Comptes Rendus
Demain l'énergie – Séminaire Daniel-Dautreppe, Grenoble, France, 2016
Lighter structures for transports: The role of innovation in metallurgy
Comptes Rendus. Physique, Volume 18 (2017) no. 7-8, pp. 445-452.

The landscape of energy production and use is facing great challenges in the transportation sectors. The two main means of transportation, automobiles and airplanes, are mainly made from metals. The necessity of reducing their carbon emission translates into major stakes for weight reduction, which can only be the result of an interplay between improving the alloys and the part's geometry. This contribution discusses some of the strategies for structural weight reduction based on innovative alloy design in aluminum alloys and steels and on innovative processing by additive manufacturing.

Le paysage de la production d'énergie et de son utilisation est confronté à des défis importants dans le secteur des transports. Les deux principaux moyens de transport, automobile et aérien, sont principalement fabriqués avec des métaux. La nécessité de réduire leurs émissions de CO2 se traduit par une exigence majeure d'allègement, qui ne peut résulter que d'une action conjuguée d'amélioration des alliages et de la géométrie des pièces. Cette contribution discute certaines des stratégies pour l'allègement des structures basées sur la conception innovante d'alliages d'aluminium et d'aciers et sur les procédés innovants par fabrication additive.

Published online:
DOI: 10.1016/j.crhy.2017.09.006
Keywords: Weight saving, Alloy design, Physical metallurgy, Additive manufacturing
Mot clés : Allègement des structures, Conception d'alliages, Métallurgie physique, Fabrication additive

Alexis Deschamps 1; Guilhem Martin 1; Rémy Dendievel 1; Hugo P. Van Landeghem 1

1 Université Grenoble Alpes, CNRS, Grenoble INP, SIMaP, 38000 Grenoble, France
@article{CRPHYS_2017__18_7-8_445_0,
     author = {Alexis Deschamps and Guilhem Martin and R\'emy Dendievel and Hugo P. Van Landeghem},
     title = {Lighter structures for transports: {The} role of innovation in metallurgy},
     journal = {Comptes Rendus. Physique},
     pages = {445--452},
     publisher = {Elsevier},
     volume = {18},
     number = {7-8},
     year = {2017},
     doi = {10.1016/j.crhy.2017.09.006},
     language = {en},
}
TY  - JOUR
AU  - Alexis Deschamps
AU  - Guilhem Martin
AU  - Rémy Dendievel
AU  - Hugo P. Van Landeghem
TI  - Lighter structures for transports: The role of innovation in metallurgy
JO  - Comptes Rendus. Physique
PY  - 2017
SP  - 445
EP  - 452
VL  - 18
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crhy.2017.09.006
LA  - en
ID  - CRPHYS_2017__18_7-8_445_0
ER  - 
%0 Journal Article
%A Alexis Deschamps
%A Guilhem Martin
%A Rémy Dendievel
%A Hugo P. Van Landeghem
%T Lighter structures for transports: The role of innovation in metallurgy
%J Comptes Rendus. Physique
%D 2017
%P 445-452
%V 18
%N 7-8
%I Elsevier
%R 10.1016/j.crhy.2017.09.006
%G en
%F CRPHYS_2017__18_7-8_445_0
Alexis Deschamps; Guilhem Martin; Rémy Dendievel; Hugo P. Van Landeghem. Lighter structures for transports: The role of innovation in metallurgy. Comptes Rendus. Physique, Volume 18 (2017) no. 7-8, pp. 445-452. doi : 10.1016/j.crhy.2017.09.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2017.09.006/

[1] A. Mayyas; A. Qattawi; M. Omar; D. Shan Design for sustainability in automotive industry: a comprehensive review, Renew. Sustain. Energy Rev., Volume 16 (2012), pp. 1845-1862 | DOI

[2] R. Geyer Parametric assessment of climate change impacts of automotive material substitution, Environ. Sci. Technol., Volume 42 (2008), pp. 6973-6979 | DOI

