[Dépôt spatial par couche atomique : un outil émergeant pour les matériaux pour l'énergie. Application aux composants photovoltaïques de nouvelle génération et aux matériaux transparents et conducteurs]
Les propriétés des matériaux constituent la pierre angulaire des dispositifs fonctionnels pour l'énergie, et cela concerne aussi bien la conversion, la récupération ou le stockage d'énergie. De façon à concevoir et fabriquer des nouveaux matériaux pour l'énergie à l'échelle industrielle, il est nécessaire de développer des méthodes de dépôt appropriées et accessibles à des prix abordables. Au cours des dernières années, une nouvelle approche du dépôt par couche atomique (ALD) a suscité un intérêt croissant. Cette approche repose sur la séparation des précurseurs dans l'espace plutôt que dans le temps lors du dépôt par couches atomiques, et a donc été appelée Spatial ALD (SALD). La méthode SALD permet d'éviter les étapes de purge typiques de l'ALD, et, par conséquent, les taux de dépôt de couches sont bien plus rapides, jusqu'à deux ordres de grandeur. De plus, le dépôt par SALD peut être facilement effectué à l'atmosphère ambiante. La mise en œuvre du SALD est donc plus facile et moins coûteuse que celle de l'ALD conventionnelle, ouvrant ainsi la possibilité de son application industrielle au dépôt de matériaux pour l'énergie, et notamment à des domaines tels que l'énergie solaire, le stockage énergétique ou les fenêtres intelligentes. Nous présentons ici la description de la méthode de dépôt SALD et l'illustrons avec des exemples appliqués au photovoltaïque et aux matériaux conducteurs transparents. Nous montrons notamment que la SALD est capable de produire des couches minces de la même qualité que par ALD classique, et qu'elle est donc parfaitement adaptée pour une intégration à l'échelle industrielle.
Materials properties are the keystone of functional devices for energy including energy conversion, harvesting or storage. But to market new energy materials, the development of suitable processing methods allowing affordable prices is needed. Recently, a new approach to atomic layer deposition (ALD) has gained much momentum. This alternative approach is based on separating the precursors in space rather than in time, and has therefore been called Spatial ALD (SALD). With SALD, the purge steps typical of ALD are not needed and thus deposition rates a hundred times faster are achievable. Additionally, SALD can be easily performed at ambient atmosphere, thus it is easier and cheaper to scale up than conventional ALD. This opens the door to widespread industrial application of ALD for the deposition of energy materials for applications including solar energy, energy storage, or smart windows. SALD is presented here and examples of application to photovoltaics and transparent conductive materials are given. We show that SALD is capable of producing high-quality films fully suited for device integration.
Mot clés : Dépôt par couche atomique spatial, Couches minces, Matériau transparent conducteur, Dépôt conforme, Applications à l'énergie
David Muñoz-Rojas 1 ; Viet Huong Nguyen 1 ; César Masse de la Huerta 1 ; Sara Aghazadehchors 1 ; Carmen Jiménez 1 ; Daniel Bellet 1
@article{CRPHYS_2017__18_7-8_391_0, author = {David Mu\~noz-Rojas and Viet Huong Nguyen and C\'esar Masse de la Huerta and Sara Aghazadehchors and Carmen Jim\'enez and Daniel Bellet}, title = {Spatial {Atomic} {Layer} {Deposition} {(SALD),} an emerging tool for energy materials. {Application} to new-generation photovoltaic devices and transparent conductive materials}, journal = {Comptes Rendus. Physique}, pages = {391--400}, publisher = {Elsevier}, volume = {18}, number = {7-8}, year = {2017}, doi = {10.1016/j.crhy.2017.09.004}, language = {en}, }
TY - JOUR AU - David Muñoz-Rojas AU - Viet Huong Nguyen AU - César Masse de la Huerta AU - Sara Aghazadehchors AU - Carmen Jiménez AU - Daniel Bellet TI - Spatial Atomic Layer Deposition (SALD), an emerging tool for energy materials. Application to new-generation photovoltaic devices and transparent conductive materials JO - Comptes Rendus. Physique PY - 2017 SP - 391 EP - 400 VL - 18 IS - 7-8 PB - Elsevier DO - 10.1016/j.crhy.2017.09.004 LA - en ID - CRPHYS_2017__18_7-8_391_0 ER -
%0 Journal Article %A David Muñoz-Rojas %A Viet Huong Nguyen %A César Masse de la Huerta %A Sara Aghazadehchors %A Carmen Jiménez %A Daniel Bellet %T Spatial Atomic Layer Deposition (SALD), an emerging tool for energy materials. Application to new-generation photovoltaic devices and transparent conductive materials %J Comptes Rendus. Physique %D 2017 %P 391-400 %V 18 %N 7-8 %I Elsevier %R 10.1016/j.crhy.2017.09.004 %G en %F CRPHYS_2017__18_7-8_391_0
