[Stockage thermique de l'énergie solaire]
Solar thermal energy storage is used in many applications, from building to concentrating solar power plants and industry. The temperature levels encountered range from ambient temperature to more than 1000 °C, and operating times range from a few hours to several months. This paper reviews different types of solar thermal energy storage (sensible heat, latent heat, and thermochemical storage) for low- (40–120 °C) and medium-to-high-temperature (120–1000 °C) applications.
Le stockage thermique de l'énergie solaire touche de très nombreuses applications, qui vont du bâtiment aux centrales solaires à concentration en passant par l'industrie. Les niveaux de température rencontrés vont de la température ambiante à plus d'un millier de degrés, et les durées d'utilisation de quelques heures à plusieurs mois. Cet article passe en revue les différentes familles de stockage d'énergie solaire thermique (stockage sensible, latent et thermochimique), pour des applications à basses (40–120 °C) et moyennes–hautes températures (120–1000 °C).
Mots-clés : Stockage de chaleur sensible, Stockage de chaleur latente, Stockage de chaleur enlever l'adjectif latente thermochimique
Benoît Stutz 1 ; Nolwenn Le Pierres 1 ; Frédéric Kuznik 2, 3 ; Kevyn Johannes 2, 3 ; Elena Palomo Del Barrio 4 ; Jean-Pierre Bédécarrats 5 ; Stéphane Gibout 5 ; Philippe Marty 6 ; Laurent Zalewski 7 ; Jerome Soto 8 ; Nathalie Mazet 9 ; Régis Olives 9 ; Jean-Jacques Bezian 10 ; Doan Pham Minh 10
@article{CRPHYS_2017__18_7-8_401_0, author = {Beno{\^\i}t Stutz and Nolwenn Le Pierres and Fr\'ed\'eric Kuznik and Kevyn Johannes and Elena Palomo Del Barrio and Jean-Pierre B\'ed\'ecarrats and St\'ephane Gibout and Philippe Marty and Laurent Zalewski and Jerome Soto and Nathalie Mazet and R\'egis Olives and Jean-Jacques Bezian and Doan Pham Minh}, title = {Storage of thermal solar energy}, journal = {Comptes Rendus. Physique}, pages = {401--414}, publisher = {Elsevier}, volume = {18}, number = {7-8}, year = {2017}, doi = {10.1016/j.crhy.2017.09.008}, language = {en}, }
TY - JOUR AU - Benoît Stutz AU - Nolwenn Le Pierres AU - Frédéric Kuznik AU - Kevyn Johannes AU - Elena Palomo Del Barrio AU - Jean-Pierre Bédécarrats AU - Stéphane Gibout AU - Philippe Marty AU - Laurent Zalewski AU - Jerome Soto AU - Nathalie Mazet AU - Régis Olives AU - Jean-Jacques Bezian AU - Doan Pham Minh TI - Storage of thermal solar energy JO - Comptes Rendus. Physique PY - 2017 SP - 401 EP - 414 VL - 18 IS - 7-8 PB - Elsevier DO - 10.1016/j.crhy.2017.09.008 LA - en ID - CRPHYS_2017__18_7-8_401_0 ER -
%0 Journal Article %A Benoît Stutz %A Nolwenn Le Pierres %A Frédéric Kuznik %A Kevyn Johannes %A Elena Palomo Del Barrio %A Jean-Pierre Bédécarrats %A Stéphane Gibout %A Philippe Marty %A Laurent Zalewski %A Jerome Soto %A Nathalie Mazet %A Régis Olives %A Jean-Jacques Bezian %A Doan Pham Minh %T Storage of thermal solar energy %J Comptes Rendus. Physique %D 2017 %P 401-414 %V 18 %N 7-8 %I Elsevier %R 10.1016/j.crhy.2017.09.008 %G en %F CRPHYS_2017__18_7-8_401_0
