[Dépôt spatial par couche atomique : un outil émergeant pour les matériaux pour l'énergie. Application aux composants photovoltaïques de nouvelle génération et aux matériaux transparents et conducteurs]
Les propriétés des matériaux constituent la pierre angulaire des dispositifs fonctionnels pour l'énergie, et cela concerne aussi bien la conversion, la récupération ou le stockage d'énergie. De façon à concevoir et fabriquer des nouveaux matériaux pour l'énergie à l'échelle industrielle, il est nécessaire de développer des méthodes de dépôt appropriées et accessibles à des prix abordables. Au cours des dernières années, une nouvelle approche du dépôt par couche atomique (ALD) a suscité un intérêt croissant. Cette approche repose sur la séparation des précurseurs dans l'espace plutôt que dans le temps lors du dépôt par couches atomiques, et a donc été appelée Spatial ALD (SALD). La méthode SALD permet d'éviter les étapes de purge typiques de l'ALD, et, par conséquent, les taux de dépôt de couches sont bien plus rapides, jusqu'à deux ordres de grandeur. De plus, le dépôt par SALD peut être facilement effectué à l'atmosphère ambiante. La mise en œuvre du SALD est donc plus facile et moins coûteuse que celle de l'ALD conventionnelle, ouvrant ainsi la possibilité de son application industrielle au dépôt de matériaux pour l'énergie, et notamment à des domaines tels que l'énergie solaire, le stockage énergétique ou les fenêtres intelligentes. Nous présentons ici la description de la méthode de dépôt SALD et l'illustrons avec des exemples appliqués au photovoltaïque et aux matériaux conducteurs transparents. Nous montrons notamment que la SALD est capable de produire des couches minces de la même qualité que par ALD classique, et qu'elle est donc parfaitement adaptée pour une intégration à l'échelle industrielle.
Materials properties are the keystone of functional devices for energy including energy conversion, harvesting or storage. But to market new energy materials, the development of suitable processing methods allowing affordable prices is needed. Recently, a new approach to atomic layer deposition (ALD) has gained much momentum. This alternative approach is based on separating the precursors in space rather than in time, and has therefore been called Spatial ALD (SALD). With SALD, the purge steps typical of ALD are not needed and thus deposition rates a hundred times faster are achievable. Additionally, SALD can be easily performed at ambient atmosphere, thus it is easier and cheaper to scale up than conventional ALD. This opens the door to widespread industrial application of ALD for the deposition of energy materials for applications including solar energy, energy storage, or smart windows. SALD is presented here and examples of application to photovoltaics and transparent conductive materials are given. We show that SALD is capable of producing high-quality films fully suited for device integration.
Mots-clés : Dépôt par couche atomique spatial, Couches minces, Matériau transparent conducteur, Dépôt conforme, Applications à l'énergie
David Muñoz-Rojas 1 ; Viet Huong Nguyen 1 ; César Masse de la Huerta 1 ; Sara Aghazadehchors 1 ; Carmen Jiménez 1 ; Daniel Bellet 1
@article{CRPHYS_2017__18_7-8_391_0, author = {David Mu\~noz-Rojas and Viet Huong Nguyen and C\'esar Masse de la Huerta and Sara Aghazadehchors and Carmen Jim\'enez and Daniel Bellet}, title = {Spatial {Atomic} {Layer} {Deposition} {(SALD),} an emerging tool for energy materials. {Application} to new-generation photovoltaic devices and transparent conductive materials}, journal = {Comptes Rendus. Physique}, pages = {391--400}, publisher = {Elsevier}, volume = {18}, number = {7-8}, year = {2017}, doi = {10.1016/j.crhy.2017.09.004}, language = {en}, }