David Muñoz-Rojas; Viet Huong Nguyen; César Masse de la Huerta; Sara Aghazadehchors; Carmen Jiménez; Daniel Bellet. Spatial Atomic Layer Deposition (SALD), an emerging tool for energy materials. Application to new-generation photovoltaic devices and transparent conductive materials. Comptes Rendus. Physique, Volume 18 (2017) no. 7-8, pp. 391-400. doi : 10.1016/j.crhy.2017.09.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2017.09.004/
[1] The role of buffer layers in polymer solar cells, Energy Environ. Sci., Volume 4 (2011), pp. 285-310 | DOI
[2] Interface materials for organic solar cells, J. Mater. Chem., Volume 20 (2010), pp. 2499-2512 | DOI
[3] a-Si:H/c-Si Heterojunction solar cells: a smart choice for high efficiency solar cells (W.G.J.H.M. van Sark; L. Korte; F. Roca, eds.), Physics and Technology of Amorphous–Crystalline Heterostructure Silicon Solar Cells, Springer-Verlag, Berlin, Heidelberg, 2012, pp. 549-572
[4] Transparent conducting oxides for photovoltaics: manipulation of Fermi level, work function and energy band alignment, Materials, Volume 3 (2010), pp. 4892-4914 | DOI
[5] Nano energy new insight into atomic-scale engineering of electrode surface for long-life and safe high voltage lithium ion cathodes, Nano Energy, Volume 38 (2017), pp. 19-27 | DOI
[6] Recent advances in atomic layer deposition, Chem. Mater., Volume 28 (2016), pp. 1943-1947 | DOI
[7] Atomic layer deposition of nanostructured materials for energy and environmental applications, Adv. Mater., Volume 3 (2016) | DOI
[8] Chemical Vapour Deposition (A.C. Jones; M.L. Hitchman, eds.), Royal Society of Chemistry, Cambridge, 2008 (ISBN: 978-0-85404-465-8)
[9] Atomic layer deposition (ALD): from precursors to thin film structures, Thin Solid Films, Volume 409 (2002), pp. 138-146 | DOI
[10] Surface chemistry for molecular layer deposition of organic and hybrid organic–inorganic polymers, Acc. Chem. Res., Volume 42 (2009), pp. 498-508
[11] Atomic layer deposition: an overview, Chem. Rev., Volume 110 (2010), pp. 111-131 | DOI
[12] T.S. Suntola, J. Antson, Method for producing compound thin films 1977, US Patent 4,058,430.
[13] Stable ZnO thin film transistors by fast open air atomic layer deposition, Appl. Phys. Lett., Volume 92 (2008) | DOI
[14] D.H. Levy, Process for atomic layer deposition, US 7,413,982 B2, 2008.
[15] Spatial atomic layer deposition: a route towards further industrialization of atomic layer deposition, J. Vac. Sci. Technol., A, Vac. Surf. Films, Volume 30 (2012) | DOI
[16] Dépôt par couche atomique spatiale (SALD), Techniques de l'Ingenieur (2016), pp. 1-10
[17] Spatial atomic layer deposition of ZnO/TiO2 nanolaminates, J. Vac. Sci. Technol., A, Vac. Surf. Films, Volume 34 (2016) | DOI
[18] Evaluating operating conditions for continuous atmospheric atomic layer deposition using a multiple slit gas source head, J. Vac. Sci. Technol., A, Vac. Surf. Films, Volume 30 (2012) | DOI
[19] Deposition of ZnO based thin films by atmospheric pressure spatial atomic layer deposition for application in solar cells, J. Renew. Sustain. Energy, Volume 9 (2017) | DOI
[20] Atmospheric pressure spatial atomic layer deposition web coating with in situ monitoring of film thickness, J. Vac. Sci. Technol., A, Vac. Surf. Films, Volume 32 (2014) | DOI
[21] Diffusion coefficients of some organic and other vapors in air, Anal. Chem., Volume 40 (1968), pp. 1072-1077 | DOI
[22] Synthesis and modeling of uniform complex metal oxides by close-proximity atmospheric pressure chemical vapor deposition, ACS Appl. Mater. Interfaces, Volume 7 (2015) no. 20, pp. 10684-10694 | DOI
[23] Rapid open-air deposition of uniform, nanoscale, functional coatings on nanorod arrays, Nanoscale Horiz., Volume 2 (2017), pp. 110-117 | DOI
[24] Metal-oxide thin-film transistors patterned by printing, Appl. Phys. Lett., Volume 103 (2013) | DOI
[25] Selective area spatial atomic layer deposition of ZnO, Al2O3, and aluminum-doped ZnO using poly(vinyl pyrrolidone), Chem. Mater., Volume 26 (2014), pp. 1514-1522 | DOI
[26] Design freedom in multilayer thin-film devices, ACS Appl. Mater. Interfaces, Volume 7 (2015), pp. 4675-4684 | DOI
[27] Improving yield and performance in ZnO thin-film transistors made using selective area deposition, ACS Appl. Mater. Interfaces, Volume 7 (2015), pp. 2754-2759 | DOI
