Comptes Rendus
Demain l'énergie – Séminaire Daniel-Dautreppe, Grenoble, France, 2016
Storage of thermal solar energy
Part of the special issue:
Comptes Rendus. Physique, Demain l’énergie, Volume 18 (2017) no. 7-8, pp. 401-414

Solar thermal energy storage is used in many applications, from building to concentrating solar power plants and industry. The temperature levels encountered range from ambient temperature to more than 1000 °C, and operating times range from a few hours to several months. This paper reviews different types of solar thermal energy storage (sensible heat, latent heat, and thermochemical storage) for low- (40–120 °C) and medium-to-high-temperature (120–1000 °C) applications.

Le stockage thermique de l'énergie solaire touche de très nombreuses applications, qui vont du bâtiment aux centrales solaires à concentration en passant par l'industrie. Les niveaux de température rencontrés vont de la température ambiante à plus d'un millier de degrés, et les durées d'utilisation de quelques heures à plusieurs mois. Cet article passe en revue les différentes familles de stockage d'énergie solaire thermique (stockage sensible, latent et thermochimique), pour des applications à basses (40–120 °C) et moyennes–hautes températures (120–1000 °C).

Published online:
DOI: 10.1016/j.crhy.2017.09.008
Keywords: Sensible heat storage, Latent heat storage, Thermochemical heat storage
Mots-clés : Stockage de chaleur sensible, Stockage de chaleur latente, Stockage de chaleur enlever l'adjectif latente thermochimique

Benoît Stutz 1; Nolwenn Le Pierres 1; Frédéric Kuznik 2, 3; Kevyn Johannes 2, 3; Elena Palomo Del Barrio 4; Jean-Pierre Bédécarrats 5; Stéphane Gibout 5; Philippe Marty 6; Laurent Zalewski 7; Jerome Soto 8; Nathalie Mazet 9; Régis Olives 9; Jean-Jacques Bezian 10; Doan Pham Minh 10

