Comptes Rendus
Demain l'énergie – Séminaire Daniel-Dautreppe, Grenoble, France, 2016
Spatial Atomic Layer Deposition (SALD), an emerging tool for energy materials. Application to new-generation photovoltaic devices and transparent conductive materials
[Dépôt spatial par couche atomique : un outil émergeant pour les matériaux pour l'énergie. Application aux composants photovoltaïques de nouvelle génération et aux matériaux transparents et conducteurs]
Comptes Rendus. Physique, Demain l’énergie, Volume 18 (2017) no. 7-8, pp. 391-400.

Les propriétés des matériaux constituent la pierre angulaire des dispositifs fonctionnels pour l'énergie, et cela concerne aussi bien la conversion, la récupération ou le stockage d'énergie. De façon à concevoir et fabriquer des nouveaux matériaux pour l'énergie à l'échelle industrielle, il est nécessaire de développer des méthodes de dépôt appropriées et accessibles à des prix abordables. Au cours des dernières années, une nouvelle approche du dépôt par couche atomique (ALD) a suscité un intérêt croissant. Cette approche repose sur la séparation des précurseurs dans l'espace plutôt que dans le temps lors du dépôt par couches atomiques, et a donc été appelée Spatial ALD (SALD). La méthode SALD permet d'éviter les étapes de purge typiques de l'ALD, et, par conséquent, les taux de dépôt de couches sont bien plus rapides, jusqu'à deux ordres de grandeur. De plus, le dépôt par SALD peut être facilement effectué à l'atmosphère ambiante. La mise en œuvre du SALD est donc plus facile et moins coûteuse que celle de l'ALD conventionnelle, ouvrant ainsi la possibilité de son application industrielle au dépôt de matériaux pour l'énergie, et notamment à des domaines tels que l'énergie solaire, le stockage énergétique ou les fenêtres intelligentes. Nous présentons ici la description de la méthode de dépôt SALD et l'illustrons avec des exemples appliqués au photovoltaïque et aux matériaux conducteurs transparents. Nous montrons notamment que la SALD est capable de produire des couches minces de la même qualité que par ALD classique, et qu'elle est donc parfaitement adaptée pour une intégration à l'échelle industrielle.

Materials properties are the keystone of functional devices for energy including energy conversion, harvesting or storage. But to market new energy materials, the development of suitable processing methods allowing affordable prices is needed. Recently, a new approach to atomic layer deposition (ALD) has gained much momentum. This alternative approach is based on separating the precursors in space rather than in time, and has therefore been called Spatial ALD (SALD). With SALD, the purge steps typical of ALD are not needed and thus deposition rates a hundred times faster are achievable. Additionally, SALD can be easily performed at ambient atmosphere, thus it is easier and cheaper to scale up than conventional ALD. This opens the door to widespread industrial application of ALD for the deposition of energy materials for applications including solar energy, energy storage, or smart windows. SALD is presented here and examples of application to photovoltaics and transparent conductive materials are given. We show that SALD is capable of producing high-quality films fully suited for device integration.

Publié le :
DOI : 10.1016/j.crhy.2017.09.004
Keywords: Spatial Atomic Layer Deposition, Thin films, Transparent conductive materials, Conformal coating, Energy applications
Mots-clés : Dépôt par couche atomique spatial, Couches minces, Matériau transparent conducteur, Dépôt conforme, Applications à l'énergie

David Muñoz-Rojas 1 ; Viet Huong Nguyen 1 ; César Masse de la Huerta 1 ; Sara Aghazadehchors 1 ; Carmen Jiménez 1 ; Daniel Bellet 1

1 Laboratoire des matériaux et du génie physique (LMGP), UMR 5628 CNRS – Grenoble INP Minatec, 3, parvis Louis-Néel, MINATEC CS 50257, 38016 Grenoble cedex 1, France
@article{CRPHYS_2017__18_7-8_391_0,
     author = {David Mu\~noz-Rojas and Viet Huong Nguyen and C\'esar Masse de la Huerta and Sara Aghazadehchors and Carmen Jim\'enez and Daniel Bellet},
     title = {Spatial {Atomic} {Layer} {Deposition} {(SALD),} an emerging tool for energy materials. {Application} to new-generation photovoltaic devices and transparent conductive materials},
     journal = {Comptes Rendus. Physique},
     pages = {391--400},
     publisher = {Elsevier},
     volume = {18},
     number = {7-8},
     year = {2017},
     doi = {10.1016/j.crhy.2017.09.004},
     language = {en},
}
TY  - JOUR
AU  - David Muñoz-Rojas
AU  - Viet Huong Nguyen
AU  - César Masse de la Huerta
AU  - Sara Aghazadehchors
AU  - Carmen Jiménez
AU  - Daniel Bellet
TI  - Spatial Atomic Layer Deposition (SALD), an emerging tool for energy materials. Application to new-generation photovoltaic devices and transparent conductive materials
JO  - Comptes Rendus. Physique
PY  - 2017
SP  - 391
EP  - 400
VL  - 18
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crhy.2017.09.004
LA  - en
ID  - CRPHYS_2017__18_7-8_391_0
ER  - 
%0 Journal Article
%A David Muñoz-Rojas
%A Viet Huong Nguyen
%A César Masse de la Huerta
%A Sara Aghazadehchors
%A Carmen Jiménez
%A Daniel Bellet
%T Spatial Atomic Layer Deposition (SALD), an emerging tool for energy materials. Application to new-generation photovoltaic devices and transparent conductive materials
%J Comptes Rendus. Physique
%D 2017
%P 391-400
%V 18
%N 7-8
%I Elsevier
%R 10.1016/j.crhy.2017.09.004
%G en
%F CRPHYS_2017__18_7-8_391_0
David Muñoz-Rojas; Viet Huong Nguyen; César Masse de la Huerta; Sara Aghazadehchors; Carmen Jiménez; Daniel Bellet. Spatial Atomic Layer Deposition (SALD), an emerging tool for energy materials. Application to new-generation photovoltaic devices and transparent conductive materials. Comptes Rendus. Physique, Demain l’énergie, Volume 18 (2017) no. 7-8, pp. 391-400. doi : 10.1016/j.crhy.2017.09.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2017.09.004/

[1] R. Po; C. Carbonera; A. Bernardi; N. Camaioni The role of buffer layers in polymer solar cells, Energy Environ. Sci., Volume 4 (2011), pp. 285-310 | DOI

[2] R. Steim; F.R. Kogler; C.J. Brabec Interface materials for organic solar cells, J. Mater. Chem., Volume 20 (2010), pp. 2499-2512 | DOI

[3] D. Muñoz; T. Desrues; P.J. Ribeyron a-Si:H/c-Si Heterojunction solar cells: a smart choice for high efficiency solar cells (W.G.J.H.M. van Sark; L. Korte; F. Roca, eds.), Physics and Technology of Amorphous–Crystalline Heterostructure Silicon Solar Cells, Springer-Verlag, Berlin, Heidelberg, 2012, pp. 549-572