[28] High-speed spatial atomic-layer deposition of aluminum oxide layers for solar cell passivation, Adv. Mater., Volume 22 (2010), pp. 3564-3567 | DOI
[29] Recent advances in atmospheric vapor-phase deposition of transparent and conductive zinc oxide, Chem. Vap. Depos., Volume 20 (2014), pp. 234-242 | DOI
[30] Atmospheric spatial atomic layer deposition of in-doped ZnO, ECS J. Solid State Sci. Technol., Volume 3 (2014), p. P111-P114 | DOI
[31] (Invited) spatial atomic layer deposition of transparent conductive oxides, ECS Trans., Volume 58 (2013), pp. 105-110 | DOI
[32] Spatial atmospheric atomic layer deposition of AlxZn1 − xO, ACS Appl. Mater. Interfaces, Volume 5 (2013), pp. 13124-13128 | DOI
[33] Growth of 5 cm2 V • 1s • 1 mobility, p-type copper (I) oxide (Cu2O) films by fast atmospheric atomic layer deposition (AALD) at 225 °C and below, AIP Adv., Volume 2 (2012) | DOI
[34] High-speed atmospheric atomic layer deposition of ultra thin amorphous TiO2 blocking layers at 100 °C for inverted bulk heterojunction solar cells, Prog. Photovolt., Volume 21 (2013), pp. 393-400 | DOI
[35] High performance inverted bulk heterojunction solar cells by incorporation of dense, thin ZnO layers made using atmospheric atomic layer deposition, Sol. Energy Mater. Sol. Cells, Volume 116 (2013), pp. 197-202 | DOI
[36] Influence of an inorganic interlayer on exciton separation in hybrid solar cells, ACS Nano, Volume 9 (2015), pp. 11863-11871 | DOI
[37] Novel atmospheric growth technique to improve both light absorption and charge collection in ZnO/Cu2O thin film solar cells, Adv. Funct. Mater., Volume 23 (2013), pp. 3413-3419 | DOI
[38] Spatial atmospheric atomic layer deposition: a new laboratory and industrial tool for low-cost photovoltaics, Mater. Horizons, Volume 1 (2014), pp. 314-320 | DOI
[39] Transparent conducting oxide semiconductors for transparent electrodes, Semicond. Sci. Technol., Volume 20 (2005), p. S35-S44 | DOI
[40] Past achievements and future challenges in the development of optically transparent electrodes, Nat. Photonics, Volume 6 (2012), pp. 809-817 | DOI
[41] Transparent electrodes for organic optoelectronic devices: a review, J. Photonics Energy, Volume 4 (2014) | DOI
[42] Silver nanowire networks: physical properties and potential integration in solar cells, Sol. Energy Mater. Sol. Cells, Volume 125 (2014), pp. 318-324 | DOI
[43] Past achievements and future challenges in the development of optically transparent electrodes, Nat. Photonics, Volume 6 (2012), pp. 808-816 | DOI
[44] High performance ZnO–SnO2:F nanocomposite transparent electrodes for energy applications, ACS Appl. Mater. Interfaces, Volume 6 (2014), pp. 14096-14107 | DOI
[45] et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%, Nat. Energy (2017)
[46] Influence of ITO deposition and post annealing on HIT solar cell structures, Energy Proc., Volume 8 (2011), pp. 207-213 | DOI
[47] Flexible transparent conductive materials based on silver nanowire networks: a review, Nanotechnology, Volume 24 (2013) | DOI
[48] Metallic nanowire-based transparent electrodes for next generation flexible devices: a review, Small, Volume 12 (2016), pp. 6052-6075 | DOI
[49] Optimization of silver nanowire-based transparent electrodes: effects of density, size and thermal annealing, Nanoscale, Volume 7 (2015), pp. 17410-17423 | DOI
[50] Failure of silver nanowire transparent electrodes under current flow, Nanoscale Res. Lett., Volume 8 (2013), pp. 1-6
[51] Metallic nanowire networks: effects of thermal annealing on electrical resistance, Nanoscale, Volume 6 (2014), pp. 13535-13543 | DOI
[52] Understanding the mechanisms leading to failure in metallic nanowire-based transparent heaters, and solution for stability enhancement, Nanotechnology, Volume 28 (2017) | DOI
[53] Effects of gap size, temperature and pumping pressure on the fluid dynamics and chemical kinetics of in-line spatial atomic layer deposition of Al2O3, Int. J. Heat Mass Transf., Volume 96 (2016), pp. 189-198 | DOI
[54] Mechanistic modeling study on process optimization and precursor utilization with atmospheric spatial atomic layer deposition, J. Vac. Sci. Technol., A, Vac. Surf. Films, Volume 34 (2016) | DOI
[55] Nanomanufacturing: high-throughput, cost-effective deposition of atomic scale thin films via atmospheric pressure spatial atomic layer deposition, Chem. Mater., Volume 28 (2016), pp. 8443-8452 | DOI
Cité par Sources :
Commentaires - Politique