TY - JOUR AU - David Muñoz-Rojas AU - Viet Huong Nguyen AU - César Masse de la Huerta AU - Sara Aghazadehchors AU - Carmen Jiménez AU - Daniel Bellet TI - Spatial Atomic Layer Deposition (SALD), an emerging tool for energy materials. Application to new-generation photovoltaic devices and transparent conductive materials JO - Comptes Rendus. Physique PY - 2017 SP - 391 EP - 400 VL - 18 IS - 7-8 PB - Elsevier DO - 10.1016/j.crhy.2017.09.004 LA - en ID - CRPHYS_2017__18_7-8_391_0 ER -
%0 Journal Article %A David Muñoz-Rojas %A Viet Huong Nguyen %A César Masse de la Huerta %A Sara Aghazadehchors %A Carmen Jiménez %A Daniel Bellet %T Spatial Atomic Layer Deposition (SALD), an emerging tool for energy materials. Application to new-generation photovoltaic devices and transparent conductive materials %J Comptes Rendus. Physique %D 2017 %P 391-400 %V 18 %N 7-8 %I Elsevier %R 10.1016/j.crhy.2017.09.004 %G en %F CRPHYS_2017__18_7-8_391_0
David Muñoz-Rojas; Viet Huong Nguyen; César Masse de la Huerta; Sara Aghazadehchors; Carmen Jiménez; Daniel Bellet. Spatial Atomic Layer Deposition (SALD), an emerging tool for energy materials. Application to new-generation photovoltaic devices and transparent conductive materials. Comptes Rendus. Physique, Demain l’énergie, Volume 18 (2017) no. 7-8, pp. 391-400. doi : 10.1016/j.crhy.2017.09.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2017.09.004/
[1] The role of buffer layers in polymer solar cells, Energy Environ. Sci., Volume 4 (2011), pp. 285-310 | DOI
[2] Interface materials for organic solar cells, J. Mater. Chem., Volume 20 (2010), pp. 2499-2512 | DOI
[3] a-Si:H/c-Si Heterojunction solar cells: a smart choice for high efficiency solar cells (W.G.J.H.M. van Sark; L. Korte; F. Roca, eds.), Physics and Technology of Amorphous–Crystalline Heterostructure Silicon Solar Cells, Springer-Verlag, Berlin, Heidelberg, 2012, pp. 549-572
[4] Transparent conducting oxides for photovoltaics: manipulation of Fermi level, work function and energy band alignment, Materials, Volume 3 (2010), pp. 4892-4914 | DOI
[5] Nano energy new insight into atomic-scale engineering of electrode surface for long-life and safe high voltage lithium ion cathodes, Nano Energy, Volume 38 (2017), pp. 19-27 | DOI
[6] Recent advances in atomic layer deposition, Chem. Mater., Volume 28 (2016), pp. 1943-1947 | DOI
[7] Atomic layer deposition of nanostructured materials for energy and environmental applications, Adv. Mater., Volume 3 (2016) | DOI
[8] Chemical Vapour Deposition (A.C. Jones; M.L. Hitchman, eds.), Royal Society of Chemistry, Cambridge, 2008 (ISBN: 978-0-85404-465-8)
[9] Atomic layer deposition (ALD): from precursors to thin film structures, Thin Solid Films, Volume 409 (2002), pp. 138-146 | DOI
[10] Surface chemistry for molecular layer deposition of organic and hybrid organic–inorganic polymers, Acc. Chem. Res., Volume 42 (2009), pp. 498-508
[11] Atomic layer deposition: an overview, Chem. Rev., Volume 110 (2010), pp. 111-131 | DOI
[12] T.S. Suntola, J. Antson, Method for producing compound thin films 1977, US Patent 4,058,430.
[13] Stable ZnO thin film transistors by fast open air atomic layer deposition, Appl. Phys. Lett., Volume 92 (2008) | DOI
[14] D.H. Levy, Process for atomic layer deposition, US 7,413,982 B2, 2008.