[4] A. Klein; C. Körber; A. Wachau; F. Säuberlich; Y. Gassenbauer; S.P. Harvey; D.E. Proffit; T.O. Mason Transparent conducting oxides for photovoltaics: manipulation of Fermi level, work function and energy band alignment, Materials, Volume 3 (2010), pp. 4892-4914 | DOI

[5] S. Deng; B. Xiao; B. Wang; X. Li; K. Kaliyappan; Y. Zhao Nano energy new insight into atomic-scale engineering of electrode surface for long-life and safe high voltage lithium ion cathodes, Nano Energy, Volume 38 (2017), pp. 19-27 | DOI

[6] V. Issue; A.C.S.A. Materials; A.C.S. Nano Recent advances in atomic layer deposition, Chem. Mater., Volume 28 (2016), pp. 1943-1947 | DOI

[7] N.P. Dasgupta; L. Li; X. Sun Atomic layer deposition of nanostructured materials for energy and environmental applications, Adv. Mater., Volume 3 (2016) | DOI

[8] Chemical Vapour Deposition (A.C. Jones; M.L. Hitchman, eds.), Royal Society of Chemistry, Cambridge, 2008 (ISBN: 978-0-85404-465-8)

[9] M. Leskelä; M. Ritala Atomic layer deposition (ALD): from precursors to thin film structures, Thin Solid Films, Volume 409 (2002), pp. 138-146 | DOI

[10] S.M. George; B. Yoon; A.A. Dameron Surface chemistry for molecular layer deposition of organic and hybrid organic–inorganic polymers, Acc. Chem. Res., Volume 42 (2009), pp. 498-508

[11] S.M. George Atomic layer deposition: an overview, Chem. Rev., Volume 110 (2010), pp. 111-131 | DOI

[12] T.S. Suntola, J. Antson, Method for producing compound thin films 1977, US Patent 4,058,430.

[13] D.H. Levy; D. Freeman; S.F. Nelson; P.J. Cowdery-Corvan; L.M. Irving Stable ZnO thin film transistors by fast open air atomic layer deposition, Appl. Phys. Lett., Volume 92 (2008) | DOI

[14] D.H. Levy, Process for atomic layer deposition, US 7,413,982 B2, 2008.

[15] P. Poodt; D.C. Cameron; E. Dickey; S.M. George; V. Kuznetsov; G.N. Parsons; F. Roozeboom; G. Sundaram; A. Vermeer Spatial atomic layer deposition: a route towards further industrialization of atomic layer deposition, J. Vac. Sci. Technol., A, Vac. Surf. Films, Volume 30 (2012) | DOI

[16] D. Muñoz-Rojas Dépôt par couche atomique spatiale (SALD), Techniques de l'Ingenieur (2016), pp. 1-10

[17] R. Chen; J.-L. Lin; W.-J. He; C.-L. Duan; Q. Peng; X.-L. Wang; B. Shan Spatial atomic layer deposition of ZnO/TiO2 nanolaminates, J. Vac. Sci. Technol., A, Vac. Surf. Films, Volume 34 (2016) | DOI

[18] P. Ryan Fitzpatrick; Z.M. Gibbs; S.M. George Evaluating operating conditions for continuous atmospheric atomic layer deposition using a multiple slit gas source head, J. Vac. Sci. Technol., A, Vac. Surf. Films, Volume 30 (2012) | DOI

[19] V.H. Nguyen; J. Resende; C. Jiménez; J. Deschanvres; P. Carroy; D. Muñoz; D. Bellet; D. Muñoz-Rojas Deposition of ZnO based thin films by atmospheric pressure spatial atomic layer deposition for application in solar cells, J. Renew. Sustain. Energy, Volume 9 (2017) | DOI

[20] A.S. Yersak; Y.C. Lee; J.A. Spencer; M.D. Groner Atmospheric pressure spatial atomic layer deposition web coating with in situ monitoring of film thickness, J. Vac. Sci. Technol., A, Vac. Surf. Films, Volume 32 (2014) | DOI

[21] G.A. Lugg Diffusion coefficients of some organic and other vapors in air, Anal. Chem., Volume 40 (1968), pp. 1072-1077 | DOI

[22] R.L.Z. Hoye; D. Muñoz-Rojas; K.P. Musselman; Y. Vaynzof; J.L. MacManus-Driscoll Synthesis and modeling of uniform complex metal oxides by close-proximity atmospheric pressure chemical vapor deposition, ACS Appl. Mater. Interfaces, Volume 7 (2015) no. 20, pp. 10684-10694 | DOI

[23] K.P. Musselman; D. Muñoz-Rojas; R.L.Z. Hoye; H. Sun; S.-L. Sahonta; E. Croft; M.L. Böhm; C. Ducati; J.L. MacManus-Driscoll; S. De Gendt; M. Heyns; M.M. Viitanen; M. de Ridder; H.H. Brongersma; Y. de Tamminga; T. Dao; T. de Win; M. Verheijen; M. Kaiser; M. Tuominen Rapid open-air deposition of uniform, nanoscale, functional coatings on nanorod arrays, Nanoscale Horiz., Volume 2 (2017), pp. 110-117 | DOI

[24] D.H. Levy; C.R. Ellinger; S.F. Nelson Metal-oxide thin-film transistors patterned by printing, Appl. Phys. Lett., Volume 103 (2013) | DOI

[25] C.R. Ellinger; S.F. Nelson Selective area spatial atomic layer deposition of ZnO, Al2O3, and aluminum-doped ZnO using poly(vinyl pyrrolidone), Chem. Mater., Volume 26 (2014), pp. 1514-1522 | DOI

[26] C.R. Ellinger; S.F. Nelson Design freedom in multilayer thin-film devices, ACS Appl. Mater. Interfaces, Volume 7 (2015), pp. 4675-4684 | DOI

[27] S.F. Nelson; C.R. Ellinger; D.H. Levy Improving yield and performance in ZnO thin-film transistors made using selective area deposition, ACS Appl. Mater. Interfaces, Volume 7 (2015), pp. 2754-2759 | DOI

[28] P. Poodt; A. Lankhorst; F. Roozeboom; K. Spee; D. Maas; A. Vermeer High-speed spatial atomic-layer deposition of aluminum oxide layers for solar cell passivation, Adv. Mater., Volume 22 (2010), pp. 3564-3567 | DOI

[29] A. Illiberi; P. Poodt; P.-J. Bolt; F. Roozeboom Recent advances in atmospheric vapor-phase deposition of transparent and conductive zinc oxide, Chem. Vap. Depos., Volume 20 (2014), pp. 234-242 | DOI

[30] A. Illiberi; R. Scherpenborg; F. Roozeboom; P. Poodt Atmospheric spatial atomic layer deposition of in-doped ZnO, ECS J. Solid State Sci. Technol., Volume 3 (2014), p. P111-P114 | DOI

[31] A. Illiberi; R. Scherpenborg; P. Poodt; F. Roozeboom (Invited) spatial atomic layer deposition of transparent conductive oxides, ECS Trans., Volume 58 (2013), pp. 105-110 | DOI