Benoît Stutz; Nolwenn Le Pierres; Frédéric Kuznik; Kevyn Johannes; Elena Palomo Del Barrio; Jean-Pierre Bédécarrats; Stéphane Gibout; Philippe Marty; Laurent Zalewski; Jerome Soto; Nathalie Mazet; Régis Olives; Jean-Jacques Bezian; Doan Pham Minh. Storage of thermal solar energy. Comptes Rendus. Physique, Demain l’énergie, Volume 18 (2017) no. 7-8, pp. 401-414. doi : 10.1016/j.crhy.2017.09.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2017.09.008/
[1] Selection of materials with potential in sensible thermal energy storage, Sol. Energy Mater. Sol. Cells, Volume 94 (2010), pp. 1723-1729
[2] Recent patents on phase change materials and systems for latent heat thermal energy storage, Rec. Pat. Mech. Eng., Volume 4 (2011), pp. 16-28
[3] Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems, Renew. Sustain. Energy Rev., Volume 16 (2012), pp. 2118-2132
[4] High temperature latent heat thermal energy storage: phase change materials, design considerations and performance enhancement techniques, Renew. Sustain. Energy Rev., Volume 27 (2013), pp. 724-737
[5] Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments, Appl. Energy, Volume 160 (2015), pp. 286-307
[6] Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies, Renew. Sustain. Energy Rev., Volume 53 (2016), pp. 1411-1432
[7] Thermal energy storage: recent developments and practical aspects, Prog. Energy Combust. Sci., Volume 53 (2016), pp. 1-40
[8] New deep-freezing process using renewable low grade heat: from the conceptual design to experimental results, Energy, Volume 32 (2007) no. 4, pp. 600-608
[9] A review of chemical heat pump technology and applications, Appl. Therm. Eng., Volume 21 (2001) no. 15, pp. 1489-1519
[10] Efficiencies of CaO/H2O/Ca(OH)2 chemical heat pump for heat storing and heating/cooling, Energy, Volume 28 (2003) no. 14, pp. 1479-1493
[11] The absorption process for heating, cooling and energy storage – an historical survey, Int. J. Energy Res., Volume 5 (1981) no. 1, pp. 43-59
[12] Mass and energy storage analysis of an absorption heat pump with simulated time dependent generator heat input, Energy Convers. Manag., Volume 22 (1982), pp. 183-196
[13] Sorption heat storage for long-term low-temperature applications: a review on the advancements at material and prototype scale, App. Energy, Volume 190 (2017), pp. 920-948
[14] Experimental investigation of an innovative thermochemical process operating with moist air for thermal storage of solar energy: global performances, Appl. Energy, Volume 129 (2014), pp. 177-186
[15] Thermochemical energy storage with CaO/Ca(OH)2 – Experimental investigation of the thermal capability at low vapor pressures in a lab scale reactor, Appl. Energy, Volume 188 (2017), pp. 672-681
[16] Ca(OH)2/CaO reversible reaction in a fluidized bed reactor for thermochemical heat storage, Sol. Energy, Volume 107 (2014), pp. 605-616
[17] Heat and mass transfer in consolidated reacting beds for thermochemical systems, Heat Recov. Syst. CHP, Volume 13 (1993) no. 4, pp. 315-319
[18] Composite block of magnesium hydroxide – expanded graphite for chemical heat storage and heat pump, Appl. Therm. Eng., Volume 69 (2014), pp. 29-38
[19] Heat and mass transfers in thermochemical compound used for thermal storage, 30 June–3 July 2015, Pau, France (2015)
[20] , European Commission, 2012 (EU Energy in Figures–Statistical Pocketbook, Tech. rep.)