1 LOCIE, Université Savoie Mont-Blanc, CNRS UMR5271, 73000 Chambéry, France
2 CETHIL, Université de Lyon, CNRS, INSA Lyon, CETHIL, UMR5008, 69621 Villeurbanne, France
3 Université Lyon 1, 69622 Villeurbanne, France
4 Université de Bordeaux, I2M UMR 5295, 33400 Talence, France
5 Université de Pau & des Pays de l'Adour, Laboratoire de thermique, énergétique et procédés–IPRA, EA1932, ENSGTI, avenue Jules-Ferry, BP7511, 64000 Pau, France
6 LEGI, Laboratoire des écoulements géophysiques et industriels, BP53, 38041 Grenoble, France
7 LGCGE, Université d'Artois, EA 4515, Laboratoire de génie civil et géo-environnement (LGCgE), 62400 Béthune, France
8 Université de Nantes, Nantes Atlantique Universités, CNRS, Laboratoire de thermocinétique de Nantes, UMR 6607, La Chantrerie, rue Christian-Pauc, BP 50609, 44306 Nantes cedex 3, France
9 CNRS-PROMES, UPR8521, Tecnosud, rambla de la thermodynamique, 66100 Perpignan, France
10 Université de Toulouse, Mines Albi, CNRS, Centre RAPSODEE, France
@article{CRPHYS_2017__18_7-8_401_0,
     author = {Beno{\^\i}t Stutz and Nolwenn Le Pierres and Fr\'ed\'eric Kuznik and Kevyn Johannes and Elena Palomo Del Barrio and Jean-Pierre B\'ed\'ecarrats and St\'ephane Gibout and Philippe Marty and Laurent Zalewski and Jerome Soto and Nathalie Mazet and R\'egis Olives and Jean-Jacques Bezian and Doan Pham Minh},
     title = {Storage of thermal solar energy},
     journal = {Comptes Rendus. Physique},
     pages = {401--414},
     year = {2017},
     publisher = {Elsevier},
     volume = {18},
     number = {7-8},
     doi = {10.1016/j.crhy.2017.09.008},
     language = {en},
}
TY  - JOUR
AU  - Benoît Stutz
AU  - Nolwenn Le Pierres
AU  - Frédéric Kuznik
AU  - Kevyn Johannes
AU  - Elena Palomo Del Barrio
AU  - Jean-Pierre Bédécarrats
AU  - Stéphane Gibout
AU  - Philippe Marty
AU  - Laurent Zalewski
AU  - Jerome Soto
AU  - Nathalie Mazet
AU  - Régis Olives
AU  - Jean-Jacques Bezian
AU  - Doan Pham Minh
TI  - Storage of thermal solar energy
JO  - Comptes Rendus. Physique
PY  - 2017
SP  - 401
EP  - 414
VL  - 18
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crhy.2017.09.008
LA  - en
ID  - CRPHYS_2017__18_7-8_401_0
ER  - 
%0 Journal Article
%A Benoît Stutz
%A Nolwenn Le Pierres
%A Frédéric Kuznik
%A Kevyn Johannes
%A Elena Palomo Del Barrio
%A Jean-Pierre Bédécarrats
%A Stéphane Gibout
%A Philippe Marty
%A Laurent Zalewski
%A Jerome Soto
%A Nathalie Mazet
%A Régis Olives
%A Jean-Jacques Bezian
%A Doan Pham Minh
%T Storage of thermal solar energy
%J Comptes Rendus. Physique
%D 2017
%P 401-414
%V 18
%N 7-8
%I Elsevier
%R 10.1016/j.crhy.2017.09.008
%G en
%F CRPHYS_2017__18_7-8_401_0
Benoît Stutz; Nolwenn Le Pierres; Frédéric Kuznik; Kevyn Johannes; Elena Palomo Del Barrio; Jean-Pierre Bédécarrats; Stéphane Gibout; Philippe Marty; Laurent Zalewski; Jerome Soto; Nathalie Mazet; Régis Olives; Jean-Jacques Bezian; Doan Pham Minh. Storage of thermal solar energy. Comptes Rendus. Physique, Demain l’énergie, Volume 18 (2017) no. 7-8, pp. 401-414. doi: 10.1016/j.crhy.2017.09.008

[1] A.I. Fernandez; M. Martinez; M. Segarra; I. Martorell; L.F. Cabeza Selection of materials with potential in sensible thermal energy storage, Sol. Energy Mater. Sol. Cells, Volume 94 (2010), pp. 1723-1729

[2] V. Ho Kon Tiat; E. Palomo del Barrio Recent patents on phase change materials and systems for latent heat thermal energy storage, Rec. Pat. Mech. Eng., Volume 4 (2011), pp. 16-28

[3] M. Liu; W. Saman; F. Bruno Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems, Renew. Sustain. Energy Rev., Volume 16 (2012), pp. 2118-2132

[4] B. Cárdenas; N. León High temperature latent heat thermal energy storage: phase change materials, design considerations and performance enhancement techniques, Renew. Sustain. Energy Rev., Volume 27 (2013), pp. 724-737

[5] B. Xu; P. Li; C. Chan Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments, Appl. Energy, Volume 160 (2015), pp. 286-307

[6] M. Liu; N.H. Tay; S. Bell; M. Belusko; R. Jacob; G. Will; W. Saman; F. Bruno Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies, Renew. Sustain. Energy Rev., Volume 53 (2016), pp. 1411-1432

[7] H. Zhang; J. Baeyens; G. Cáceres; J. Degrève; Y. Lv Thermal energy storage: recent developments and practical aspects, Prog. Energy Combust. Sci., Volume 53 (2016), pp. 1-40

[8] N. Le Pierres; D. Stitou; N. Mazet New deep-freezing process using renewable low grade heat: from the conceptual design to experimental results, Energy, Volume 32 (2007) no. 4, pp. 600-608

[9] W. Wongsuwan; S. Kumar; P. Neveu; F. Meunier A review of chemical heat pump technology and applications, Appl. Therm. Eng., Volume 21 (2001) no. 15, pp. 1489-1519