[15] Spatial atomic layer deposition: a route towards further industrialization of atomic layer deposition, J. Vac. Sci. Technol., A, Vac. Surf. Films, Volume 30 (2012) | DOI
[16] Dépôt par couche atomique spatiale (SALD), Techniques de l'Ingenieur (2016), pp. 1-10
[17] Spatial atomic layer deposition of ZnO/TiO2 nanolaminates, J. Vac. Sci. Technol., A, Vac. Surf. Films, Volume 34 (2016) | DOI
[18] Evaluating operating conditions for continuous atmospheric atomic layer deposition using a multiple slit gas source head, J. Vac. Sci. Technol., A, Vac. Surf. Films, Volume 30 (2012) | DOI
[19] Deposition of ZnO based thin films by atmospheric pressure spatial atomic layer deposition for application in solar cells, J. Renew. Sustain. Energy, Volume 9 (2017) | DOI
[20] Atmospheric pressure spatial atomic layer deposition web coating with in situ monitoring of film thickness, J. Vac. Sci. Technol., A, Vac. Surf. Films, Volume 32 (2014) | DOI
[21] Diffusion coefficients of some organic and other vapors in air, Anal. Chem., Volume 40 (1968), pp. 1072-1077 | DOI
[22] Synthesis and modeling of uniform complex metal oxides by close-proximity atmospheric pressure chemical vapor deposition, ACS Appl. Mater. Interfaces, Volume 7 (2015) no. 20, pp. 10684-10694 | DOI
[23] Rapid open-air deposition of uniform, nanoscale, functional coatings on nanorod arrays, Nanoscale Horiz., Volume 2 (2017), pp. 110-117 | DOI
[24] Metal-oxide thin-film transistors patterned by printing, Appl. Phys. Lett., Volume 103 (2013) | DOI
[25] Selective area spatial atomic layer deposition of ZnO, Al2O3, and aluminum-doped ZnO using poly(vinyl pyrrolidone), Chem. Mater., Volume 26 (2014), pp. 1514-1522 | DOI
[26] Design freedom in multilayer thin-film devices, ACS Appl. Mater. Interfaces, Volume 7 (2015), pp. 4675-4684 | DOI
[27] Improving yield and performance in ZnO thin-film transistors made using selective area deposition, ACS Appl. Mater. Interfaces, Volume 7 (2015), pp. 2754-2759 | DOI
[28] High-speed spatial atomic-layer deposition of aluminum oxide layers for solar cell passivation, Adv. Mater., Volume 22 (2010), pp. 3564-3567 | DOI
[29] Recent advances in atmospheric vapor-phase deposition of transparent and conductive zinc oxide, Chem. Vap. Depos., Volume 20 (2014), pp. 234-242 | DOI
[30] Atmospheric spatial atomic layer deposition of in-doped ZnO, ECS J. Solid State Sci. Technol., Volume 3 (2014), p. P111-P114 | DOI
[31] (Invited) spatial atomic layer deposition of transparent conductive oxides, ECS Trans., Volume 58 (2013), pp. 105-110 | DOI
[32] Spatial atmospheric atomic layer deposition of AlxZn1 − xO, ACS Appl. Mater. Interfaces, Volume 5 (2013), pp. 13124-13128 | DOI
[33] Growth of 5 cm2 V • 1s • 1 mobility, p-type copper (I) oxide (Cu2O) films by fast atmospheric atomic layer deposition (AALD) at 225 °C and below, AIP Adv., Volume 2 (2012) | DOI
[34] High-speed atmospheric atomic layer deposition of ultra thin amorphous TiO2 blocking layers at 100 °C for inverted bulk heterojunction solar cells, Prog. Photovolt., Volume 21 (2013), pp. 393-400 | DOI
[35] High performance inverted bulk heterojunction solar cells by incorporation of dense, thin ZnO layers made using atmospheric atomic layer deposition, Sol. Energy Mater. Sol. Cells, Volume 116 (2013), pp. 197-202 | DOI
[36] Influence of an inorganic interlayer on exciton separation in hybrid solar cells, ACS Nano, Volume 9 (2015), pp. 11863-11871 | DOI
[37] Novel atmospheric growth technique to improve both light absorption and charge collection in ZnO/Cu2O thin film solar cells, Adv. Funct. Mater., Volume 23 (2013), pp. 3413-3419 | DOI
[38] Spatial atmospheric atomic layer deposition: a new laboratory and industrial tool for low-cost photovoltaics, Mater. Horizons, Volume 1 (2014), pp. 314-320 | DOI
[39] Transparent conducting oxide semiconductors for transparent electrodes, Semicond. Sci. Technol., Volume 20 (2005), p. S35-S44 | DOI