[21] , European Environment Agency, 2012 (Household Energy Consumption by End-Use in the EU–27, Technical report)
[22] Thermal Energy Storage: Systems and Applications, John Wiley & Sons, 2002
[23] Thermal Energy Storage for Sustainable Energy Consumption: Fundamentals, Case Studies and Design, NATO Science Series, Mathematics, Physics, and Chemistry, Springer, 2007
[24] Stratification enhancement for an integrated collector storage solar water heater (ICSSWH), Energy Build., Volume 106 (2015), pp. 35-43
[25] New concept of Integrated Collector Storage using phase change material and thermosyphon heat pipes, Mallorca, Spain, 11–14 October 2016 (2016) (9 p)
[26] Thermal investigation of in-series vertical ground heat exchangers for industrial waste heat storage, Geothermics, Volume 57 (2015), pp. 205-212
[27] A review on borehole seasonal solar thermal energy storage, Energy Proc., Volume 70 (2015), pp. 209-218
[28] Study of solar walls – validating a simulation model, Build. Environ., Volume 37 (2002), pp. 109-121
[29] Experimental study of small-scale solar wall integrating phase change material, Sol. Energy, Volume 86 (2012), pp. 208-219
[30] Designing an automatic control system for the improved functioning of a solar wall with phase change material (PCM), Open J. Energy Efficiency, Volume 05 (2016), pp. 19-29
[31] A novel technique for experimental thermophysical characterization of phase-change materials, Int. J. Thermophys., Volume 32 (2011), pp. 674-692
[32] Experimental investigation of thermal characteristics of a mortar with or without a micro-encapsulated phase change material, Appl. Therm. Eng., Volume 66 (2014), pp. 171-180
[33] Simulation of the thermal and energy behaviour of a composite material containing encapsulated-PCM: influence of the thermodynamical modelling, Appl. Energy, Volume 140 (2015), pp. 269-274
[34] Interpretation of calorimetry experiments to characterise phase change materials, Int. J. Therm. Sci., Volume 78 (2014), pp. 48-55
[35] Numerical dynamic simulation and analysis of a lithium bromide/water long term solar heat-storage system, Energy, Volume 37 (2012) no. 1, pp. 346-358
[36] Evaluation of a seasonal storage system of solar energy for house heating using different absorption couples, Energy Convers. Manag., Volume 52 (2011) no. 6, pp. 2427-2436
[37] V. Bricka, F. Kuznik, K. Johannes, Evaluation of thermal energy storage potential in low-energy buildings in France, in: Proc. ISES Solar World Congress, 28 August–2 September 2011, Kassel, Germany, 10 p.
[38] Design and characterisation of a high powered energy dense zeolite thermal energystorage system for buildings, Appl. Energy, Volume 159 (2015), pp. 80-86
[39] Experimental investigation of an open thermochemical storage process for thermal of solar energy operating with a hydrate salt: local reactive bed evolution, Appl. Energy, Volume 180 (2016), pp. 234-244
[40] A review of solar collectors and thermal energy storage in solar thermal applications, Appl. Energy, Volume 104 (2013), pp. 538-553
[41] Analysis of a medium temperature solar thermal installation with heat storage for industrial applications, Energy Proc., Volume 91 (2016), pp. 601-610
[42] Stabilization of the outflow temperature of a packed bed energy storage by combining rocks with phase change materials, Appl. Therm. Eng., Volume 70 (2014), pp. 316-320
[43] Thermal energy storage for CSP processes, Handbook of Clean Energy Systems, 2015 (1116 pp)
[44] State of the art on high temperature for power generation. A review on borehole seasonal solar thermal energy storage, Energy Proc., Volume 70 (2015), pp. 209-218
[45] State of the art on high-temperature thermal energy storage for power generation. Part 2-Case studies, Renew. Sustain. Energy Rev., Volume 14 (2010), pp. 56-72
[46] High-temperature sensible heat-based thermal energy storage materials made of vitrified MSWI fly ashes, Waste Biomass Valoriz., Volume 6 (2015) no. 6, pp. 1003-1014
[47] Experimental and numerical investigation of a thermocline thermal energy storage tank, Appl. Therm. Eng., Volume 114 (2017), pp. 896-904
[48] Recycled material for sensible heat based thermal energy storage to be used in concentrated solar thermal power plants, J. Solar Energy Eng., Volume 133 (2011), pp. 1-8
[49] Compatibility tests between Solar Salt and thermal storage ceramics from inorganic industrial wastes, Appl. Energy, Volume 155 (2015), pp. 14-22
[50] Compatibility study between synthetic oil and vitrified wastes for direct thermal energy storage, Waste Biomass Valoriz., Volume 8 (2017) no. 3, pp. 621-631
[51] Experimental evaluation of a pilot-scale thermochemical storage system for a concentrated solar power plant, Appl. Energy, Volume 189 (2017), pp. 66-75
[52] Numerical modeling and optimization of an entrained particle-flow thermochemical Solar reactor for metal oxide reduction, Energy Proc., Volume 69 (2015), pp. 947-956
[53] Screening of thermochemical systems based on solid–gas reversible reactions for high temperature solar thermal energy storage, Renew. Sustain. Energy Rev., Volume 64 (2016), pp. 703-715
[54] Study of the hydration of CaO powder by gas–solid reaction, Cem. Concr. Res., Volume 41 (2011), pp. 1078-1084
[55] Experimental investigation and model validation of a CaO/Ca(OH)2 fluidized bed reactor for thermochemical energy storage applications, Chem. Eng. J., Volume 313 (2017), pp. 1194-1205
[56] N. Mazet, B. Michel, G. Boulnois, S. Mauran, D. Stitou, Mass transfer in thermochemical solid/gas reactor for thermal storage applications, in: ISHPC 2014, International Sorption Heat Pump Conference, 31 March–3 April 2014, University of Maryland, College Park, Maryland, USA.
