Comptes Rendus
Demain l'énergie – Séminaire Daniel-Dautreppe, Grenoble, France, 2016
The new paradigm of photovoltaics: From powering satellites to powering humanity
[Le nouveau paradigme de l'énergie solaire photovoltaïque : de l'alimentation électrique des satellites à celle de l'humanité]
Comptes Rendus. Physique, Volume 18 (2017) no. 7-8, pp. 381-390.

L'effet photovoltaïque a été découvert par Edmond Becquerel en 1839. Il a fallu 115 ans pour fabriquer la première cellule efficace à hauteur de quelques watts, puis environ 50 ans pour atteindre 3 GW de capacité installée dans le monde, et seulement 13 ans pour atteindre 300 GW en 2016. 500 GW sont attendus en 2020, et plus d'un TW au cours de la prochaine décennie. Comment une telle accélération a-t-elle été possible ? Quels sont les mécanismes de la conversion photovoltaïque ? Son rendement maximum ? Quels scénarios sont établis pour le futur dans le contexte de la transition énergétique ? L'article examinera tous ces aspects, en partant du contexte historique jusqu'à l'état de l'art actuel, en incluant les cellules solaires émergentes et les nouveaux concepts.

The photovoltaic effect has been discovered by Edmond Becquerel in 1839. Then it took 115 years to make the first efficient solar cell, with a few watts produced, about 50 years to deploy 3 GW of production capacity worldwide, and only 13 years to reach 300 GW in 2016. 500 GW are expected in 2020, and the TW within the next decade. How did this occur? How does photovoltaics work? What is the physical limit of conversion efficiency? What road map for photovoltaics in the energy transition? This paper aims at providing a review and discussion of these aspects, from the historical background to the state of the art and the emerging devices and concepts.

Publié le :
DOI : 10.1016/j.crhy.2017.09.003
Keywords: Photovoltaic energy, Climate mitigation, Solar cells, Silicon, Perovskite, New concepts
Mot clés : Énergie photovoltaïque, Changement climatique, Cellules solaires, Silicium, Perovskite, Nouveaux concepts
Daniel Lincot 1

1 CNRS, Institut photovoltaïque d'Île-de-France (IPVF), 30, route 128, 91120 Palaiseau, France
@article{CRPHYS_2017__18_7-8_381_0,
     author = {Daniel Lincot},
     title = {The new paradigm of photovoltaics: {From} powering satellites to powering humanity},
     journal = {Comptes Rendus. Physique},
     pages = {381--390},
     publisher = {Elsevier},
     volume = {18},
     number = {7-8},
     year = {2017},
     doi = {10.1016/j.crhy.2017.09.003},
     language = {en},
}
TY  - JOUR
AU  - Daniel Lincot
TI  - The new paradigm of photovoltaics: From powering satellites to powering humanity
JO  - Comptes Rendus. Physique
PY  - 2017
SP  - 381
EP  - 390
VL  - 18
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crhy.2017.09.003
LA  - en
ID  - CRPHYS_2017__18_7-8_381_0
ER  - 
%0 Journal Article
%A Daniel Lincot
%T The new paradigm of photovoltaics: From powering satellites to powering humanity
%J Comptes Rendus. Physique
%D 2017
%P 381-390
%V 18
%N 7-8
%I Elsevier
%R 10.1016/j.crhy.2017.09.003
%G en
%F CRPHYS_2017__18_7-8_381_0
Daniel Lincot. The new paradigm of photovoltaics: From powering satellites to powering humanity. Comptes Rendus. Physique, Volume 18 (2017) no. 7-8, pp. 381-390. doi : 10.1016/j.crhy.2017.09.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2017.09.003/

[1] E. Becquerel Mémoire sur les effets électriques produits sous l'influence des rayons solaires, C. R. Acad. Sci. Paris, Volume 9 (1839), p. 561

[2] https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf

[3] W. Smith The action of light on selenium, J. Soc. Telegraph Eng., Volume 2 (1873), p. 32

[4] W.G. Adams; R.E. Day The action of light on selenium, Philos. Trans. R. Soc. Lond., Volume 168 (1877), p. 341

[5] C.E. Fritts On a new form of selenium photocell, Am. J. Sci., Volume 26 (1883), p. 465

[6] W. Siemens On the electromotive action of illuminated selenium discovered by Mr. Fritts of New York, Van Nostrand Eng. Mag., Volume 32 (1885), p. 392

[7] C. Maxwell, letter, 31 October 1876, Archives of the Royal Society, London, RR, p. 429.