[40] Past achievements and future challenges in the development of optically transparent electrodes, Nat. Photonics, Volume 6 (2012), pp. 809-817 | DOI
[41] Transparent electrodes for organic optoelectronic devices: a review, J. Photonics Energy, Volume 4 (2014) | DOI
[42] Silver nanowire networks: physical properties and potential integration in solar cells, Sol. Energy Mater. Sol. Cells, Volume 125 (2014), pp. 318-324 | DOI
[43] Past achievements and future challenges in the development of optically transparent electrodes, Nat. Photonics, Volume 6 (2012), pp. 808-816 | DOI
[44] High performance ZnO–SnO2:F nanocomposite transparent electrodes for energy applications, ACS Appl. Mater. Interfaces, Volume 6 (2014), pp. 14096-14107 | DOI
[45] et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%, Nat. Energy (2017)
[46] Influence of ITO deposition and post annealing on HIT solar cell structures, Energy Proc., Volume 8 (2011), pp. 207-213 | DOI
[47] Flexible transparent conductive materials based on silver nanowire networks: a review, Nanotechnology, Volume 24 (2013) | DOI
[48] Metallic nanowire-based transparent electrodes for next generation flexible devices: a review, Small, Volume 12 (2016), pp. 6052-6075 | DOI
[49] Optimization of silver nanowire-based transparent electrodes: effects of density, size and thermal annealing, Nanoscale, Volume 7 (2015), pp. 17410-17423 | DOI
[50] Failure of silver nanowire transparent electrodes under current flow, Nanoscale Res. Lett., Volume 8 (2013), pp. 1-6
[51] Metallic nanowire networks: effects of thermal annealing on electrical resistance, Nanoscale, Volume 6 (2014), pp. 13535-13543 | DOI
[52] Understanding the mechanisms leading to failure in metallic nanowire-based transparent heaters, and solution for stability enhancement, Nanotechnology, Volume 28 (2017) | DOI
[53] Effects of gap size, temperature and pumping pressure on the fluid dynamics and chemical kinetics of in-line spatial atomic layer deposition of Al2O3, Int. J. Heat Mass Transf., Volume 96 (2016), pp. 189-198 | DOI
[54] Mechanistic modeling study on process optimization and precursor utilization with atmospheric spatial atomic layer deposition, J. Vac. Sci. Technol., A, Vac. Surf. Films, Volume 34 (2016) | DOI
[55] Nanomanufacturing: high-throughput, cost-effective deposition of atomic scale thin films via atmospheric pressure spatial atomic layer deposition, Chem. Mater., Volume 28 (2016), pp. 8443-8452 | DOI
- TMDs Research with Atomic Layer Deposition (ALD) Technique, 2D Transition-Metal Dichalcogenides (TMDs): Fundamentals and Application (2025), p. 635 | DOI:10.1007/978-981-96-0247-6_9
- Functionalization of collagen fiber with nano-islands of silver via atomic layer deposition to promote bone healing, Heliyon, Volume 11 (2025) no. 3, p. e42177 | DOI:10.1016/j.heliyon.2025.e42177
- Enhancing electrochemical performance of Ni-rich cathodes for Li-ion batteries through spatial atomic layer deposition of ZnO coatings, Materials Chemistry and Physics, Volume 336 (2025), p. 130544 | DOI:10.1016/j.matchemphys.2025.130544
- Ceramic Nanofiltration Membranes: Creating Nanopores by Calcination of Atmospheric-Pressure Molecular Layer Deposition Grown Titanicone Layers, Membranes, Volume 15 (2025) no. 3, p. 86 | DOI:10.3390/membranes15030086
- Spatial Atomic Layer Deposition for Energy and Electronic Devices, PRX Energy, Volume 4 (2025) no. 1 | DOI:10.1103/prxenergy.4.017002
- , 2024 Portland International Conference on Management of Engineering and Technology (PICMET) (2024), p. 1 | DOI:10.23919/picmet64035.2024.10653447
- Silver Nanowire-Based Transparent Electrodes for V2O5 Thin Films with Electrochromic Properties, ACS Applied Materials Interfaces, Volume 16 (2024) no. 8, p. 10439 | DOI:10.1021/acsami.3c14419
- Combinatorial Optimization of Metal‐Insulator‐Insulator‐Metal (MIIM) Diodes With Thickness‐Gradient Films via Spatial Atomic Layer Deposition, Advanced Electronic Materials, Volume 10 (2024) no. 11 | DOI:10.1002/aelm.202400093
