 2017
%P 246-253
%V 18
%N 3-4
%I Elsevier
%R 10.1016/j.crhy.2017.03.002
%G en
%F CRPHYS_2017__18_3-4_246_0
Fay Dowker; Stav Zalel. Evolution of universes in causal set cosmology. Comptes Rendus. Physique, Volume 18 (2017) no. 3-4, pp. 246-253. doi : 10.1016/j.crhy.2017.03.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2017.03.002/

[1] Rūmī: Poet and Mystic (1207–1273), George Allen and Unwin Ltd., London, 1950

[2] L. Bombelli; J.-H. Lee; D. Meyer; R. Sorkin Space–time as a causal set, Phys. Rev. Lett., Volume 59 (1987), p. 521 http://inspirehep.net/record/21718

[3] R.D. Sorkin First steps with causal sets, Capri, Italy, September 1990 (R. Cianci; R. de Ritis; M. Francaviglia; G. Marmo; C. Rubano; P. Scudellaro, eds.), World Scientific, Singapore (1991), pp. 68-90 www.perimeterinstitute.ca/personal/rsorkin/some.papers/65.capri.pdf

[4] R.D. Sorkin Space-time and causal sets, Cocoyoc, Mexico, December 1990 (J.C. D'Olivo; E. Nahmad-Achar; M. Rosenbaum; M.P. Ryan; L.F. Urrutia; F. Zertuche, eds.), World Scientific, Singapore (1991), pp. 150-173 www.perimeterinstitute.ca/personal/rsorkin/some.papers/66.cocoyoc.pdf

[5] R. Penrose Techniques of Differential Topology in Relativity, SIAM, Philadelphia, PA, USA, 1972

[6] S.W. Hawking; A.R. King; P.J. McCarthy A new topology for curved space–time which incorporates the causal, differential, and conformal structures, J. Math. Phys., Volume 17 (1976), pp. 174-181

[7] S.W. Hawking; G.F.R. Ellis The Large Scale Structure of Space–Time, Cambridge University Press, Cambridge, UK, 1973

[8] D. Rideout; R. Sorkin Evidence for a continuum limit in causal set dynamics, Phys. Rev. D, Volume 63 (2001) | arXiv | DOI

[9] J. Myrheim, Statistical geometry, CERN preprint TH-2538, 1978.

[10] G. 't Hooft Quantum gravity: a fundamental problem and some radical ideas (M. Levy; S. Deser, eds.), Recent Developments in Gravitation, Proceedings of the 1978 Cargese Summer Institute, Plenum, New York, 1979

[11] D. Reid Discrete quantum gravity and causal sets, Can. J. Phys., Volume 79 (2001), pp. 1-16

[12] F. Dowker Causal sets as discrete spacetime, Contemp. Phys., Volume 47 (2006) no. 1, pp. 1-9

[13] R.D. Sorkin Forks in the road, on the way to quantum gravity, Int. J. Theor. Phys., Volume 36 (1997), pp. 2759-2781 | arXiv

[14] M. Ahmed; S. Dodelson; P.B. Greene; R. Sorkin Everpresent lambda, Phys. Rev. D, Volume 69 (2004) | arXiv

[15] M. Ahmed; R. Sorkin Everpresent lambda – II: structural stability, Phys. Rev. D, Volume 87 (2013) | arXiv | DOI

[16] J.D. Barrow A strong constraint on ever-present lambda, Phys. Rev. D, Volume 75 (2007) | arXiv | DOI

[17] J.A. Zuntz The cosmic microwave background in a causal set universe, Phys. Rev. D, Volume 77 (2008) | arXiv | DOI

[18] A. Font-Ribera et al. Quasar-Lyman α forest cross-correlation from BOSS DR11: baryon acoustic oscillations, J. Cosmol. Astropart. Phys., Volume 1405 (2014) | arXiv | DOI

[19] T. Delubac et al. Baryon acoustic oscillations in the Lyα forest of BOSS DR11 quasars, Astron. Astrophys., Volume 574 (2015) | arXiv | DOI

[20] L. Smolin Did the universe evolve?, Class. Quantum Gravity, Volume 9 (1992) no. 1, pp. 173-191

[21] R.D. Sorkin Causal Sets: Discrete Gravity (Notes for the Valdivia summer school) | arXiv

[22] D. Rideout; R. Sorkin Classical sequential growth dynamics for causal sets, Phys. Rev. D, Volume 61 (1999)

[23] R.D. Sorkin Indications of causal set cosmology, Int. J. Theor. Phys., Volume 39 (2000), pp. 1731-1736 | arXiv | DOI

[24] N. Alon; B. Bollobás; G. Brightwell; S. Janson Linear extensions of a random partial order, Ann. Appl. Probab., Volume 4 (1994) no. 1, pp. 108-123

[25] G. Brightwell, Talk at ‘Causets at DIAS II,’ Dublin Institute for Advanced Study, Dublin, Ireland, 14–18 December 2009.

[26] X. Martin; D. O'Connor; D.P. Rideout; R.D. Sorkin On the ‘renormalization’ transformations induced by cycles of expansion and contraction in causal set cosmology, Phys. Rev. D, Volume 63 (2001) | arXiv

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Testing different approaches to quantum gravity with cosmology: An overview

Aurélien Barrau

C. R. Phys (2017)


Causal structures in inflation

George F.R. Ellis; Jean-Philippe Uzan

C. R. Phys (2015)


Inflation in the standard cosmological model

Jean-Philippe Uzan

C. R. Phys (2015)