Solar thermal energy storage is used in many applications, from building to concentrating solar power plants and industry. The temperature levels encountered range from ambient temperature to more than 1000 °C, and operating times range from a few hours to several months. This paper reviews different types of solar thermal energy storage (sensible heat, latent heat, and thermochemical storage) for low- (40–120 °C) and medium-to-high-temperature (120–1000 °C) applications.
Le stockage thermique de l'énergie solaire touche de très nombreuses applications, qui vont du bâtiment aux centrales solaires à concentration en passant par l'industrie. Les niveaux de température rencontrés vont de la température ambiante à plus d'un millier de degrés, et les durées d'utilisation de quelques heures à plusieurs mois. Cet article passe en revue les différentes familles de stockage d'énergie solaire thermique (stockage sensible, latent et thermochimique), pour des applications à basses (40–120 °C) et moyennes–hautes températures (120–1000 °C).
Mots-clés : Stockage de chaleur sensible, Stockage de chaleur latente, Stockage de chaleur enlever l'adjectif latente thermochimique
Benoît Stutz 1; Nolwenn Le Pierres 1; Frédéric Kuznik 2, 3; Kevyn Johannes 2, 3; Elena Palomo Del Barrio 4; Jean-Pierre Bédécarrats 5; Stéphane Gibout 5; Philippe Marty 6; Laurent Zalewski 7; Jerome Soto 8; Nathalie Mazet 9; Régis Olives 9; Jean-Jacques Bezian 10; Doan Pham Minh 10
@article{CRPHYS_2017__18_7-8_401_0, author = {Beno{\^\i}t Stutz and Nolwenn Le Pierres and Fr\'ed\'eric Kuznik and Kevyn Johannes and Elena Palomo Del Barrio and Jean-Pierre B\'ed\'ecarrats and St\'ephane Gibout and Philippe Marty and Laurent Zalewski and Jerome Soto and Nathalie Mazet and R\'egis Olives and Jean-Jacques Bezian and Doan Pham Minh}, title = {Storage of thermal solar energy}, journal = {Comptes Rendus. Physique}, pages = {401--414}, publisher = {Elsevier}, volume = {18}, number = {7-8}, year = {2017}, doi = {10.1016/j.crhy.2017.09.008}, language = {en}, }
TY - JOUR AU - Benoît Stutz AU - Nolwenn Le Pierres AU - Frédéric Kuznik AU - Kevyn Johannes AU - Elena Palomo Del Barrio AU - Jean-Pierre Bédécarrats AU - Stéphane Gibout AU - Philippe Marty AU - Laurent Zalewski AU - Jerome Soto AU - Nathalie Mazet AU - Régis Olives AU - Jean-Jacques Bezian AU - Doan Pham Minh TI - Storage of thermal solar energy JO - Comptes Rendus. Physique PY - 2017 SP - 401 EP - 414 VL - 18 IS - 7-8 PB - Elsevier DO - 10.1016/j.crhy.2017.09.008 LA - en ID - CRPHYS_2017__18_7-8_401_0 ER -
%0 Journal Article %A Benoît Stutz %A Nolwenn Le Pierres %A Frédéric Kuznik %A Kevyn Johannes %A Elena Palomo Del Barrio %A Jean-Pierre Bédécarrats %A Stéphane Gibout %A Philippe Marty %A Laurent Zalewski %A Jerome Soto %A Nathalie Mazet %A Régis Olives %A Jean-Jacques Bezian %A Doan Pham Minh %T Storage of thermal solar energy %J Comptes Rendus. Physique %D 2017 %P 401-414 %V 18 %N 7-8 %I Elsevier %R 10.1016/j.crhy.2017.09.008 %G en %F CRPHYS_2017__18_7-8_401_0
Benoît Stutz; Nolwenn Le Pierres; Frédéric Kuznik; Kevyn Johannes; Elena Palomo Del Barrio; Jean-Pierre Bédécarrats; Stéphane Gibout; Philippe Marty; Laurent Zalewski; Jerome Soto; Nathalie Mazet; Régis Olives; Jean-Jacques Bezian; Doan Pham Minh. Storage of thermal solar energy. Comptes Rendus. Physique, Demain l’énergie, Volume 18 (2017) no. 7-8, pp. 401-414. doi : 10.1016/j.crhy.2017.09.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2017.09.008/
[1] Selection of materials with potential in sensible thermal energy storage, Sol. Energy Mater. Sol. Cells, Volume 94 (2010), pp. 1723-1729
[2] Recent patents on phase change materials and systems for latent heat thermal energy storage, Rec. Pat. Mech. Eng., Volume 4 (2011), pp. 16-28
[3] Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems, Renew. Sustain. Energy Rev., Volume 16 (2012), pp. 2118-2132
[4] High temperature latent heat thermal energy storage: phase change materials, design considerations and performance enhancement techniques, Renew. Sustain. Energy Rev., Volume 27 (2013), pp. 724-737
[5] Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments, Appl. Energy, Volume 160 (2015), pp. 286-307
[6] Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies, Renew. Sustain. Energy Rev., Volume 53 (2016), pp. 1411-1432
[7] Thermal energy storage: recent developments and practical aspects, Prog. Energy Combust. Sci., Volume 53 (2016), pp. 1-40