- Atomic/molecular layer deposition strategies for enhanced CO2 capture, utilisation and storage materials, Chemical Society Reviews, Volume 53 (2024) no. 11, p. 5428 | DOI:10.1039/d3cs00759f
- Preparation and Applications of Silicon and Silica Hybrid Materials, Hybrid-Nanomaterials (2024), p. 171 | DOI:10.1007/978-981-97-9022-7_9
- Low-temperature open-atmosphere growth of WO3 thin films with tunable and high-performance photoresponse, Journal of Materials Chemistry C, Volume 12 (2024) no. 13, p. 4779 | DOI:10.1039/d3tc02257a
- Impact of air exposure on growth rate and electrical properties of SnO2 thin films by atmospheric pressure spatial atomic layer deposition, Journal of Physics D: Applied Physics, Volume 57 (2024) no. 2, p. 025303 | DOI:10.1088/1361-6463/ad01c7
- Study on the fabrication of high-quality hafnium oxide thin films using spatial rotated atomic layer deposition and supercritical fluids treatment, Journal of Vacuum Science Technology A, Volume 42 (2024) no. 6 | DOI:10.1116/6.0004041
- Nano Horizons: Exploring the untapped power of two-Dimensional materials, Materials Science and Engineering: B, Volume 310 (2024), p. 117673 | DOI:10.1016/j.mseb.2024.117673
- Spatial atomic layer deposition of nitrogen-doped alumina thin films for high-performance perovskite solar cell encapsulation, Nano Energy, Volume 127 (2024), p. 109782 | DOI:10.1016/j.nanoen.2024.109782
- MoS2 thin film decorated TiO2 nanotube arrays on flexible Ti foil for solar water splitting application, Nano Express, Volume 5 (2024) no. 1, p. 015006 | DOI:10.1088/2632-959x/ad1694
- Exploring the degradation of silver nanowire networks under thermal stress by coupling in situ X-ray diffraction and electrical resistance measurements, Nanoscale, Volume 16 (2024) no. 2, p. 564 | DOI:10.1039/d3nr02663a
- Enhancing control in spatial atomic layer deposition: insights into precursor diffusion, geometric parameters, and CVD mitigation strategies, Nanotechnology, Volume 35 (2024) no. 20, p. 205601 | DOI:10.1088/1361-6528/ad28d6
- Effect of different oxygen precursors on alumina deposited using a spatial atomic layer deposition system for thin-film encapsulation of perovskite solar cells, Nanotechnology, Volume 35 (2024) no. 9, p. 095401 | DOI:10.1088/1361-6528/ad1059
- Zinc Oxide Thin Films: Synthesis and Photocatalytic Applications, Nanotechnology and Nanomaterials Annual Volume 2024 (2024) | DOI:10.5772/intechopen.115470
- Vapor-phase protective coatings for polymers: Advances and challenges in ALD and VPI technologies, Polymer Degradation and Stability, Volume 230 (2024), p. 111070 | DOI:10.1016/j.polymdegradstab.2024.111070
- Assessing the potential of non-pyrophoric Zn(DMP)2 for the fast deposition of ZnO functional coatings by spatial atomic layer deposition, RSC Applied Interfaces, Volume 1 (2024) no. 6, p. 1371 | DOI:10.1039/d4lf00160e
- Zinc Aluminum Oxide Encapsulation Layers for Perovskite Solar Cells Deposited Using Spatial Atomic Layer Deposition, Small Methods, Volume 8 (2024) no. 3 | DOI:10.1002/smtd.202300995
- Low‐Temperature Epitaxy of Perovskite WO3 Thin Films under Atmospheric Conditions, Small Structures, Volume 5 (2024) no. 7 | DOI:10.1002/sstr.202400089
- Enhancing Internal and External Stability of Perovskite Solar Cells Through Polystyrene Modification of the Perovskite and Rapid Open‐Air Deposition of ZnO/AlOx Nanolaminate Encapsulation, Solar RRL, Volume 8 (2024) no. 14 | DOI:10.1002/solr.202400111
- Enhancing colloid stability of polymer microspheres in water through SiO2 coating: Effects of coating cycles and surface coverage, Surfaces and Interfaces, Volume 45 (2024), p. 103852 | DOI:10.1016/j.surfin.2024.103852
- Comparative Study of the Environmental Impact of Depositing Al2O3 by Atomic Layer Deposition and Spatial Atomic Layer Deposition, ACS Sustainable Chemistry Engineering, Volume 11 (2023) no. 41, p. 15072 | DOI:10.1021/acssuschemeng.3c04135