[32] A. Illiberi; R. Scherpenborg; Y. Wu; F. Roozeboom; P. Poodt Spatial atmospheric atomic layer deposition of AlxZn1 − xO, ACS Appl. Mater. Interfaces, Volume 5 (2013), pp. 13124-13128 | DOI

[33] D. Muñoz-Rojas; M. Jordan; C. Yeoh; A.T. Marin; A. Kursumovic; L. Dunlop; D.C. Iza; A. Chen; H. Wang; J.L. MacManus-driscoll Growth of 5 cm2 V • 1s • 1 mobility, p-type copper (I) oxide (Cu2O) films by fast atmospheric atomic layer deposition (AALD) at 225 °C and below, AIP Adv., Volume 2 (2012) | DOI

[34] D. Muñoz-Rojas; H. Sun; D.C. Iza; J. Weickert; L. Chen; H. Wang; L. Schmidt-Mende; J.L. MacManus-Driscoll High-speed atmospheric atomic layer deposition of ultra thin amorphous TiO2 blocking layers at 100 °C for inverted bulk heterojunction solar cells, Prog. Photovolt., Volume 21 (2013), pp. 393-400 | DOI

[35] R.L.Z. Hoye; D. Muñoz-Rojas; D.C. Iza; K.P. Musselman; J.L. MacManus-Driscoll High performance inverted bulk heterojunction solar cells by incorporation of dense, thin ZnO layers made using atmospheric atomic layer deposition, Sol. Energy Mater. Sol. Cells, Volume 116 (2013), pp. 197-202 | DOI

[36] C.L. Armstrong; M.B. Price; D. Muñoz-Rojas; N.J.K.L. Davis; M. Abdi-Jalebi; R.H. Friend; N.C. Greenham; J.L. MacManus-Driscoll; M.L. Böhm; K.P. Musselman Influence of an inorganic interlayer on exciton separation in hybrid solar cells, ACS Nano, Volume 9 (2015), pp. 11863-11871 | DOI

[37] A.T. Marin; D. Muñoz-Rojas; D.C. Iza; T. Gershon; K.P. Musselman; J.L. MacManus-Driscoll Novel atmospheric growth technique to improve both light absorption and charge collection in ZnO/Cu2O thin film solar cells, Adv. Funct. Mater., Volume 23 (2013), pp. 3413-3419 | DOI

[38] D. Muñoz-Rojas; J. MacManus-Driscoll Spatial atmospheric atomic layer deposition: a new laboratory and industrial tool for low-cost photovoltaics, Mater. Horizons, Volume 1 (2014), pp. 314-320 | DOI

[39] T. Minami Transparent conducting oxide semiconductors for transparent electrodes, Semicond. Sci. Technol., Volume 20 (2005), p. S35-S44 | DOI

[40] K. Ellmer Past achievements and future challenges in the development of optically transparent electrodes, Nat. Photonics, Volume 6 (2012), pp. 809-817 | DOI

[41] W. Cao; J. Li; H. Chen; J. Xue Transparent electrodes for organic optoelectronic devices: a review, J. Photonics Energy, Volume 4 (2014) | DOI

[42] D.P. Langley; G. Giusti; M. Lagrange; R. Collins; C. Jiménez; Y. Bréchet; D. Bellet Silver nanowire networks: physical properties and potential integration in solar cells, Sol. Energy Mater. Sol. Cells, Volume 125 (2014), pp. 318-324 | DOI

[43] K. Ellmer Past achievements and future challenges in the development of optically transparent electrodes, Nat. Photonics, Volume 6 (2012), pp. 808-816 | DOI

[44] G. Giusti; V. Consonni; E. Puyoo; D. Bellet High performance ZnO–SnO2:F nanocomposite transparent electrodes for energy applications, ACS Appl. Mater. Interfaces, Volume 6 (2014), pp. 14096-14107 | DOI

[45] K. Yoshikawa et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%, Nat. Energy (2017)

[46] D. Zhang; A. Tavakoliyaraki; Y. Wu; R.A.C.M.M. van Swaaij; M. Zeman Influence of ITO deposition and post annealing on HIT solar cell structures, Energy Proc., Volume 8 (2011), pp. 207-213 | DOI

[47] D. Langley; G. Giusti; C. Mayousse; C. Celle; D. Bellet; J.-P. Simonato Flexible transparent conductive materials based on silver nanowire networks: a review, Nanotechnology, Volume 24 (2013) | DOI

[48] T. Sannicolo; M. Lagrange; A. Cabos; C. Celle; J. Simonato; D. Bellet Metallic nanowire-based transparent electrodes for next generation flexible devices: a review, Small, Volume 12 (2016), pp. 6052-6075 | DOI

[49] M. Lagrange; D.P. Langley; G. Giusti; C. Jiménez; Y. Bréchet; D. Bellet Optimization of silver nanowire-based transparent electrodes: effects of density, size and thermal annealing, Nanoscale, Volume 7 (2015), pp. 17410-17423 | DOI

[50] H.H. Khaligh; I.A. Goldthorpe Failure of silver nanowire transparent electrodes under current flow, Nanoscale Res. Lett., Volume 8 (2013), pp. 1-6

[51] D.P. Langley; M. Lagrange; G. Giusti; C. Jiménez; Y. Bréchet; N.D. Nguyen; D. Bellet Metallic nanowire networks: effects of thermal annealing on electrical resistance, Nanoscale, Volume 6 (2014), pp. 13535-13543 | DOI

[52] M. Lagrange; T. Sannicolo; D. Muñoz-Rojas; B.G. Lohan; A. Khan; M. Anikin; C. Jiménez; F. Bruckert; Y. Bréchet; D. Bellet Understanding the mechanisms leading to failure in metallic nanowire-based transparent heaters, and solution for stability enhancement, Nanotechnology, Volume 28 (2017) | DOI

[53] D. Pan; T.-C. Jen; C. Yuan Effects of gap size, temperature and pumping pressure on the fluid dynamics and chemical kinetics of in-line spatial atomic layer deposition of Al2O3, Int. J. Heat Mass Transf., Volume 96 (2016), pp. 189-198 | DOI

[54] Z. Deng; W. He; C. Duan; R. Chen; B. Shan Mechanistic modeling study on process optimization and precursor utilization with atmospheric spatial atomic layer deposition, J. Vac. Sci. Technol., A, Vac. Surf. Films, Volume 34 (2016) | DOI

[55] K.P. Musselman; C.F. Uzoma; M.S. Miller Nanomanufacturing: high-throughput, cost-effective deposition of atomic scale thin films via atmospheric pressure spatial atomic layer deposition, Chem. Mater., Volume 28 (2016), pp. 8443-8452 | DOI