[3] R. Dhingra; S. Das Life cycle energy and environmental evaluation of downsized vs. lightweight material automotive engines, J. Clean. Prod., Volume 85 (2014), pp. 347-358 | DOI

[4] E. Zervas Analysis of CO2 emissions and other characteristics of new German passenger cars, Energy Fuels, Volume 23 (2009), pp. 244-252 | DOI

[5] F. Del Pero; M. Delogu; M. Pierini The effect of lightweighting in automotive LCA perspective: estimation of mass-induced fuel consumption reduction for gasoline turbocharged vehicles, J. Clean. Prod., Volume 154 (2017), pp. 566-577 | DOI

[6] B. Alcott Jevons' paradox, Ecol. Econ., Volume 54 (2005), pp. 9-21 | DOI

[7] R.-C. Jou; T.-Y. Chen Willingness to pay of air passengers for carbon-offset, Sustainability, Volume 7 (2015), pp. 3071-3085 | DOI

[8] O. Hardouin Duparc Alfred Wilm and the beginnings of Duralumin, Z. Metallkd., Volume 96 (2005), pp. 398-404 | DOI

[9] O. Hardouin Duparc The Preston of the Guinier–Preston Zones. Guinier, Metall. Mater. Trans. A, Phys. Metall. Mater. Sci., Volume 41A (2010), pp. 1873-1882 | DOI

[10] T. Marlaud; B. Malki; C. Henon; A. Deschamps; B. Baroux Relationship between alloy composition, microstructure and exfoliation corrosion in Al–Zn–Mg–Cu alloys, Corros. Sci., Volume 53 (2011), pp. 3139-3149

[11] E. Gumbmann; F. De Geuser; C. Sigli; A. Deschamps Influence of Mg, Ag and Zn minor solute additions on the precipitation kinetics and strengthening of an Al–Cu–Li alloy, Acta Mater., Volume 133 (2017), pp. 172-185 | DOI

[12] B. Gault; F. De Geuser; L. Bourgeois; B.M. Gable; S.P. Ringer; B.C. Muddle Atom probe tomography and transmission electron microscopy characterisation of precipitation in an Al–Cu–Li–Mg–Ag alloy, Ultramicroscopy, Volume 111 (2011), pp. 683-689

[13] V. Araullo-Peters; B. Gault; F. de Geuser; A. Deschamps; J.M. Cairney Microstructural evolution during ageing of Al–Cu–Li–x alloys, Acta Mater., Volume 66 (2014), pp. 199-208 | DOI

[14] T. Warner Recently-developed aluminium solutions for areospace applications, Mater. Sci. Forum, Volume 519–521 (2006), pp. 1271-1278

[15] C. Dwyer; M. Weyland; L.Y. Chang; B.C. Muddle Combined electron beam imaging and ab initio modeling of T(1) precipitates in Al–Li–Cu alloys, Appl. Phys. Lett., Volume 98 (2011) | DOI

[16] P. Donnadieu; Y. Shao; F. De Geuser; G.A. Botton; S. Lazar; M. Cheynet; M. de Boissieu; A. Deschamps Atomic structure of T-1 precipitates in Al–Li–Cu alloys revisited with HAADF-STEM imaging and small-angle X-ray scattering, Acta Mater., Volume 59 (2011), pp. 462-472 | DOI

[17] A. Deschamps; B. Decreus; F. De Geuser; T. Dorin; M. Weyland The influence of precipitation on plastic deformation of Al–Cu–Li alloys, Acta Mater., Volume 61 (2013), pp. 4010-4021

[18] B.Q. Li; F.E. Wawner Dislocation interaction with semicoherent precipitates (Omega phase) in deformed Al–Cu–Mg–Ag alloy, Acta Mater., Volume 46 (1998), pp. 5483-5490 | DOI