[57] Gas flow through highly porous graphite matrices, Carbon, Volume 41 (2003) no. 3, pp. 525-537
[58] Characterization of Li2K(OH)3 as material for thermal energy storage at high temperature, 19-21 May 2015, Beijin, China (2015)
[59] A proposition of peritectic structures as candidates for thermal energy storage, 17–20 May 2016, La Rochelle, France (2016) (6 p)
- GO, GNP ve hBN nanoparçacık katkılı sodyum asetat trihidrat faz değişim malzemesinin farklı soğutma koşulları altında T-history yöntemi kullanılarak erime ve süpercooling davranışının incelenmesi, DÜMF Mühendislik Dergisi, Volume 16 (2025) no. 1, p. 157 | DOI:10.24012/dumf.1578017
- The Influence of the Cu-Al2O3 Ratio of the Receiving Tube in a 50 MW Hybrid Solar Plant, Energies, Volume 18 (2025) no. 2, p. 409 | DOI:10.3390/en18020409
- Phase Change Materials in Electrothermal Conversion Systems: A Review, Energies, Volume 18 (2025) no. 3, p. 569 | DOI:10.3390/en18030569
- Advancing sustainable energy solutions for hot regions: an in-depth exploration of solar thermal energy storage (STES) technologies and applications, Engineering Research Express, Volume 7 (2025) no. 1, p. 012101 | DOI:10.1088/2631-8695/adb8a0
- Comprehensive review on packed-bed sensible heat storage systems, Journal of Energy Storage, Volume 121 (2025), p. 116516 | DOI:10.1016/j.est.2025.116516
- Technical and economic evaluation of heat transfer fluids for a TES system integrated to an advanced nuclear reactor, Applied Energy, Volume 360 (2024), p. 122714 | DOI:10.1016/j.apenergy.2024.122714
- Experimental investigation of distilled water production performance of conventional solar stills using CaCl2·6H2O phase change material reinforced with SrCl2·6H2O and graphene-based nanoparticles, Case Studies in Thermal Engineering, Volume 62 (2024), p. 105184 | DOI:10.1016/j.csite.2024.105184
- Innovative Approaches to Bridging Energy Supply and Demand Gaps Through Thermal Energy Storage: A Case Study, Energies, Volume 17 (2024) no. 23, p. 6197 | DOI:10.3390/en17236197
- Potential for Solar Industrial Process Heat Systems for Tea Drying Applications – A Case Study, Environmental and Climate Technologies, Volume 28 (2024) no. 1, p. 329 | DOI:10.2478/rtuect-2024-0026
- Materials for Thermochemical and Sorption Heat Storage, Heat and Cold Storage 2 (2024), p. 1 | DOI:10.1002/9781394312559.ch1
- Heat Storage Using Absorption Processes, Heat and Cold Storage 2 (2024), p. 95 | DOI:10.1002/9781394312559.ch2
- Fixed-bed thermochemical reactor for high-temperature thermal storage: Experimental and numerical investigations of implementations and operating conditions, Journal of Energy Storage, Volume 84 (2024), p. 110826 | DOI:10.1016/j.est.2024.110826
- Optimisation of a novel configuration of combined eccentricity and unevenly distributed fins for enhanced energy efficiency in a PCM regenerator, Journal of Energy Storage, Volume 91 (2024), p. 112041 | DOI:10.1016/j.est.2024.112041
- Research and optimization of heat transfer characteristics of heat pipe-coupled phase change energy storage system, Journal of Physics: Conference Series, Volume 2838 (2024) no. 1, p. 012032 | DOI:10.1088/1742-6596/2838/1/012032
- Parametric Analysis of Various Concentrated Solar Power Technologies with Different Heat Transfer Fluids and Thermal Energy Storage, Scientific and Technological Advances in Materials for Energy Storage and Conversions (2024), p. 189 | DOI:10.1007/978-981-97-2481-9_14
- Heat transfer constraints and performance mapping of a closed liquid sorption heat storage process, Applied Energy, Volume 335 (2023), p. 120755 | DOI:10.1016/j.apenergy.2023.120755