[8] A. Mouchot La chaleur solaire et ses applications industrielles, 1879 A. Blanchard (Ed.), Paris, 1980

[9] J. Perlin From Space to Earth, the Story of Solar Electricity, AATEC Publications, 1999, p. 18

[10] A. Einstein On a heuristic viewpoint concerning the production and transformation of light, Ann. Phys. (Berlin), Volume 17 (1905), p. 132

[11] M. Riordan; L. Hoddeson The origin of the PN junction, IEEE Spectr. ( June 1997 ), p. 46 (and references therein)

[12] R. Ohl, Ligh sensitive electric device, US patent No. 2,402,662, priority date 1941.

[13] E. Kingston; R. Ohl; E.F. Kingsbury; R.S. Ohl Photoelectric properties of ionically bombarded silicon, Bell Syst. Tech. J., Volume 31 (1952), p. 814

[14] R.H. Bube Photovoltaic materials, Series on Properties of Semiconducting Materials, vol. 1, Imperial College Press, 1998, p. 36 (and references therein)

[15] D.M. Chapin; C.S. Fuller; G.L. Pearson A new silicon P–N junction photocell for converting solar radiation into electrical power, J. Appl. Phys., Volume 25 (1954), p. 676

[16] M. Rodot, La conversion de l'énergie solaire en énergie électrique par les semiconducteurs: thermopiles et photopiles, in: Proceedings of the International Congress “Thermal Applications of Solar Energy in Research and Industry”, Montlouis, France, 23–28 juin 1958, CNRS editions, p. 697 (in French).

[17] M.A. Green; K. Emery; K. Buecher; D.L. King Prog. Photovolt., 3 (1995), p. 51

[18] Press release, Sun Power web site, 26 June 2016.

[19] https://www.nrel.gov/pv/assets/images/efficiency-chart.png (Record PV cell efficiencies chart, National Renewable Energy Laboratory)

[20] K. Yoshikawa et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%, Nat. Energy, Volume 2 (2017)

[21] J. Loferski The first 40 years: a brief history of modern PV age, Prog. Photovolt., Volume 1 (1993), p. 67

[22] D.A. Jenny; J.J. Loferski; P. Rappaport Photovoltaic effect in GaAs p–n junctions and solar energy conversion, Phys. Rev., Volume 101 ( February 1956 )

[23] E. Yablonovitch; O.D. Miller; S.R. Kurtz The opto-electronic physics that broke the efficiency limit in solar cells, Austin, TX, USA (2012), p. 001556

[24] D.C. Reynolds; G. Leies; L.L. Antes; R.E. Marburger Photovoltaic effect in cadmium sulfide, Phys. Rev., Volume 96 (1954), p. 533

[25] W. Palz; J. Besson; T. Nguyen; J. Vedel New results on CdS solar cells, 9th EEE PV Specialist Conference, 1972, p. 91

[26] D.A. Cusano CdTe Solar Cells and PV heterojunctions in II–VI Compounds, Solid-State Electron., Volume 2 (1963), p. 217

[27] L.C. Hirst; N.J. Ekins-Daukes Fundamental losses in solar cells, Prog. Photovolt. Res. Appl., Volume 19 (2011), pp. 286-293

[28] M.B. Prince Silicon solar energy converters, J. Appl. Phys., Volume 26 (1954), p. 534

[29] J.J. Loferski Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion, J. Appl. Phys., Volume 27 (1956), p. 777

[30] W. Shockley; H. Queisser Detailed balance limit of efficiency of p–n junction solar cells, J. Appl. Phys., Volume 32 (1961), p. 510

[31] M. Green Third Generation Photovoltaics: Advanced Solar Energy Conversion, Springer, 2003