[10] H. Ogura; T. Yamamoto; K. Hiroyuki Efficiencies of CaO/H2O/Ca(OH)2 chemical heat pump for heat storing and heating/cooling, Energy, Volume 28 (2003) no. 14, pp. 1479-1493

[11] H. Bjurström; W. Raldow The absorption process for heating, cooling and energy storage – an historical survey, Int. J. Energy Res., Volume 5 (1981) no. 1, pp. 43-59

[12] S.C. Kaushik; K.T. Lam; S. Chandra; C.S. Tomar Mass and energy storage analysis of an absorption heat pump with simulated time dependent generator heat input, Energy Convers. Manag., Volume 22 (1982), pp. 183-196

[13] L. Scapino; H.A. Zondag; J. Van Bael; J. Diriken; C.C.M. Rindt Sorption heat storage for long-term low-temperature applications: a review on the advancements at material and prototype scale, App. Energy, Volume 190 (2017), pp. 920-948

[14] B. Michel; N. Mazet; P. Neveu Experimental investigation of an innovative thermochemical process operating with moist air for thermal storage of solar energy: global performances, Appl. Energy, Volume 129 (2014), pp. 177-186

[15] M. Schmidt; A. Gutierrez; M. Linder Thermochemical energy storage with CaO/Ca(OH)2 – Experimental investigation of the thermal capability at low vapor pressures in a lab scale reactor, Appl. Energy, Volume 188 (2017), pp. 672-681

[16] P. Pardo; Z. Anxionnaz-Minvielle; S. Rougé; P. Cognet; M. Cabassud Ca(OH)2/CaO reversible reaction in a fluidized bed reactor for thermochemical heat storage, Sol. Energy, Volume 107 (2014), pp. 605-616

[17] S. Mauran; P. Prades; F. L'Haridon Heat and mass transfer in consolidated reacting beds for thermochemical systems, Heat Recov. Syst. CHP, Volume 13 (1993) no. 4, pp. 315-319

[18] M. Zamengo; J. Ryu; Y. Kato Composite block of magnesium hydroxide – expanded graphite for chemical heat storage and heat pump, Appl. Therm. Eng., Volume 69 (2014), pp. 29-38

[19] G. Boulnois; N. Mazet; S. Mauran; E. Kurt Heat and mass transfers in thermochemical compound used for thermal storage, 30 June–3 July 2015, Pau, France (2015)

[20] , European Commission, 2012 (EU Energy in Figures–Statistical Pocketbook, Tech. rep.)

[21] , European Environment Agency, 2012 (Household Energy Consumption by End-Use in the EU–27, Technical report)

[22] I. Dincer; M. Rosen Thermal Energy Storage: Systems and Applications, John Wiley & Sons, 2002

[23] H. Paksoy Thermal Energy Storage for Sustainable Energy Consumption: Fundamentals, Case Studies and Design, NATO Science Series, Mathematics, Physics, and Chemistry, Springer, 2007

[24] M. Swiatek; G. Fraisse; M. Pailha Stratification enhancement for an integrated collector storage solar water heater (ICSSWH), Energy Build., Volume 106 (2015), pp. 35-43

[25] G. Fraisse; M. Pailha New concept of Integrated Collector Storage using phase change material and thermosyphon heat pipes, Mallorca, Spain, 11–14 October 2016 (2016) (9 p)

[26] P. Cui; N. Diao; C. Gao; Z. Fang Thermal investigation of in-series vertical ground heat exchangers for industrial waste heat storage, Geothermics, Volume 57 (2015), pp. 205-212

[27] L. Gao; J. Zhao; Z. Tang A review on borehole seasonal solar thermal energy storage, Energy Proc., Volume 70 (2015), pp. 209-218

[28] L. Zalewski; S. Lassue; B. Duthoit; M. Butez Study of solar walls – validating a simulation model, Build. Environ., Volume 37 (2002), pp. 109-121