  • Abhay Kumar Singh TMDs Research with Atomic Layer Deposition (ALD) Technique, 2D Transition-Metal Dichalcogenides (TMDs): Fundamentals and Application (2025), p. 635 | DOI:10.1007/978-981-96-0247-6_9
  • Sarah Hashemi Astaneh; Leonardo P. Faverani; Harshdeep Bhatia; Eduardo Dallazen; Monique Gonçalves Costa; Edilson Ervolino; Valentim A.R. Barão; Cortino Sukotjo; Christos G. Takoudis Functionalization of collagen fiber with nano-islands of silver via atomic layer deposition to promote bone healing, Heliyon, Volume 11 (2025) no. 3, p. e42177 | DOI:10.1016/j.heliyon.2025.e42177
  • Vu Tue Anh; Hung-Anh Tran Vu; Viet Huong Nguyen; Ho Xuan Nang; Lien Thi Do; Van-Duong Dao; Ngoc Hung Vu Enhancing electrochemical performance of Ni-rich cathodes for Li-ion batteries through spatial atomic layer deposition of ZnO coatings, Materials Chemistry and Physics, Volume 336 (2025), p. 130544 | DOI:10.1016/j.matchemphys.2025.130544
  • Harpreet Sondhi; Mingliang Chen; Michiel Pieter Nijboer; Arian Nijmeijer; Fred Roozeboom; Mikhael Bechelany; Alexey Kovalgin; Mieke Luiten-Olieman Ceramic Nanofiltration Membranes: Creating Nanopores by Calcination of Atmospheric-Pressure Molecular Layer Deposition Grown Titanicone Layers, Membranes, Volume 15 (2025) no. 3, p. 86 | DOI:10.3390/membranes15030086
  • Robert L.Z. Hoye; David Muñoz-Rojas; Zhuotong Sun; Hayri Okcu; Hatameh Asgarimoghaddam; Judith L. MacManus-Driscoll; Kevin P. Musselman Spatial Atomic Layer Deposition for Energy and Electronic Devices, PRX Energy, Volume 4 (2025) no. 1 | DOI:10.1103/prxenergy.4.017002
  • Seunghwan Lee; Heesang Lee, 2024 Portland International Conference on Management of Engineering and Technology (PICMET) (2024), p. 1 | DOI:10.23919/picmet64035.2024.10653447
  • Ambreen Khan; Brandon Faceira; Laetitia Bardet; Camilo Sanchez-Velasquez; Suraj S. Nayak; Carmen Jiménez; David Muñoz-Rojas; Aline Rougier; Daniel Bellet Silver Nanowire-Based Transparent Electrodes for V2O5 Thin Films with Electrochromic Properties, ACS Applied Materials Interfaces, Volume 16 (2024) no. 8, p. 10439 | DOI:10.1021/acsami.3c14419
  • Abdullah H. Alshehri; Hatameh Asgarimoghaddam; Louis‐Vincent Delumeau; Viet Huong Nguyen; AlRasheed Ali; Mutabe Aljaghtham; Ali Alamry; Dogu Ozyigit; Mustafa Yavuz; Kevin P. Musselman Combinatorial Optimization of Metal‐Insulator‐Insulator‐Metal (MIIM) Diodes With Thickness‐Gradient Films via Spatial Atomic Layer Deposition, Advanced Electronic Materials, Volume 10 (2024) no. 11 | DOI:10.1002/aelm.202400093
  • Joshua O. Olowoyo; Vahid Shahed Gharahshiran; Yimin Zeng; Yang Zhao; Ying Zheng Atomic/molecular layer deposition strategies for enhanced CO2 capture, utilisation and storage materials, Chemical Society Reviews, Volume 53 (2024) no. 11, p. 5428 | DOI:10.1039/d3cs00759f
  • Chun Hong Voon; Tijjani Adam; Shahidah Arina Shamsuddin; Bee Ying Lim Preparation and Applications of Silicon and Silica Hybrid Materials, Hybrid-Nanomaterials (2024), p. 171 | DOI:10.1007/978-981-97-9022-7_9
  • Zhuotong Sun; Subhajit Bhattacharjee; Ming Xiao; Weiwei Li; Megan O Hill; Robert A. Jagt; Louis-Vincent Delumeau; Kevin P. Musselman; Erwin Reisner; Judith MacManus-Driscoll Low-temperature open-atmosphere growth of WO3 thin films with tunable and high-performance photoresponse, Journal of Materials Chemistry C, Volume 12 (2024) no. 13, p. 4779 | DOI:10.1039/d3tc02257a
  • Hang Tran Thi My; Ngoc Linh Nguyen; Trung Kien Mac; Duc Anh Duong; Thien Thanh Nguyen; Anh-Tuan Duong; Hao Van Bui; Viet Huong Nguyen Impact of air exposure on growth rate and electrical properties of SnO2 thin films by atmospheric pressure spatial atomic layer deposition, Journal of Physics D: Applied Physics, Volume 57 (2024) no. 2, p. 025303 | DOI:10.1088/1361-6463/ad01c7
  • Wen-Hsi Lee; Chien-Ching Feng; Guan-Fu Chen; Tai-Chen Kuo Study on the fabrication of high-quality hafnium oxide thin films using spatial rotated atomic layer deposition and supercritical fluids treatment, Journal of Vacuum Science Technology A, Volume 42 (2024) no. 6 | DOI:10.1116/6.0004041
  • Junyoung Kim; Anuj Kumar; Sanket D. Bhoyate; Jinwoo Hwang; Hyoik Jang; Chaitanya Mahajan; Eunho Lee; Ram K. Gupta Nano Horizons: Exploring the untapped power of two-Dimensional materials, Materials Science and Engineering: B, Volume 310 (2024), p. 117673 | DOI:10.1016/j.mseb.2024.117673
  • Hatameh Asgarimoghaddam; Qiaoyun Chen; Fan Ye; Ahmed Shahin; Olivia Alexandra Celeste Marchione; Bo Song; Kevin Philip Musselman Spatial atomic layer deposition of nitrogen-doped alumina thin films for high-performance perovskite solar cell encapsulation, Nano Energy, Volume 127 (2024), p. 109782 | DOI:10.1016/j.nanoen.2024.109782
  • Bheem Singh; Sudhanshu Gautam; Govinda Chandra Behera; Rahul Kumar; Vishnu Aggarwal; Jai Shankar Tawale; Ramakrishnan Ganesan; Somnath Chanda Roy; Sunil Singh Kushvaha MoS2 thin film decorated TiO2 nanotube arrays on flexible Ti foil for solar water splitting application, Nano Express, Volume 5 (2024) no. 1, p. 015006 | DOI:10.1088/2632-959x/ad1694
  • Laetitia Bardet; Hervé Roussel; Stefano Saroglia; Masoud Akbari; David Muñoz-Rojas; Carmen Jiménez; Aurore Denneulin; Daniel Bellet Exploring the degradation of silver nanowire networks under thermal stress by coupling in situ X-ray diffraction and electrical resistance measurements, Nanoscale, Volume 16 (2024) no. 2, p. 564 | DOI:10.1039/d3nr02663a