[32] S. Essig et al. Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions, Nat. Energy, Volume 2 (2017)

[33] M. Paire et al. Toward microscale Cu(In, Ga)Se2 solar cells for efficient conversion and optimized material usage: theoretical evaluation, J. Appl. Phys., Volume 108 (2010)

[34] D. Abou-Ras et al. Innovation highway: breakthrough milestones and key developments in chalcopyrite photovoltaics from a retrospective viewpoint, Thin Solid Films, Volume 633 (2017), p. 2

[35] C. Broussillou et al. Statistical process control for Cu(In, Ga) (S,Se)2 electrodeposition-based manufacturing process of 60×120 cm2 modules up to 14,0% efficiency, New Orleans, LA, USA (2015), pp. 1-5 | DOI

[36] B. O'Regan; M. Gratzel Nature, 353 (1991), pp. 737-740

[37] A. Kojima et al. Organometal Halide Perovskites as visible light sensitizers for photovoltaic cells, J. Am. Chem. Soc., Volume 131 (2009), p. 6050

[38] N.G. Park Perovkite solar cells: an emerging PV technology, Mater. Today, Volume 18 (2015), p. 65

[39] M. Saliba et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency, Energy Environ. Sci., Volume 9 (2016), pp. 1989-1997

[40] D. Lincot De la lumière à l'énergie : de la photosynthèse au photovoltaïque, Actual. Chim., Volume 2016 (2016) no. 408–409, pp. 54-60

[41] F. Gibelli; L. Lombez; J.-F. Guillemoles Two carrier temperatures non-equilibrium generalized Planck law for semiconductors, Physica B, Condens. Matter, Volume 498 (2016), pp. 7-14

[42] B. Behaghel et al. Absorption enhancement through Fabry–Pérot resonant modes in a 430 ∼ nm thick InGaAs/GaAsP multiple quantum wells solar cell, Appl. Phys. Lett., Volume 106 (2015)

[43] H. Scheer Solare Weltwirtschaft, A. Kunstmann GmbH, Munchen, 1999 (Le solaire et l'économie mondiale, 2001, Solin, Actes sud The Solar Economy: Renewable Energy for a Sustainable Global Future, 2002, Earthscan)

[44] W. Palz The Emergence of Electricity from the Sun: Power for the World, Pan Stanford Publishing, 2011

[45] https://www.iea.org/publications/freepublications/publication/TechnologyRoadmapSolarPhotovoltaicEnergy_2014edition.pdf

[46] D. Swanson A vision for Crystalline Silicon photovoltaics, Prog. Photovolt., Volume 14 (2006), p. 443

[47] http://iea-pvps.org/fileadmin/dam/public/report/statistics/IEA-PVPS_-_A_Snapshot_of_Global_PV_-_1992-2016__1_.pdf

[48] http://www.irena.org/DocumentDownloads/Publications/IRENA_REthinking_Energy_2017.pdf

[49] http://energy.mit.edu/wp-content/uploads/2015/05/MITEI-The-Future-of-Solar-Energy.pdf

[50] http://itrpv.net/Reports/Downloads/:ITRPV_Seventh_Edition_including_maturity_report_20161026.pdf

[51] http://www.ipvf.fr/wp-content/uploads/2016/03/Mid-term-technology-strategy-in-PV-EN.pdf

[52] C. Breyer et al. On the role of solar photovoltaics in global energy transition scenarios, Prog. Photovolt.: Res. Appl. (2017) (DOI: 10.1002)

[53] F. Creutzig et al. The underestimated potential of solar energy to mitigate climate change, Nat. Energy, Volume 2 (2017)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Organic photovoltaic materials and devices

Jean-Michel Nunzi

C. R. Phys (2002)


Hybrid bulk heterojunction solar cells based on blends of TiO2 nanorods and P3HT

Johann Bouclé; Sabina Chyla; Milo S.P. Shaffer; ...

C. R. Phys (2008)


Fabrication and characterization of ZnO nanowires/CdSe/CuSCN eta-solar cell

Ramon Tena-Zaera; Margaret A. Ryan; Abou Katty; ...

C. R. Chim (2006)