- Optimization Issues, Computer Modeling, and Visualization of the Efficiency Coefficient of Optical Systems of Solar Furnaces and Solar Power Plants, Applied Solar Energy, Volume 59 (2023) no. 3, p. 324 | DOI:10.3103/s0003701x2260148x
- Review of thermally regenerative batteries based on redox reaction and distillation for harvesting low-grade heat as electricity, Chemical Engineering Journal, Volume 474 (2023), p. 145503 | DOI:10.1016/j.cej.2023.145503
- Review on Salt Hydrate Thermochemical Heat Transformer, Energies, Volume 16 (2023) no. 12, p. 4668 | DOI:10.3390/en16124668
- Simple and Accurate Model of Thermal Storage with Phase Change Material Tailored for Model Predictive Control, Energies, Volume 16 (2023) no. 19, p. 6849 | DOI:10.3390/en16196849
- Amine-based thermal energy storage system towards industrial application, Energy Conversion and Management, Volume 283 (2023), p. 116954 | DOI:10.1016/j.enconman.2023.116954
- Analysis of energy storage materials for developments in solar cookers, F1000Research, Volume 11 (2023), p. 1292 | DOI:10.12688/f1000research.126864.2
- Seasonal thermal energy storage, Future Grid-Scale Energy Storage Solutions (2023), p. 215 | DOI:10.1016/b978-0-323-90786-6.00013-3
- Sensible thermal energy storage, Future Grid-Scale Energy Storage Solutions (2023), p. 65 | DOI:10.1016/b978-0-323-90786-6.00009-1
- Low‐temperature thermal energy storage with polymer‐derived ceramic aerogels, International Journal of Applied Ceramic Technology, Volume 20 (2023) no. 1, p. 39 | DOI:10.1111/ijac.14158
- Numerical simulation study of the effect of mechanical vibration on heat transfer in a six-fin latent heat thermal energy storage unit, International Journal of Heat and Mass Transfer, Volume 207 (2023), p. 123996 | DOI:10.1016/j.ijheatmasstransfer.2023.123996
- On the design of a solar heat storage tank at 120°C, International Journal of Sustainable Energy, Volume 42 (2023) no. 1, p. 1278 | DOI:10.1080/14786451.2023.2246080
- CFD applications for sensible heat storage: A comprehensive review of numerical studies, Journal of Energy Storage, Volume 68 (2023), p. 107893 | DOI:10.1016/j.est.2023.107893
- The potentials of thermal energy storage using domestic electric water heater technology with PV systems in the EU countries, MRS Energy Sustainability, Volume 11 (2023) no. 1, p. 74 | DOI:10.1557/s43581-023-00072-0
- A State of the Art Review on Sensible and Latent Heat Thermal Energy Storage Processes in Porous Media: Mesoscopic Simulation, Applied Sciences, Volume 12 (2022) no. 14, p. 6995 | DOI:10.3390/app12146995
- The Role of Computational Science in Wind and Solar Energy: A Critical Review, Energies, Volume 15 (2022) no. 24, p. 9609 | DOI:10.3390/en15249609
- Mapping thermal energy storage technologies with advanced nuclear reactors, Energy Conversion and Management, Volume 267 (2022), p. 115872 | DOI:10.1016/j.enconman.2022.115872
- Latent Heat Prediction of Nano Enhanced Phase Change Material by ANN Method, Energy Engineering, Volume 119 (2022) no. 3, p. 847 | DOI:10.32604/ee.2022.019051
- Numerical modeling and parametric analysis of thermal performance for the large-scale seasonal thermal energy storage, Energy and Buildings, Volume 275 (2022), p. 112459 | DOI:10.1016/j.enbuild.2022.112459
- Solar cooking innovations, their appropriateness, and viability, Environmental Science and Pollution Research, Volume 29 (2022) no. 39, p. 58537 | DOI:10.1007/s11356-022-21670-4
- Analysis of energy storage materials for developments in solar cookers, F1000Research, Volume 11 (2022), p. 1292 | DOI:10.12688/f1000research.126864.1