  • Thien Thanh Nguyen; Diem Nguyen Thi Kieu; Hao Van Bui; Loan Le Thi Ngoc; Viet Huong Nguyen Enhancing control in spatial atomic layer deposition: insights into precursor diffusion, geometric parameters, and CVD mitigation strategies, Nanotechnology, Volume 35 (2024) no. 20, p. 205601 | DOI:10.1088/1361-6528/ad28d6
  • Hatameh Asgarimoghaddam; Qiaoyun Chen; Fan Ye; Ahmed Shahin; Bo Song; Kevin P Musselman Effect of different oxygen precursors on alumina deposited using a spatial atomic layer deposition system for thin-film encapsulation of perovskite solar cells, Nanotechnology, Volume 35 (2024) no. 9, p. 095401 | DOI:10.1088/1361-6528/ad1059
  • Jaime Gonzalez Cuadra; Abderrahim Lahlahi; Samuel Porcar; Robinson Cadena; Santiago Toca; Diego Fraga; Juan Carda Zinc Oxide Thin Films: Synthesis and Photocatalytic Applications, Nanotechnology and Nanomaterials Annual Volume 2024 (2024) | DOI:10.5772/intechopen.115470
  • Hung-Anh Tran Vu; Minh Nguyen Ngoc; Anh Tuan Pham; Viet Huong Nguyen Vapor-phase protective coatings for polymers: Advances and challenges in ALD and VPI technologies, Polymer Degradation and Stability, Volume 230 (2024), p. 111070 | DOI:10.1016/j.polymdegradstab.2024.111070
  • Liam Johnston; Jorit Obenlüneschloß; Muhammad Farooq Khan Niazi; Matthieu Weber; Clément Lausecker; Laetitia Rapenne; Hervé Roussel; Camilo Sanchez-Velazquez; Daniel Bellet; Anjana Devi; David Muñoz-Rojas Assessing the potential of non-pyrophoric Zn(DMP)2 for the fast deposition of ZnO functional coatings by spatial atomic layer deposition, RSC Applied Interfaces, Volume 1 (2024) no. 6, p. 1371 | DOI:10.1039/d4lf00160e
  • Hatameh Asgarimoghaddam; Qiaoyun Chen; Fan Ye; Ahmed Shahin; Bo Song; Kevin P. Musselman Zinc Aluminum Oxide Encapsulation Layers for Perovskite Solar Cells Deposited Using Spatial Atomic Layer Deposition, Small Methods, Volume 8 (2024) no. 3 | DOI:10.1002/smtd.202300995
  • Zhuotong Sun; Ziyi Yuan; Ming Xiao; Simon M. Fairclough; Atif Jan; Giuliana Di Martino; Caterina Ducati; Nives Strkalj; Judith L. MacManus‐Driscoll Low‐Temperature Epitaxy of Perovskite WO3 Thin Films under Atmospheric Conditions, Small Structures, Volume 5 (2024) no. 7 | DOI:10.1002/sstr.202400089
  • Hatameh Asgarimoghaddam; Saikiran Sunil Khamgaonkar; Avi Mathur; Vivek Maheshwari; Kevin P. Musselman Enhancing Internal and External Stability of Perovskite Solar Cells Through Polystyrene Modification of the Perovskite and Rapid Open‐Air Deposition of ZnO/AlOx Nanolaminate Encapsulation, Solar RRL, Volume 8 (2024) no. 14 | DOI:10.1002/solr.202400111
  • Rens Kamphorst; Pratyush Wanjari; Saeed Saedy; Julia F.K. van Dam; Arjan Thijssen; Philipp Brüner; Thomas Grehl; Gabrie M.H. Meesters; J. Ruud van Ommen Enhancing colloid stability of polymer microspheres in water through SiO2 coating: Effects of coating cycles and surface coverage, Surfaces and Interfaces, Volume 45 (2024), p. 103852 | DOI:10.1016/j.surfin.2024.103852
  • Muhammad Farooq Khan Niazi; David Muñoz-Rojas; Damien Evrard; Matthieu Weber Comparative Study of the Environmental Impact of Depositing Al2O3 by Atomic Layer Deposition and Spatial Atomic Layer Deposition, ACS Sustainable Chemistry Engineering, Volume 11 (2023) no. 41, p. 15072 | DOI:10.1021/acssuschemeng.3c04135
  • Dorina T. Papanastasiou; Abderrahime Sekkat; Viet Huong Nguyen; Carmen Jiménez; David Muñoz‐Rojas; Franz Bruckert; Daniel Bellet Stable Flexible Transparent Electrodes for Localized Heating of Lab‐on‐a‐Chip Devices, Advanced Materials Technologies, Volume 8 (2023) no. 1 | DOI:10.1002/admt.202200563
  • Abderrahime Sekkat; Dorina T. Papanastasiou; Maheera Abdul Ghani; Hervé Roussel; Matthieu Weber; Laetitia Rapenne; Carmen Jiménez; David Muñoz‐Rojas; Daniel Bellet Highly Transparent and Stable Flexible Electrodes Based on MgO/AgNW Nanocomposites for Transparent Heating Applications, Advanced Materials Technologies, Volume 8 (2023) no. 24 | DOI:10.1002/admt.202301143
  • Jie Shen; Fred Roozeboom; Alfredo Mameli Atmospheric-pressure plasma-enhanced spatial atomic layer deposition of silicon nitride at low temperature, Atomic Layer Deposition, Volume 1 (2023), p. 1 | DOI:10.3897/aldj.1.101651
  • Pol Salles; Pamela Machado; Pengmei Yu; Mariona Coll Chemical synthesis of complex oxide thin films and freestanding membranes, Chemical Communications, Volume 59 (2023) no. 93, p. 13820 | DOI:10.1039/d3cc03030j
  • M. Chen; M. P. Nijboer; A. Y. Kovalgin; A. Nijmeijer; F. Roozeboom; M. W. J. Luiten-Olieman Atmospheric-pressure atomic layer deposition: recent applications and new emerging applications in high-porosity/3D materials, Dalton Transactions, Volume 52 (2023) no. 30, p. 10254 | DOI:10.1039/d3dt01204b
  • Xiangbo Meng; Jeffrey W. Elam Synthesis of nanostructured materials via atomic and molecular layer deposition, Encyclopedia of Nanomaterials (2023), p. 2 | DOI:10.1016/b978-0-12-822425-0.00069-5
  • Chiara Crivello; Thomas Jalabert; Matthieu Weber; Hervé Roussel; Laetitia Rapenne; Hugo Mändar; Fabrice Donatini; Vincent Consonni; Gustavo Ardila; David Muñoz-Rojas Tuning the texture and polarity of ZnO thin films deposited by spatial atomic layer deposition through the addition of a volatile shape-directing agent, Materialia, Volume 30 (2023), p. 101822 | DOI:10.1016/j.mtla.2023.101822