[8] New deep-freezing process using renewable low grade heat: from the conceptual design to experimental results, Energy, Volume 32 (2007) no. 4, pp. 600-608
[9] A review of chemical heat pump technology and applications, Appl. Therm. Eng., Volume 21 (2001) no. 15, pp. 1489-1519
[10] Efficiencies of CaO/H2O/Ca(OH)2 chemical heat pump for heat storing and heating/cooling, Energy, Volume 28 (2003) no. 14, pp. 1479-1493
[11] The absorption process for heating, cooling and energy storage – an historical survey, Int. J. Energy Res., Volume 5 (1981) no. 1, pp. 43-59
[12] Mass and energy storage analysis of an absorption heat pump with simulated time dependent generator heat input, Energy Convers. Manag., Volume 22 (1982), pp. 183-196
[13] Sorption heat storage for long-term low-temperature applications: a review on the advancements at material and prototype scale, App. Energy, Volume 190 (2017), pp. 920-948
[14] Experimental investigation of an innovative thermochemical process operating with moist air for thermal storage of solar energy: global performances, Appl. Energy, Volume 129 (2014), pp. 177-186
[15] Thermochemical energy storage with CaO/Ca(OH)2 – Experimental investigation of the thermal capability at low vapor pressures in a lab scale reactor, Appl. Energy, Volume 188 (2017), pp. 672-681
[16] Ca(OH)2/CaO reversible reaction in a fluidized bed reactor for thermochemical heat storage, Sol. Energy, Volume 107 (2014), pp. 605-616
[17] Heat and mass transfer in consolidated reacting beds for thermochemical systems, Heat Recov. Syst. CHP, Volume 13 (1993) no. 4, pp. 315-319
[18] Composite block of magnesium hydroxide – expanded graphite for chemical heat storage and heat pump, Appl. Therm. Eng., Volume 69 (2014), pp. 29-38
[19] Heat and mass transfers in thermochemical compound used for thermal storage, 30 June–3 July 2015, Pau, France (2015)
[20] , European Commission, 2012 (EU Energy in Figures–Statistical Pocketbook, Tech. rep.)
[21] , European Environment Agency, 2012 (Household Energy Consumption by End-Use in the EU–27, Technical report)
[22] Thermal Energy Storage: Systems and Applications, John Wiley & Sons, 2002
[23] Thermal Energy Storage for Sustainable Energy Consumption: Fundamentals, Case Studies and Design, NATO Science Series, Mathematics, Physics, and Chemistry, Springer, 2007
[24] Stratification enhancement for an integrated collector storage solar water heater (ICSSWH), Energy Build., Volume 106 (2015), pp. 35-43
[25] New concept of Integrated Collector Storage using phase change material and thermosyphon heat pipes, Mallorca, Spain, 11–14 October 2016 (2016) (9 p)
[26] Thermal investigation of in-series vertical ground heat exchangers for industrial waste heat storage, Geothermics, Volume 57 (2015), pp. 205-212
[27] A review on borehole seasonal solar thermal energy storage, Energy Proc., Volume 70 (2015), pp. 209-218
[28] Study of solar walls – validating a simulation model, Build. Environ., Volume 37 (2002), pp. 109-121
[29] Experimental study of small-scale solar wall integrating phase change material, Sol. Energy, Volume 86 (2012), pp. 208-219
[30] Designing an automatic control system for the improved functioning of a solar wall with phase change material (PCM), Open J. Energy Efficiency, Volume 05 (2016), pp. 19-29
[31] A novel technique for experimental thermophysical characterization of phase-change materials, Int. J. Thermophys., Volume 32 (2011), pp. 674-692
[32] Experimental investigation of thermal characteristics of a mortar with or without a micro-encapsulated phase change material, Appl. Therm. Eng., Volume 66 (2014), pp. 171-180
[33] Simulation of the thermal and energy behaviour of a composite material containing encapsulated-PCM: influence of the thermodynamical modelling, Appl. Energy, Volume 140 (2015), pp. 269-274
[34] Interpretation of calorimetry experiments to characterise phase change materials, Int. J. Therm. Sci., Volume 78 (2014), pp. 48-55
[35] Numerical dynamic simulation and analysis of a lithium bromide/water long term solar heat-storage system, Energy, Volume 37 (2012) no. 1, pp. 346-358
[36] Evaluation of a seasonal storage system of solar energy for house heating using different absorption couples, Energy Convers. Manag., Volume 52 (2011) no. 6, pp. 2427-2436
[37] V. Bricka, F. Kuznik, K. Johannes, Evaluation of thermal energy storage potential in low-energy buildings in France, in: Proc. ISES Solar World Congress, 28 August–2 September 2011, Kassel, Germany, 10 p.