[19] R. Geyer The industrial ecology of the automobile (R. Clift; A. Druckman, eds.), Tak. Stock Ind. Ecol., Springer International Publishing, Cham, Switzerland, 2016, pp. 331-341

[20] B. Smith; A. Spulber; S. Modi; T. Forielli Technology Roadmaps: Intelligent Mobility Technology, Materials and Manufacturing Processes, and Light Duty Vehicle Propulsion, Center for Automotive Research, Ann Arbor, MI, USA, 2017

[21] S. Keeler; M. Kimchi; P.J. Mooney Advanced High-Strength Steels Application Guidelines V6.0, WorldAutoSteel, 2017

[22] Q. Lai; L. Brassart; O. Bouaziz; M. Goune; M. Verdier; G. Parry; A. Perlade; Y. Brechet; T. Pardoen Influence of martensite volume fraction and hardness on the plastic behavior of dual-phase steels: experiments and micromechanical modeling, Int. J. Plast., Volume 80 (2016), pp. 187-203 | DOI

[23] WorldAutoSteel Steel Eliminates Weight Gap with Aluminum for Car Bodies, 2013 http://www.worldautosteel.org/download_files/FutureSteelVehicle%20Results%20and%20Reports/2013/7_PressRel_SteelClosesGapWithAlum__EUGLOBAL_2013416.pdf (accessed July 13, 2017)

[24] Laser Welded Blanks for Hot Stamping, ArcelorMittal, 2015 http://automotive.arcelormittal.com/saturnus/sheets/TB2_EN.pdf (accessed July 13, 2017)

[25] A. Kendall; L. Price Incorporating time-corrected life cycle greenhouse gas emissions in vehicle regulations, Environ. Sci. Technol., Volume 46 (2012), pp. 2557-2563 | DOI

[26] J.C. Kelly; J.L. Sullivan; A. Burnham; A. Elgowainy Impacts of vehicle weight reduction via material substitution on life-cycle greenhouse gas emissions, Environ. Sci. Technol., Volume 49 (2015), pp. 12535-12542 | DOI

[27] X. Gong; T. Anderson; K. Chou Review on powder-based electron beam additive manufacturing technology, Manuf. Rev., Volume 1 (2014), p. 2 | DOI

[28] C. Koerner Additive manufacturing of metallic components by selective electron beam melting – a review, Int. Mater. Rev., Volume 61 (2016), pp. 361-377 | DOI

[29] M. Suard; G. Martin; P. Lhuissier; R. Dendievel; F. Vignat; J.-J. Blandin; F. Villeneuve Mechanical equivalent diameter of single struts for the stiffness prediction of lattice structures produced by Electron Beam Melting, Addit. Manuf., Volume 8 (2015), pp. 124-131 | DOI

[30] P. Lhuissier; C. de Formanoir; G. Martin; R. Dendievel; S. Godet Geometrical control of lattice structures produced by EBM through chemical etching: investigations at the scale of individual struts, Mater. Des., Volume 110 (2016), pp. 485-493 | DOI

[31] G. Pyka; A. Burakowski; G. Kerckhofs; M. Moesen; S. Van Bael; J. Schrooten; M. Wevers Surface modification of Ti6Al4V open porous structures produced by additive manufacturing, Adv. Eng. Mater., Volume 14 (2012), pp. 363-370 | DOI

[32] C. de Formanoir; M. Suard; R. Dendievel; G. Martin; S. Godet Improving the mechanical efficiency of electron beam melted titanium lattice structures by chemical etching, Addit. Manuf., Volume 11 (2016), pp. 71-76 | DOI

[33] L. Liu; P. Kamm; F. García-Moreno; J. Banhart; D. Pasini Elastic and failure response of imperfect three-dimensional metallic lattices: the role of geometric defects induced by Selective Laser Melting, J. Mech. Phys. Solids, Volume 107 (2017), pp. 160-184 | DOI

Cited by Sources:

Comments - Policy