  • A. Frechilla; A. Sekkat; M. Dibenedetto; F. lo Presti; L. Porta-Velilla; E. Martínez; G.F. de La Fuente; L.A. Angurel; D. Muñoz-Rojas Generating colours through a novel approach based on spatial ALD and laser processing, Materials Today Advances, Volume 19 (2023), p. 100414 | DOI:10.1016/j.mtadv.2023.100414
  • Dogu Ozyigit; Farman Ullah; Ahmet Gulsaran; Bersu Bastug Azer; Ahmed Shahin; Kevin Musselman; Michal Bajcsy; Mustafa Yavuz Manufacturing of quantum-tunneling MIM nanodiodes via rapid atmospheric CVD in terahertz band, Scientific Reports, Volume 13 (2023) no. 1 | DOI:10.1038/s41598-023-47775-5
  • Dániel Attila Karajz; Imre Miklós Szilágyi Review of photocatalytic ZnO nanomaterials made by atomic layer deposition, Surfaces and Interfaces, Volume 40 (2023), p. 103094 | DOI:10.1016/j.surfin.2023.103094
  • Joao Resende; Dorina T. Papanastasiou; Dominik C. Moritz; Nil Fontanals; Carmen Jiménez; David Muñoz-Rojas; Daniel Bellet Time of Failure of Metallic Nanowire Networks under Coupled Electrical and Thermal Stress: Implications for Transparent Electrodes Lifetime, ACS Applied Nano Materials, Volume 5 (2022) no. 2, p. 2102 | DOI:10.1021/acsanm.1c03821
  • David Muñoz-Rojas; Matthieu Weber; Christophe Vallée; Chiara Crivello; Abderrahime Sekkat; Fidel Toldra-Reig; Mikhael Bechelany Nanometric 3D Printing of Functional Materials by Atomic Layer Deposition, Advanced Additive Manufacturing (2022) | DOI:10.5772/intechopen.101859
  • Bikesh Gupta; Md. Anower Hossain; Asim Riaz; Astha Sharma; Doudou Zhang; Hark Hoe Tan; Chennupati Jagadish; Kylie Catchpole; Bram Hoex; Siva Karuturi Recent Advances in Materials Design Using Atomic Layer Deposition for Energy Applications, Advanced Functional Materials, Volume 32 (2022) no. 3 | DOI:10.1002/adfm.202109105
  • Alfredo Mameli; James D. Parish; Tamer Dogan; Gerwin Gelinck; Michael W. Snook; Andrew J. Straiton; Andrew L. Johnson; Auke J. Kronemeijer High‐Throughput Atomic Layer Deposition of P‐Type SnO Thin Film Transistors Using Tin(II)bis(tert‐amyloxide), Advanced Materials Interfaces, Volume 9 (2022) no. 9 | DOI:10.1002/admi.202101278
  • Viet Huong Nguyen; Masoud Akbari; Abderrahime Sekkat; Huong T. T. Ta; Joao Resende; Carmen Jiménez; Kevin P. Musselman; David Muñoz-Rojas Atmospheric atomic layer deposition of SnO2 thin films with tin(ii) acetylacetonate and water, Dalton Transactions, Volume 51 (2022) no. 24, p. 9278 | DOI:10.1039/d2dt01427k
  • Mina Shahmohammadi; Rajib Mukherjee; Cortino Sukotjo; Urmila Diwekar; Christos Takoudis Recent Advances in Theoretical Development of Thermal Atomic Layer Deposition: A Review, Nanomaterials, Volume 12 (2022) no. 5, p. 831 | DOI:10.3390/nano12050831
  • Viet Huong Nguyen; Dorina T. Papanastasiou; Joao Resende; Laetitia Bardet; Thomas Sannicolo; Carmen Jiménez; David Muñoz‐Rojas; Ngoc Duy Nguyen; Daniel Bellet Advances in Flexible Metallic Transparent Electrodes, Small, Volume 18 (2022) no. 19 | DOI:10.1002/smll.202106006
  • Ivan Kundrata; Maïssa K. S. Barr; Sarah Tymek; Dirk Döhler; Boris Hudec; Philipp Brüner; Gabriel Vanko; Marian Precner; Tadahiro Yokosawa; Erdmann Spiecker; Maksym Plakhotnyuk; Karol Fröhlich; Julien Bachmann Additive Manufacturing in Atomic Layer Processing Mode, Small Methods, Volume 6 (2022) no. 5 | DOI:10.1002/smtd.202101546
  • Sami Kinnunen; Timo Sajavaara Spatial ALD of Al2O3 and ZnO using heavy water, Surface and Coatings Technology, Volume 441 (2022), p. 128456 | DOI:10.1016/j.surfcoat.2022.128456
  • Amélie Schultheiss; Abderrahime Sekkat; Viet Huong Nguyen; Alexandre Carella; Anass Benayad; Amélie Revaux; Renaud Demadrille; David Muñoz-Rojas; Jean-Pierre Simonato High performance encapsulation of transparent conductive polymers by spatial atomic layer deposition, Synthetic Metals, Volume 284 (2022), p. 116995 | DOI:10.1016/j.synthmet.2021.116995
  • Agnieszka Priebe; Bryan Dousse; Chia-Yu Tzou; Georgios Papadopoulos; Ivo Utke; Abdelhak Bensaoula; Johann Michler; Carlos Guerra-Nuñez Real-Time In Situ Parallel Detection of Elements and Molecules with TOFMS during ALD for Chemical Quality Control of Thin Films, The Journal of Physical Chemistry C, Volume 126 (2022) no. 4, p. 1901 | DOI:10.1021/acs.jpcc.1c09544
  • Laabdia Midani; Waël Ben-Yahia; Vincent Salles; Catherine Marichy Nanofabrication via Maskless Localized Atomic Layer Deposition of Patterned Nanoscale Metal Oxide Films, ACS Applied Nano Materials, Volume 4 (2021) no. 11, p. 11980 | DOI:10.1021/acsanm.1c02550
  • Zhaodong Li; Jingjie Su; Xudong Wang Atomic layer deposition in the development of supercapacitor and lithium-ion battery devices, Carbon, Volume 179 (2021), p. 299 | DOI:10.1016/j.carbon.2021.03.041
  • Viet Huong Nguyen; Abderrahime Sekkat; Carmen Jiménez; Delfina Muñoz; Daniel Bellet; David Muñoz-Rojas Impact of precursor exposure on process efficiency and film properties in spatial atomic layer deposition, Chemical Engineering Journal, Volume 403 (2021), p. 126234 | DOI:10.1016/j.cej.2020.126234
  • Dongqing Pan Density Functional Theory (DFT)-enhanced computational fluid dynamics modeling of substrate movement and chemical deposition process in spatial atomic layer deposition, Chemical Engineering Science, Volume 234 (2021), p. 116447 | DOI:10.1016/j.ces.2021.116447
  • Abderrahime Sekkat; Viet Huong Nguyen; César Arturo Masse de La Huerta; Laetitia Rapenne; Daniel Bellet; Anne Kaminski-Cachopo; Guy Chichignoud; David Muñoz-Rojas Open-air printing of Cu2O thin films with high hole mobility for semitransparent solar harvesters, Communications Materials, Volume 2 (2021) no. 1 | DOI:10.1038/s43246-021-00181-8