- Stable Flexible Transparent Electrodes for Localized Heating of Lab‐on‐a‐Chip Devices, Advanced Materials Technologies, Volume 8 (2023) no. 1 | DOI:10.1002/admt.202200563
- Highly Transparent and Stable Flexible Electrodes Based on MgO/AgNW Nanocomposites for Transparent Heating Applications, Advanced Materials Technologies, Volume 8 (2023) no. 24 | DOI:10.1002/admt.202301143
- Atmospheric-pressure plasma-enhanced spatial atomic layer deposition of silicon nitride at low temperature, Atomic Layer Deposition, Volume 1 (2023), p. 1 | DOI:10.3897/aldj.1.101651
- Chemical synthesis of complex oxide thin films and freestanding membranes, Chemical Communications, Volume 59 (2023) no. 93, p. 13820 | DOI:10.1039/d3cc03030j
- Atmospheric-pressure atomic layer deposition: recent applications and new emerging applications in high-porosity/3D materials, Dalton Transactions, Volume 52 (2023) no. 30, p. 10254 | DOI:10.1039/d3dt01204b
- Synthesis of nanostructured materials via atomic and molecular layer deposition, Encyclopedia of Nanomaterials (2023), p. 2 | DOI:10.1016/b978-0-12-822425-0.00069-5
- Tuning the texture and polarity of ZnO thin films deposited by spatial atomic layer deposition through the addition of a volatile shape-directing agent, Materialia, Volume 30 (2023), p. 101822 | DOI:10.1016/j.mtla.2023.101822
- Generating colours through a novel approach based on spatial ALD and laser processing, Materials Today Advances, Volume 19 (2023), p. 100414 | DOI:10.1016/j.mtadv.2023.100414
- Manufacturing of quantum-tunneling MIM nanodiodes via rapid atmospheric CVD in terahertz band, Scientific Reports, Volume 13 (2023) no. 1 | DOI:10.1038/s41598-023-47775-5
- Review of photocatalytic ZnO nanomaterials made by atomic layer deposition, Surfaces and Interfaces, Volume 40 (2023), p. 103094 | DOI:10.1016/j.surfin.2023.103094
- Time of Failure of Metallic Nanowire Networks under Coupled Electrical and Thermal Stress: Implications for Transparent Electrodes Lifetime, ACS Applied Nano Materials, Volume 5 (2022) no. 2, p. 2102 | DOI:10.1021/acsanm.1c03821
- Nanometric 3D Printing of Functional Materials by Atomic Layer Deposition, Advanced Additive Manufacturing (2022) | DOI:10.5772/intechopen.101859
- Recent Advances in Materials Design Using Atomic Layer Deposition for Energy Applications, Advanced Functional Materials, Volume 32 (2022) no. 3 | DOI:10.1002/adfm.202109105
- High‐Throughput Atomic Layer Deposition of P‐Type SnO Thin Film Transistors Using Tin(II)bis(tert‐amyloxide), Advanced Materials Interfaces, Volume 9 (2022) no. 9 | DOI:10.1002/admi.202101278
- Atmospheric atomic layer deposition of SnO2 thin films with tin(ii) acetylacetonate and water, Dalton Transactions, Volume 51 (2022) no. 24, p. 9278 | DOI:10.1039/d2dt01427k
- Recent Advances in Theoretical Development of Thermal Atomic Layer Deposition: A Review, Nanomaterials, Volume 12 (2022) no. 5, p. 831 | DOI:10.3390/nano12050831
- Advances in Flexible Metallic Transparent Electrodes, Small, Volume 18 (2022) no. 19 | DOI:10.1002/smll.202106006
- Additive Manufacturing in Atomic Layer Processing Mode, Small Methods, Volume 6 (2022) no. 5 | DOI:10.1002/smtd.202101546
- Spatial ALD of Al2O3 and ZnO using heavy water, Surface and Coatings Technology, Volume 441 (2022), p. 128456 | DOI:10.1016/j.surfcoat.2022.128456
- High performance encapsulation of transparent conductive polymers by spatial atomic layer deposition, Synthetic Metals, Volume 284 (2022), p. 116995 | DOI:10.1016/j.synthmet.2021.116995
- Real-Time In Situ Parallel Detection of Elements and Molecules with TOFMS during ALD for Chemical Quality Control of Thin Films, The Journal of Physical Chemistry C, Volume 126 (2022) no. 4, p. 1901 | DOI:10.1021/acs.jpcc.1c09544
- Nanofabrication via Maskless Localized Atomic Layer Deposition of Patterned Nanoscale Metal Oxide Films, ACS Applied Nano Materials, Volume 4 (2021) no. 11, p. 11980 | DOI:10.1021/acsanm.1c02550