- Isıl Enerji Depolama Uygulamaları için n-heptedekan@MgCO3 ve n-heptadekan@MgCO3@Ag Mikrokapsüllerinin Yeşil Kimya ile Sentezi, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, Volume 37 (2022) no. 2, p. 1111 | DOI:10.17341/gazimmfd.876626
- Novel high precision low-cost dual axis sun tracker based on three light sensors, Heliyon, Volume 8 (2022) no. 12, p. e12412 | DOI:10.1016/j.heliyon.2022.e12412
- Li4(OH)3Br/MgO shape stabilized composite as novel high temperature thermal energy storage material, Journal of Energy Storage, Volume 52 (2022), p. 104921 | DOI:10.1016/j.est.2022.104921
- A novel composite cotton yarn with phase change and electrical conductivity functions, Journal of Industrial Textiles, Volume 51 (2022) no. 1_suppl, p. 554S | DOI:10.1177/15280837211003166
- A comprehensive review of latent heat energy storage for various applications: an alternate to store solar thermal energy, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Volume 44 (2022) no. 10 | DOI:10.1007/s40430-022-03740-3
- Thermocline packed bed thermal energy storage system, Renewable Energy Production and Distribution (2022), p. 325 | DOI:10.1016/b978-0-323-91892-3.24001-6
- The role of energy storage technologies for sustainability in developing countries, Renewable Energy and Sustainability (2022), p. 347 | DOI:10.1016/b978-0-323-88668-0.00004-8
- Decarbonizing the ceramics industry: A systematic and critical review of policy options, developments and sociotechnical systems, Renewable and Sustainable Energy Reviews, Volume 157 (2022), p. 112081 | DOI:10.1016/j.rser.2022.112081
- Thermal conductivity evolution of a compressed expanded natural graphite – Phase change material composite after thermal cycling, Thermal Science and Engineering Progress, Volume 28 (2022), p. 101047 | DOI:10.1016/j.tsep.2021.101047
- Systematic Search of Suitable Metal–Organic Frameworks for Thermal Energy-Storage Applications with Low Global Warming Potential Refrigerants, ACS Sustainable Chemistry Engineering, Volume 9 (2021) no. 8, p. 3157 | DOI:10.1021/acssuschemeng.0c07797
- Convective and Radiative Heat Losses of a Cylindrical Accumulator for Solar Water Heating Collectors, Applied Solar Energy, Volume 57 (2021) no. 2, p. 143 | DOI:10.3103/s0003701x21020043
- Thermal Losses of a Three-Layer Underground Cylindrical Heat Accumulator of Solar Installations, Applied Solar Energy, Volume 57 (2021) no. 6, p. 523 | DOI:10.3103/s0003701x21060116
- Thermo-economic analysis of a flat solar collector with a phase changing material under tropical climate conditions: Residential and industrial case, Applied Thermal Engineering, Volume 182 (2021), p. 116082 | DOI:10.1016/j.applthermaleng.2020.116082
- Review of Technologies and Recent Advances in Low-Temperature Sorption Thermal Storage Systems, Energies, Volume 14 (2021) no. 19, p. 6052 | DOI:10.3390/en14196052
- Concentrating Solar Power Advances in Geometric Optics, Materials and System Integration, Energies, Volume 14 (2021) no. 19, p. 6229 | DOI:10.3390/en14196229
- New multilayered microencapsulated phase change material with CaCO3 and Ag shells, Energy Storage, Volume 3 (2021) no. 1 | DOI:10.1002/est2.214
- Electrofuel Synthesis from Variable Renewable Electricity: An Optimization-Based Techno-Economic Analysis, Environmental Science Technology, Volume 55 (2021) no. 11, p. 7583 | DOI:10.1021/acs.est.0c07955
- Perspective on integration of concentrated solar power plants, International Journal of Low-Carbon Technologies, Volume 16 (2021) no. 3, p. 1098 | DOI:10.1093/ijlct/ctab034