  • Jianwei Ren; Tien-Chien Jen Atomic layer deposition (ALD) assisting the visibility of metal-organic frameworks (MOFs) technologies, Coordination Chemistry Reviews, Volume 430 (2021), p. 213734 | DOI:10.1016/j.ccr.2020.213734
  • Ming-Jie Zhao; Zhi-Tao Sun; Wan-Yu Wu; Chia-Hsun Hsu; Xiao-Ying Zhang; Shui-Yang Lien; Wen-Zhang Zhu Variation of Oxygen Vacancy Defects in sALD-ZnO Films Annealed in an Oxygen-Rich Ambient, ECS Journal of Solid State Science and Technology, Volume 10 (2021) no. 1, p. 014003 | DOI:10.1149/2162-8777/abd881
  • Pedram Yousefian; Siddha Pimputkar Computational fluid dynamics modeling of a new high-pressure chemical vapor deposition reactor design, Journal of Crystal Growth, Volume 566-567 (2021), p. 126155 | DOI:10.1016/j.jcrysgro.2021.126155
  • Shafiqul Islam; Halil I. Akyildiz Immobilization of ZnO thin films onto fibrous glass substrates via atomic layer deposition and investigation of photocatalytic activity, Journal of Materials Science: Materials in Electronics, Volume 32 (2021) no. 22, p. 27027 | DOI:10.1007/s10854-021-07075-y
  • Chia-Hsun Hsu; Xin-Peng Geng; Wan-Yu Wu; Ming-Jie Zhao; Pao-Hsun Huang; Xiao-Ying Zhang; Zhan-Bo Su; Zi-Rong Chen; Shui-Yang Lien Effect of oxygen annealing temperature on properties of spatial atomic layer deposited aluminum-doped zinc oxide films, Materials Science in Semiconductor Processing, Volume 133 (2021), p. 105929 | DOI:10.1016/j.mssp.2021.105929
  • Amarnath T. Sivagurunathan; Sangeeta Adhikari; Do-Heyoung Kim Strategies and implications of atomic layer deposition in photoelectrochemical water splitting: Recent advances and prospects, Nano Energy, Volume 83 (2021), p. 105802 | DOI:10.1016/j.nanoen.2021.105802
  • Yen-Wei Yeh; Su-Hui Lin; Tsung-Chi Hsu; Shouqiang Lai; Po-Tsung Lee; Shui-Yang Lien; Dong-Sing Wuu; Guisen Li; Zhong Chen; Tingzhu Wu; Hao-Chung Kuo Advanced Atomic Layer Deposition Technologies for Micro-LEDs and VCSELs, Nanoscale Research Letters, Volume 16 (2021) no. 1 | DOI:10.1186/s11671-021-03623-x
  • Dorina T Papanastasiou; Nicolas Charvin; Joao Resende; Viet Huong Nguyen; Abderrahime Sekkat; David Muñoz-Rojas; Carmen Jiménez; Lionel Flandin; Daniel Bellet Effects of non-homogeneity and oxide coating on silver nanowire networks under electrical stress: comparison between experiment and modeling, Nanotechnology, Volume 32 (2021) no. 44, p. 445702 | DOI:10.1088/1361-6528/ac1632
  • Mario Ziegler; André Dathe; Kilian Pollok; Falko Langenhorst; Uwe Hübner; Dong Wang; Peter Schaaf Metastable Atomic Layer Deposition: 3D Self-Assembly toward Ultradark Materials, ACS Nano, Volume 14 (2020) no. 11, p. 15023 | DOI:10.1021/acsnano.0c04974
  • Dorina T. Papanastasiou; Amélie Schultheiss; David Muñoz‐Rojas; Caroline Celle; Alexandre Carella; Jean‐Pierre Simonato; Daniel Bellet Transparent Heaters: A Review, Advanced Functional Materials, Volume 30 (2020) no. 21 | DOI:10.1002/adfm.201910225
  • Cesar Arturo Masse de la Huerta; Viet H. Nguyen; Abderrahime Sekkat; Chiara Crivello; Fidel Toldra‐Reig; Pedro Brandao Veiga; Serge Quessada; Carmen Jimenez; David Muñoz‐Rojas Gas‐Phase 3D Printing of Functional Materials, Advanced Materials Technologies, Volume 5 (2020) no. 12 | DOI:10.1002/admt.202000657
  • Nils Boysen; Bujamin Misimi; Arbresha Muriqi; Jan-Lucas Wree; Tim Hasselmann; Detlef Rogalla; Tobias Haeger; Detlef Theirich; Michael Nolan; Thomas Riedl; Anjana Devi A carbene stabilized precursor for the spatial atomic layer deposition of copper thin films, Chemical Communications, Volume 56 (2020) no. 89, p. 13752 | DOI:10.1039/d0cc05781a
  • Viet Huong Nguyen; Abderrahime Sekkat; César Arturo Masse de la Huerta; Fadi Zoubian; Chiara Crivello; Juan Rubio-Zuazo; Moustapha Jaffal; Marceline Bonvalot; Christophe Vallée; Olivier Aubry; Hervé Rabat; Dunpin Hong; David Muñoz-Rojas Atmospheric Plasma-Enhanced Spatial Chemical Vapor Deposition of SiO2 Using Trivinylmethoxysilane and Oxygen Plasma, Chemistry of Materials, Volume 32 (2020) no. 12, p. 5153 | DOI:10.1021/acs.chemmater.0c01148
  • Hongfei Liu; Chandreswar Mahata Metal oxides and metal thin films by atomic layer deposition (ALD), liquid-ALD, and successive ionic layer adsorption and reaction methods for THR applications, Energy Saving Coating Materials (2020), p. 153 | DOI:10.1016/b978-0-12-822103-7.00007-8
  • Jiyu Cai; Xiaoxiao Han; Xin Wang; Xiangbo Meng Atomic Layer Deposition of Two-Dimensional Layered Materials: Processes, Growth Mechanisms, and Characteristics, Matter, Volume 2 (2020) no. 3, p. 587 | DOI:10.1016/j.matt.2019.12.026
  • Kissan Mistry; Alexander Jones; Manfred Kao; Travis Wen-Kai Yeow; Mustafa Yavuz; Kevin P Musselman In-situ observation of nucleation and property evolution in films grown with an atmospheric pressure spatial atomic layer deposition system, Nano Express, Volume 1 (2020) no. 1, p. 010045 | DOI:10.1088/2632-959x/ab976c
  • Daniel Bellet; Dorina T. Papanastasiou; Joao Resende; Viet Huong Nguyen; Carmen Jiménez; Ngoc Duy Nguyen; David Muñoz-Rojas Metallic Nanowire Percolating Network: From Main Properties to Applications, Smart Nanosystems for Biomedicine, Optoelectronics and Catalysis (2020) | DOI:10.5772/intechopen.89281
  • Tamer Dogan; Roy Verbeek; Auke J. Kronemeijer; Peter A. Bobbert; Gerwin H. Gelinck; Wilfred G. van der Wiel Short‐Channel Vertical Organic Field‐Effect Transistors with High On/Off Ratios, Advanced Electronic Materials, Volume 5 (2019) no. 5 | DOI:10.1002/aelm.201900041