[29] L. Zalewski; A. Joulin; S. Lassue; Y. Dutil; D. Rousse Experimental study of small-scale solar wall integrating phase change material, Sol. Energy, Volume 86 (2012), pp. 208-219

[30] P. Favier; L. Zalewski; S. Lassue; S. Anwar Designing an automatic control system for the improved functioning of a solar wall with phase change material (PCM), Open J. Energy Efficiency, Volume 05 (2016), pp. 19-29

[31] Z. Younsi; L. Zalewski; S. Lassue; D.R. Rousse; A. Joulin A novel technique for experimental thermophysical characterization of phase-change materials, Int. J. Thermophys., Volume 32 (2011), pp. 674-692

[32] A. Joulin; L. Zalewski; S. Lassue; H. Naji Experimental investigation of thermal characteristics of a mortar with or without a micro-encapsulated phase change material, Appl. Therm. Eng., Volume 66 (2014), pp. 171-180

[33] P. Tittelein; S. Gibout; E. Franquet; K. Johannes; L. Zalewski; F. Kuznik; J.-P. Dumas; S. Lassue; J.-P. Bédécarrats; D. David Simulation of the thermal and energy behaviour of a composite material containing encapsulated-PCM: influence of the thermodynamical modelling, Appl. Energy, Volume 140 (2015), pp. 269-274

[34] J.-P. Dumas; S. Gibout; L. Zalewski; K. Johannes; E. Franquet; S. Lassue; J.-P. Bédécarrats; P. Tittelein; F. Kuznik Interpretation of calorimetry experiments to characterise phase change materials, Int. J. Therm. Sci., Volume 78 (2014), pp. 48-55

[35] H. Liu; K.E. N'Tsoukpoe; N. Le Pierrès; L. Luo Numerical dynamic simulation and analysis of a lithium bromide/water long term solar heat-storage system, Energy, Volume 37 (2012) no. 1, pp. 346-358

[36] H. Liu; K.E. N'Tsoukpoe; N. Le Pierrès; L. Luo Evaluation of a seasonal storage system of solar energy for house heating using different absorption couples, Energy Convers. Manag., Volume 52 (2011) no. 6, pp. 2427-2436

[37] V. Bricka, F. Kuznik, K. Johannes, Evaluation of thermal energy storage potential in low-energy buildings in France, in: Proc. ISES Solar World Congress, 28 August–2 September 2011, Kassel, Germany, 10 p.

[38] K. Johannes; F. Kuznik; J.L. Hubert; F. Durier; C. Obrecht Design and characterisation of a high powered energy dense zeolite thermal energystorage system for buildings, Appl. Energy, Volume 159 (2015), pp. 80-86

[39] B. Michel; N. Mazet; P. Neveu Experimental investigation of an open thermochemical storage process for thermal of solar energy operating with a hydrate salt: local reactive bed evolution, Appl. Energy, Volume 180 (2016), pp. 234-244

[40] Y. Tian; C.Y. Zhao A review of solar collectors and thermal energy storage in solar thermal applications, Appl. Energy, Volume 104 (2013), pp. 538-553

[41] M. Bunea; C. Hildbrand; A. Duret; S. Eicher; L. Péclat; S. Citherlet Analysis of a medium temperature solar thermal installation with heat storage for industrial applications, Energy Proc., Volume 91 (2016), pp. 601-610

[42] G. Zanganeh; M. Commerford; A. Haselbacher; A. Pedretti; A. Steinfeld Stabilization of the outflow temperature of a packed bed energy storage by combining rocks with phase change materials, Appl. Therm. Eng., Volume 70 (2014), pp. 316-320

[43] X. Py; R. Olives Thermal energy storage for CSP processes, Handbook of Clean Energy Systems, 2015 (1116 pp)

[44] A. Gil; M. Medrano; I. Martorell; A. Lazaro; P. Dolado; B. Zalba; L. Gao; J. Zhao; Z. Tang State of the art on high temperature for power generation. A review on borehole seasonal solar thermal energy storage, Energy Proc., Volume 70 (2015), pp. 209-218