- Atomic layer deposition in the development of supercapacitor and lithium-ion battery devices, Carbon, Volume 179 (2021), p. 299 | DOI:10.1016/j.carbon.2021.03.041
- Impact of precursor exposure on process efficiency and film properties in spatial atomic layer deposition, Chemical Engineering Journal, Volume 403 (2021), p. 126234 | DOI:10.1016/j.cej.2020.126234
- Density Functional Theory (DFT)-enhanced computational fluid dynamics modeling of substrate movement and chemical deposition process in spatial atomic layer deposition, Chemical Engineering Science, Volume 234 (2021), p. 116447 | DOI:10.1016/j.ces.2021.116447
- Open-air printing of Cu2O thin films with high hole mobility for semitransparent solar harvesters, Communications Materials, Volume 2 (2021) no. 1 | DOI:10.1038/s43246-021-00181-8
- Atomic layer deposition (ALD) assisting the visibility of metal-organic frameworks (MOFs) technologies, Coordination Chemistry Reviews, Volume 430 (2021), p. 213734 | DOI:10.1016/j.ccr.2020.213734
- Variation of Oxygen Vacancy Defects in sALD-ZnO Films Annealed in an Oxygen-Rich Ambient, ECS Journal of Solid State Science and Technology, Volume 10 (2021) no. 1, p. 014003 | DOI:10.1149/2162-8777/abd881
- Computational fluid dynamics modeling of a new high-pressure chemical vapor deposition reactor design, Journal of Crystal Growth, Volume 566-567 (2021), p. 126155 | DOI:10.1016/j.jcrysgro.2021.126155
- Immobilization of ZnO thin films onto fibrous glass substrates via atomic layer deposition and investigation of photocatalytic activity, Journal of Materials Science: Materials in Electronics, Volume 32 (2021) no. 22, p. 27027 | DOI:10.1007/s10854-021-07075-y
- Effect of oxygen annealing temperature on properties of spatial atomic layer deposited aluminum-doped zinc oxide films, Materials Science in Semiconductor Processing, Volume 133 (2021), p. 105929 | DOI:10.1016/j.mssp.2021.105929
- Strategies and implications of atomic layer deposition in photoelectrochemical water splitting: Recent advances and prospects, Nano Energy, Volume 83 (2021), p. 105802 | DOI:10.1016/j.nanoen.2021.105802
- Advanced Atomic Layer Deposition Technologies for Micro-LEDs and VCSELs, Nanoscale Research Letters, Volume 16 (2021) no. 1 | DOI:10.1186/s11671-021-03623-x
- Effects of non-homogeneity and oxide coating on silver nanowire networks under electrical stress: comparison between experiment and modeling, Nanotechnology, Volume 32 (2021) no. 44, p. 445702 | DOI:10.1088/1361-6528/ac1632
- Metastable Atomic Layer Deposition: 3D Self-Assembly toward Ultradark Materials, ACS Nano, Volume 14 (2020) no. 11, p. 15023 | DOI:10.1021/acsnano.0c04974
- Transparent Heaters: A Review, Advanced Functional Materials, Volume 30 (2020) no. 21 | DOI:10.1002/adfm.201910225
- Gas‐Phase 3D Printing of Functional Materials, Advanced Materials Technologies, Volume 5 (2020) no. 12 | DOI:10.1002/admt.202000657
- A carbene stabilized precursor for the spatial atomic layer deposition of copper thin films, Chemical Communications, Volume 56 (2020) no. 89, p. 13752 | DOI:10.1039/d0cc05781a
- Atmospheric Plasma-Enhanced Spatial Chemical Vapor Deposition of SiO2 Using Trivinylmethoxysilane and Oxygen Plasma, Chemistry of Materials, Volume 32 (2020) no. 12, p. 5153 | DOI:10.1021/acs.chemmater.0c01148
- Metal oxides and metal thin films by atomic layer deposition (ALD), liquid-ALD, and successive ionic layer adsorption and reaction methods for THR applications, Energy Saving Coating Materials (2020), p. 153 | DOI:10.1016/b978-0-12-822103-7.00007-8
- Atomic Layer Deposition of Two-Dimensional Layered Materials: Processes, Growth Mechanisms, and Characteristics, Matter, Volume 2 (2020) no. 3, p. 587 | DOI:10.1016/j.matt.2019.12.026
- In-situ observation of nucleation and property evolution in films grown with an atmospheric pressure spatial atomic layer deposition system, Nano Express, Volume 1 (2020) no. 1, p. 010045 | DOI:10.1088/2632-959x/ab976c