[38] Design and characterisation of a high powered energy dense zeolite thermal energystorage system for buildings, Appl. Energy, Volume 159 (2015), pp. 80-86
[39] Experimental investigation of an open thermochemical storage process for thermal of solar energy operating with a hydrate salt: local reactive bed evolution, Appl. Energy, Volume 180 (2016), pp. 234-244
[40] A review of solar collectors and thermal energy storage in solar thermal applications, Appl. Energy, Volume 104 (2013), pp. 538-553
[41] Analysis of a medium temperature solar thermal installation with heat storage for industrial applications, Energy Proc., Volume 91 (2016), pp. 601-610
[42] Stabilization of the outflow temperature of a packed bed energy storage by combining rocks with phase change materials, Appl. Therm. Eng., Volume 70 (2014), pp. 316-320
[43] Thermal energy storage for CSP processes, Handbook of Clean Energy Systems, 2015 (1116 pp)
[44] State of the art on high temperature for power generation. A review on borehole seasonal solar thermal energy storage, Energy Proc., Volume 70 (2015), pp. 209-218
[45] State of the art on high-temperature thermal energy storage for power generation. Part 2-Case studies, Renew. Sustain. Energy Rev., Volume 14 (2010), pp. 56-72
[46] High-temperature sensible heat-based thermal energy storage materials made of vitrified MSWI fly ashes, Waste Biomass Valoriz., Volume 6 (2015) no. 6, pp. 1003-1014
[47] Experimental and numerical investigation of a thermocline thermal energy storage tank, Appl. Therm. Eng., Volume 114 (2017), pp. 896-904
[48] Recycled material for sensible heat based thermal energy storage to be used in concentrated solar thermal power plants, J. Solar Energy Eng., Volume 133 (2011), pp. 1-8
[49] Compatibility tests between Solar Salt and thermal storage ceramics from inorganic industrial wastes, Appl. Energy, Volume 155 (2015), pp. 14-22
[50] Compatibility study between synthetic oil and vitrified wastes for direct thermal energy storage, Waste Biomass Valoriz., Volume 8 (2017) no. 3, pp. 621-631
[51] Experimental evaluation of a pilot-scale thermochemical storage system for a concentrated solar power plant, Appl. Energy, Volume 189 (2017), pp. 66-75
[52] Numerical modeling and optimization of an entrained particle-flow thermochemical Solar reactor for metal oxide reduction, Energy Proc., Volume 69 (2015), pp. 947-956
[53] Screening of thermochemical systems based on solid–gas reversible reactions for high temperature solar thermal energy storage, Renew. Sustain. Energy Rev., Volume 64 (2016), pp. 703-715
[54] Study of the hydration of CaO powder by gas–solid reaction, Cem. Concr. Res., Volume 41 (2011), pp. 1078-1084
[55] Experimental investigation and model validation of a CaO/Ca(OH)2 fluidized bed reactor for thermochemical energy storage applications, Chem. Eng. J., Volume 313 (2017), pp. 1194-1205
[56] N. Mazet, B. Michel, G. Boulnois, S. Mauran, D. Stitou, Mass transfer in thermochemical solid/gas reactor for thermal storage applications, in: ISHPC 2014, International Sorption Heat Pump Conference, 31 March–3 April 2014, University of Maryland, College Park, Maryland, USA.
[57] Gas flow through highly porous graphite matrices, Carbon, Volume 41 (2003) no. 3, pp. 525-537
[58] Characterization of Li2K(OH)3 as material for thermal energy storage at high temperature, 19-21 May 2015, Beijin, China (2015)
[59] A proposition of peritectic structures as candidates for thermal energy storage, 17–20 May 2016, La Rochelle, France (2016) (6 p)
Cited by Sources:
Comments - Policy