[45] M. Medrano; A. Gil; I. Martorell; X. Potau; L. Cabeza State of the art on high-temperature thermal energy storage for power generation. Part 2-Case studies, Renew. Sustain. Energy Rev., Volume 14 (2010), pp. 56-72

[46] A. Meffre; X. Py; R. Olives; C. Bessada; E. Veron; P. Echegut High-temperature sensible heat-based thermal energy storage materials made of vitrified MSWI fly ashes, Waste Biomass Valoriz., Volume 6 (2015) no. 6, pp. 1003-1014

[47] J.-F. Hoffmann; T. Fasquelle; V. Goetz; X. Py Experimental and numerical investigation of a thermocline thermal energy storage tank, Appl. Therm. Eng., Volume 114 (2017), pp. 896-904

[48] X. Py; N. Calvet; R. Olives; A. Meffre; P. Echegut; C. Bessada; E. Veron; S. Ory Recycled material for sensible heat based thermal energy storage to be used in concentrated solar thermal power plants, J. Solar Energy Eng., Volume 133 (2011), pp. 1-8

[49] F. Motte; Q. Falcoz; E. Veron; X. Py Compatibility tests between Solar Salt and thermal storage ceramics from inorganic industrial wastes, Appl. Energy, Volume 155 (2015), pp. 14-22

[50] T. Fasquelle; Q. Falcoz; P. Neveu; J. Walker; G. Flamant Compatibility study between synthetic oil and vitrified wastes for direct thermal energy storage, Waste Biomass Valoriz., Volume 8 (2017) no. 3, pp. 621-631

[51] S. Tescari; A. Singh; C. Agrafiotis; L. de Oliveira; S. Breuer; B. Schlögl-Knothe; M. Roeb; C. Sattler Experimental evaluation of a pilot-scale thermochemical storage system for a concentrated solar power plant, Appl. Energy, Volume 189 (2017), pp. 66-75

[52] J.P. Muthusamy; S. Abanades; T. Shamim; N. Calvet Numerical modeling and optimization of an entrained particle-flow thermochemical Solar reactor for metal oxide reduction, Energy Proc., Volume 69 (2015), pp. 947-956

[53] L. André; S. Abanades; G. Flamant Screening of thermochemical systems based on solid–gas reversible reactions for high temperature solar thermal energy storage, Renew. Sustain. Energy Rev., Volume 64 (2016), pp. 703-715

[54] E. Serris; L. Favergeon; M. Pijolat; M. Soustelle; P. Nortier; R.S. Gärtner; T. Chopin; Z. Habib Study of the hydration of CaO powder by gas–solid reaction, Cem. Concr. Res., Volume 41 (2011), pp. 1078-1084

[55] Y. Criado; A. Huille; S. Rougé; J.C. Abanades Experimental investigation and model validation of a CaO/Ca(OH)2 fluidized bed reactor for thermochemical energy storage applications, Chem. Eng. J., Volume 313 (2017), pp. 1194-1205

[56] N. Mazet, B. Michel, G. Boulnois, S. Mauran, D. Stitou, Mass transfer in thermochemical solid/gas reactor for thermal storage applications, in: ISHPC 2014, International Sorption Heat Pump Conference, 31 March–3 April 2014, University of Maryland, College Park, Maryland, USA.

[57] S. Biloe; S. Mauran Gas flow through highly porous graphite matrices, Carbon, Volume 41 (2003) no. 3, pp. 525-537

[58] F. Achchaq; E. Palomo del Barrio; A. Renaud; S. Ben-Khemis Characterization of Li2K(OH)3 as material for thermal energy storage at high temperature, 19-21 May 2015, Beijin, China (2015)

[59] F. Achchaq; E. Palomo del Barrio A proposition of peritectic structures as candidates for thermal energy storage, 17–20 May 2016, La Rochelle, France (2016) (6 p)

Cited by Sources:

Comments - Policy