  • Abdullah H. Alshehri; Kissan Mistry; Viet Huong Nguyen; Khaled H. Ibrahim; David Muñoz‐Rojas; Mustafa Yavuz; Kevin P. Musselman Quantum‐Tunneling Metal‐Insulator‐Metal Diodes Made by Rapid Atmospheric Pressure Chemical Vapor Deposition, Advanced Functional Materials, Volume 29 (2019) no. 7 | DOI:10.1002/adfm.201805533
  • Hongjun Liu; Viet Huong Nguyen; Hervé Roussel; Isabelle Gélard; Laetitia Rapenne; Jean‐Luc Deschanvres; Carmen Jiménez; David Muñoz‐Rojas The Role of Humidity in Tuning the Texture and Electrical Properties of Cu2O Thin Films Deposited via Aerosol‐Assisted CVD, Advanced Materials Interfaces, Volume 6 (2019) no. 3 | DOI:10.1002/admi.201801364
  • Robert L.Z. Hoye; Judith L. MacManus-Driscoll Atmospheric Pressure Spatial Atomic Layer Deposited Metal Oxides for Thin Film Solar Cells, Advanced Micro- and Nanomaterials for Photovoltaics (2019), p. 245 | DOI:10.1016/b978-0-12-814501-2.00010-4
  • David Muñoz-Rojas; Viet Huong Nguyen; César Masse de la Huerta; Carmen Jiménez; Daniel Bellet Spatial Atomic Layer Deposition, Chemical Vapor Deposition for Nanotechnology (2019) | DOI:10.5772/intechopen.82439
  • Dongqing Pan Numerical study on the effectiveness of precursor isolation using N2 as gas barrier in spatial atomic layer deposition, International Journal of Heat and Mass Transfer, Volume 144 (2019), p. 118642 | DOI:10.1016/j.ijheatmasstransfer.2019.118642
  • David Bilger; S. Zohreh Homayounfar; Trisha L. Andrew A critical review of reactive vapor deposition for conjugated polymer synthesis, Journal of Materials Chemistry C, Volume 7 (2019) no. 24, p. 7159 | DOI:10.1039/c9tc01388a
  • F Zoubian; H Rabat; O Aubry; N Dumuis; S Dozias; D Muñozrojas; D Hong Development and characterization of an atmospheric pressure plasma reactor compatible with spatial ALD, Journal of Physics: Conference Series, Volume 1243 (2019) no. 1, p. 012002 | DOI:10.1088/1742-6596/1243/1/012002
  • Fanny Morisot; Claudio Zuliani; Joaquim Luque; Zeeshan Ali; Mireille Mouis; Viet Huong Nguyen; David Muñoz-Rojas; Oumayma Lourhzal; Michael Texier; Thomas W Cornelius; Celine Ternon ZnO based nanowire network for gas sensing applications, Materials Research Express, Volume 6 (2019) no. 8, p. 084004 | DOI:10.1088/2053-1591/ab1f60
  • Viet Huong Nguyen; Joao Resende; Dorina T. Papanastasiou; Nil Fontanals; Carmen Jiménez; David Muñoz-Rojas; Daniel Bellet Low-cost fabrication of flexible transparent electrodes based on Al doped ZnO and silver nanowire nanocomposites: impact of the network density, Nanoscale, Volume 11 (2019) no. 25, p. 12097 | DOI:10.1039/c9nr02664a
  • Sara Aghazadehchors; Viet Huong Nguyen; David Muñoz-Rojas; Carmen Jiménez; Laetitia Rapenne; Ngoc Duy Nguyen; Daniel Bellet Versatility of bilayer metal oxide coatings on silver nanowire networks for enhanced stability with minimal transparency loss, Nanoscale, Volume 11 (2019) no. 42, p. 19969 | DOI:10.1039/c9nr05658k
  • Peter Ozaveshe Oviroh; Rokhsareh Akbarzadeh; Dongqing Pan; Rigardt Alfred Maarten Coetzee; Tien-Chien Jen New development of atomic layer deposition: processes, methods and applications, Science and Technology of Advanced Materials, Volume 20 (2019) no. 1, p. 465 | DOI:10.1080/14686996.2019.1599694
  • Afzal Khan; Viet Huong Nguyen; David Muñoz-Rojas; Sara Aghazadehchors; Carmen Jiménez; Ngoc Duy Nguyen; Daniel Bellet Stability Enhancement of Silver Nanowire Networks with Conformal ZnO Coatings Deposited by Atmospheric Pressure Spatial Atomic Layer Deposition, ACS Applied Materials Interfaces, Volume 10 (2018) no. 22, p. 19208 | DOI:10.1021/acsami.8b03079
  • Viet Huong Nguyen; Daniel Bellet; Bruno Masenelli; David Muñoz-Rojas Increasing the Electron Mobility of ZnO-Based Transparent Conductive Films Deposited by Open-Air Methods for Enhanced Sensing Performance, ACS Applied Nano Materials, Volume 1 (2018) no. 12, p. 6922 | DOI:10.1021/acsanm.8b01745
  • César Masse de la Huerta; Viet Huong Nguyen; Jean-Marc Dedulle; Daniel Bellet; Carmen Jiménez; David Muñoz-Rojas Influence of the Geometric Parameters on the Deposition Mode in Spatial Atomic Layer Deposition: A Novel Approach to Area-Selective Deposition, Coatings, Volume 9 (2018) no. 1, p. 5 | DOI:10.3390/coatings9010005
  • Jae-Wook Lee; Hyun-Bum Kim; Kyung-Hyun Choi A Study on the Organic-Inorganic Multilayer Barrier Thin Films Using R2R Low-Temperature Atmospheric-Pressure Atomic Layer Deposition System, Journal of the Korean Society of Manufacturing Process Engineers, Volume 17 (2018) no. 3, p. 51 | DOI:10.14775/ksmpe.2018.17.3.051
  • Viet Huong Nguyen; Ulrich Gottlieb; Anthony Valla; Delfina Muñoz; Daniel Bellet; David Muñoz-Rojas Electron tunneling through grain boundaries in transparent conductive oxides and implications for electrical conductivity: the case of ZnO:Al thin films, Materials Horizons, Volume 5 (2018) no. 4, p. 715 | DOI:10.1039/c8mh00402a
  • Mehrdad Najafi; Valerio Zardetto; Dong Zhang; Dibyashree Koushik; Maarten S. Dörenkämper; Mariadriana Creatore; Ronn Andriessen; Paul Poodt; Sjoerd Veenstra Highly Efficient and Stable Semi‐Transparent p‐i‐n Planar Perovskite Solar Cells by Atmospheric Pressure Spatial Atomic Layer Deposited ZnO, Solar RRL, Volume 2 (2018) no. 10 | DOI:10.1002/solr.201800147

Cité par 88 documents. Sources : Crossref

Commentaires - Politique