- Alternative Heat Transfer Enhancement Techniques for Latent Heat Thermal Energy Storage System: A Review, International Journal of Thermophysics, Volume 42 (2021) no. 12 | DOI:10.1007/s10765-021-02921-x
- Thermo-economic analysis of an integrated solar thermal cycle (ISTC) using thermal storage, Journal of Cleaner Production, Volume 320 (2021), p. 128725 | DOI:10.1016/j.jclepro.2021.128725
- Polymer-derived silicon nitride aerogels as shape stabilizers for low and high-temperature thermal energy storage, Journal of the European Ceramic Society, Volume 41 (2021) no. 11, p. 5484 | DOI:10.1016/j.jeurceramsoc.2021.04.056
- Duyulur Isıl Enerji Depolama Sistemlerinin Enerji Yönünden İncelenmesi, Mühendis ve Makina, Volume 63 (2021) no. 706, p. 159 | DOI:10.46399/muhendismakina.951649
- Li4(OH)3Br-Based Shape Stabilized Composites for High-Temperature TES Applications: Selection of the Most Convenient Supporting Material, Nanomaterials, Volume 11 (2021) no. 5, p. 1279 | DOI:10.3390/nano11051279
- Effect of Mn and Cu Substitution on the SrFeO3 Perovskite for Potential Thermochemical Energy Storage Applications, Processes, Volume 9 (2021) no. 10, p. 1817 | DOI:10.3390/pr9101817
- A reality check on long-term thermochemical heat storage for household applications, Renewable and Sustainable Energy Reviews, Volume 139 (2021), p. 110683 | DOI:10.1016/j.rser.2020.110683
- A review of solar-driven short-term low temperature heat storage systems, Renewable and Sustainable Energy Reviews, Volume 141 (2021), p. 110824 | DOI:10.1016/j.rser.2021.110824
- Advances in the developments of solar cooker for sustainable development: A comprehensive review, Renewable and Sustainable Energy Reviews, Volume 145 (2021), p. 111166 | DOI:10.1016/j.rser.2021.111166
- Experimental Determination of Crystallization Kinetic Model of Ceng-Pcm Composite Material. Validation at Macro and Meso Scales, SSRN Electronic Journal (2021) | DOI:10.2139/ssrn.3985492
- Thermal cycling aging of encapsulated phase change material – Compressed expanded natural graphite composite, Thermal Science and Engineering Progress, Volume 22 (2021), p. 100836 | DOI:10.1016/j.tsep.2020.100836
- , 2020 IEEE 8th International Conference on Smart Energy Grid Engineering (SEGE) (2020), p. 27 | DOI:10.1109/sege49949.2020.9181995
- , 2020 IEEE 8th International Conference on Smart Energy Grid Engineering (SEGE) (2020), p. 39 | DOI:10.1109/sege49949.2020.9181942
- A Review of Thermochemical Energy Storage Systems for Power Grid Support, Applied Sciences, Volume 10 (2020) no. 9, p. 3142 | DOI:10.3390/app10093142
- DYNAMICS OF THERMAL LOSSES BY CONVECTION AND RADIATION OF THE SPHERICAL HEAT ACCUMULATOR OF SOLAR PLANTS, Elektrotekhnologii i elektrooborudovanie v APK, Volume 4 (2020) no. 41, p. 57 | DOI:10.22314/2658-4859-2020-67-4-57-62
- CSP Quasi-Dynamic Performance Model Development for All Project Life Cycle Stages and Considering Operation Modes. Validation Using One Year Data, Energies, Volume 14 (2020) no. 1, p. 14 | DOI:10.3390/en14010014
- A state of the art on solar-powered vapor absorption cooling systems integrated with thermal energy storage, Environmental Science and Pollution Research, Volume 27 (2020) no. 1, p. 158 | DOI:10.1007/s11356-019-06941-x
- Optimal use of solar collectors in small-scale districts, IOP Conference Series: Materials Science and Engineering, Volume 869 (2020) no. 4, p. 042039 | DOI:10.1088/1757-899x/869/4/042039
- Investigation of the combined Mn-Si oxide system for thermochemical energy storage applications, Journal of Energy Storage, Volume 28 (2020), p. 101180 | DOI:10.1016/j.est.2019.101180