- Metallic Nanowire Percolating Network: From Main Properties to Applications, Smart Nanosystems for Biomedicine, Optoelectronics and Catalysis (2020) | DOI:10.5772/intechopen.89281
- Short‐Channel Vertical Organic Field‐Effect Transistors with High On/Off Ratios, Advanced Electronic Materials, Volume 5 (2019) no. 5 | DOI:10.1002/aelm.201900041
- Quantum‐Tunneling Metal‐Insulator‐Metal Diodes Made by Rapid Atmospheric Pressure Chemical Vapor Deposition, Advanced Functional Materials, Volume 29 (2019) no. 7 | DOI:10.1002/adfm.201805533
- The Role of Humidity in Tuning the Texture and Electrical Properties of Cu2O Thin Films Deposited via Aerosol‐Assisted CVD, Advanced Materials Interfaces, Volume 6 (2019) no. 3 | DOI:10.1002/admi.201801364
- Atmospheric Pressure Spatial Atomic Layer Deposited Metal Oxides for Thin Film Solar Cells, Advanced Micro- and Nanomaterials for Photovoltaics (2019), p. 245 | DOI:10.1016/b978-0-12-814501-2.00010-4
- Spatial Atomic Layer Deposition, Chemical Vapor Deposition for Nanotechnology (2019) | DOI:10.5772/intechopen.82439
- Numerical study on the effectiveness of precursor isolation using N2 as gas barrier in spatial atomic layer deposition, International Journal of Heat and Mass Transfer, Volume 144 (2019), p. 118642 | DOI:10.1016/j.ijheatmasstransfer.2019.118642
- A critical review of reactive vapor deposition for conjugated polymer synthesis, Journal of Materials Chemistry C, Volume 7 (2019) no. 24, p. 7159 | DOI:10.1039/c9tc01388a
- Development and characterization of an atmospheric pressure plasma reactor compatible with spatial ALD, Journal of Physics: Conference Series, Volume 1243 (2019) no. 1, p. 012002 | DOI:10.1088/1742-6596/1243/1/012002
- ZnO based nanowire network for gas sensing applications, Materials Research Express, Volume 6 (2019) no. 8, p. 084004 | DOI:10.1088/2053-1591/ab1f60
- Low-cost fabrication of flexible transparent electrodes based on Al doped ZnO and silver nanowire nanocomposites: impact of the network density, Nanoscale, Volume 11 (2019) no. 25, p. 12097 | DOI:10.1039/c9nr02664a
- Versatility of bilayer metal oxide coatings on silver nanowire networks for enhanced stability with minimal transparency loss, Nanoscale, Volume 11 (2019) no. 42, p. 19969 | DOI:10.1039/c9nr05658k
- New development of atomic layer deposition: processes, methods and applications, Science and Technology of Advanced Materials, Volume 20 (2019) no. 1, p. 465 | DOI:10.1080/14686996.2019.1599694
- Stability Enhancement of Silver Nanowire Networks with Conformal ZnO Coatings Deposited by Atmospheric Pressure Spatial Atomic Layer Deposition, ACS Applied Materials Interfaces, Volume 10 (2018) no. 22, p. 19208 | DOI:10.1021/acsami.8b03079
- Increasing the Electron Mobility of ZnO-Based Transparent Conductive Films Deposited by Open-Air Methods for Enhanced Sensing Performance, ACS Applied Nano Materials, Volume 1 (2018) no. 12, p. 6922 | DOI:10.1021/acsanm.8b01745
- Influence of the Geometric Parameters on the Deposition Mode in Spatial Atomic Layer Deposition: A Novel Approach to Area-Selective Deposition, Coatings, Volume 9 (2018) no. 1, p. 5 | DOI:10.3390/coatings9010005
- A Study on the Organic-Inorganic Multilayer Barrier Thin Films Using R2R Low-Temperature Atmospheric-Pressure Atomic Layer Deposition System, Journal of the Korean Society of Manufacturing Process Engineers, Volume 17 (2018) no. 3, p. 51 | DOI:10.14775/ksmpe.2018.17.3.051
- Electron tunneling through grain boundaries in transparent conductive oxides and implications for electrical conductivity: the case of ZnO:Al thin films, Materials Horizons, Volume 5 (2018) no. 4, p. 715 | DOI:10.1039/c8mh00402a
- Highly Efficient and Stable Semi‐Transparent p‐i‐n Planar Perovskite Solar Cells by Atmospheric Pressure Spatial Atomic Layer Deposited ZnO, Solar RRL, Volume 2 (2018) no. 10 | DOI:10.1002/solr.201800147
Cité par 88 documents. Sources : Crossref
Commentaires - Politique