- Metal–Organic Phase-Change Materials for Thermal Energy Storage, Journal of the American Chemical Society, Volume 142 (2020) no. 45, p. 19170 | DOI:10.1021/jacs.0c08777
- Selection Principles and Investigation of Substances for Synthesis of Composite Medium-Temperature Phase Change Materials for Space Heating and Domestic Hot Water, Materials Science Forum, Volume 989 (2020), p. 165 | DOI:10.4028/www.scientific.net/msf.989.165
- Review on sensible thermal energy storage for industrial solar applications and sustainability aspects, Solar Energy, Volume 209 (2020), p. 135 | DOI:10.1016/j.solener.2020.08.081
- Performance of laboratory scale packed-bed thermal energy storage using new demolition waste based sensible heat materials for industrial solar applications, Solar Energy, Volume 211 (2020), p. 1335 | DOI:10.1016/j.solener.2020.10.070
- , 2019 8th International Conference on Modern Power Systems (MPS) (2019), p. 1 | DOI:10.1109/mps.2019.8759797
- , 2019 International Conference on Power Electronics, Control and Automation (ICPECA) (2019), p. 1 | DOI:10.1109/icpeca47973.2019.8975636
- Advances in seasonal thermal energy storage for solar district heating applications: A critical review on large-scale hot-water tank and pit thermal energy storage systems, Applied Energy, Volume 239 (2019), p. 296 | DOI:10.1016/j.apenergy.2019.01.189
- Thermodynamic analyses on hybrid sorption cycles for low-grade heat storage and cogeneration of power and refrigeration, Applied Energy, Volume 255 (2019), p. 113751 | DOI:10.1016/j.apenergy.2019.113751
- Phase Change Materials (PCM) for Solar Energy Usages and Storage: An Overview, Energies, Volume 12 (2019) no. 16, p. 3167 | DOI:10.3390/en12163167
- Kinetic study of lithium orthosilicate pellets for high‐temperature chemical heat pumps, Energy Storage, Volume 1 (2019) no. 4 | DOI:10.1002/est2.72
- The potential of metal hydrides paired with compressed hydrogen as thermal energy storage for concentrating solar power plants, International Journal of Hydrogen Energy, Volume 44 (2019) no. 18, p. 9143 | DOI:10.1016/j.ijhydene.2019.01.271
- Experimental investigation of a solar still with composite material heat storage: Energy, exergy and economic analysis, Journal of Cleaner Production, Volume 231 (2019), p. 21 | DOI:10.1016/j.jclepro.2019.05.200
- Numerical study and experimental validation of the effects of orientation and configuration on melting in a latent heat thermal storage unit, Journal of Energy Storage, Volume 23 (2019), p. 456 | DOI:10.1016/j.est.2019.04.013
- Experimental investigation of a moving-bed heat storage thermochemical reactor with SrBr2/H2O couple, Journal of Energy Storage, Volume 26 (2019), p. 101009 | DOI:10.1016/j.est.2019.101009
- Analysis of a multistage solar thermal energy accumulator, Renewable Energy, Volume 136 (2019), p. 621 | DOI:10.1016/j.renene.2018.12.103
- State-of-technology review of water-based closed seasonal thermal energy storage systems, Renewable and Sustainable Energy Reviews, Volume 113 (2019), p. 109241 | DOI:10.1016/j.rser.2019.06.048
- Enhancement of a solar still performance by inclusion the basalt stones as a porous sensible absorber: Experimental study and thermo-economic analysis, Solar Energy Materials and Solar Cells, Volume 200 (2019), p. 109958 | DOI:10.1016/j.solmat.2019.109958
- Experimental investigation of the thermal performance of a helical coil latent heat thermal energy storage for solar energy applications, Thermal Science and Engineering Progress, Volume 10 (2019), p. 287 | DOI:10.1016/j.tsep.2019.02.010
Cité par 91 documents. Sources : Crossref
Commentaires - Politique