Comptes Rendus
Demain l'énergie – Séminaire Daniel-Dautreppe, Grenoble, France, 2016
Storage of thermal solar energy
[Stockage thermique de l'énergie solaire]
Comptes Rendus. Physique, Demain l’énergie, Volume 18 (2017) no. 7-8, pp. 401-414.

Solar thermal energy storage is used in many applications, from building to concentrating solar power plants and industry. The temperature levels encountered range from ambient temperature to more than 1000 °C, and operating times range from a few hours to several months. This paper reviews different types of solar thermal energy storage (sensible heat, latent heat, and thermochemical storage) for low- (40–120 °C) and medium-to-high-temperature (120–1000 °C) applications.

Le stockage thermique de l'énergie solaire touche de très nombreuses applications, qui vont du bâtiment aux centrales solaires à concentration en passant par l'industrie. Les niveaux de température rencontrés vont de la température ambiante à plus d'un millier de degrés, et les durées d'utilisation de quelques heures à plusieurs mois. Cet article passe en revue les différentes familles de stockage d'énergie solaire thermique (stockage sensible, latent et thermochimique), pour des applications à basses (40–120 °C) et moyennes–hautes températures (120–1000 °C).

Publié le :
DOI : 10.1016/j.crhy.2017.09.008
Keywords: Sensible heat storage, Latent heat storage, Thermochemical heat storage
Mots-clés : Stockage de chaleur sensible, Stockage de chaleur latente, Stockage de chaleur enlever l'adjectif latente thermochimique

Benoît Stutz 1 ; Nolwenn Le Pierres 1 ; Frédéric Kuznik 2, 3 ; Kevyn Johannes 2, 3 ; Elena Palomo Del Barrio 4 ; Jean-Pierre Bédécarrats 5 ; Stéphane Gibout 5 ; Philippe Marty 6 ; Laurent Zalewski 7 ; Jerome Soto 8 ; Nathalie Mazet 9 ; Régis Olives 9 ; Jean-Jacques Bezian 10 ; Doan Pham Minh 10

1 LOCIE, Université Savoie Mont-Blanc, CNRS UMR5271, 73000 Chambéry, France
2 CETHIL, Université de Lyon, CNRS, INSA Lyon, CETHIL, UMR5008, 69621 Villeurbanne, France
3 Université Lyon 1, 69622 Villeurbanne, France
4 Université de Bordeaux, I2M UMR 5295, 33400 Talence, France
5 Université de Pau & des Pays de l'Adour, Laboratoire de thermique, énergétique et procédés–IPRA, EA1932, ENSGTI, avenue Jules-Ferry, BP7511, 64000 Pau, France
6 LEGI, Laboratoire des écoulements géophysiques et industriels, BP53, 38041 Grenoble, France
7 LGCGE, Université d'Artois, EA 4515, Laboratoire de génie civil et géo-environnement (LGCgE), 62400 Béthune, France
8 Université de Nantes, Nantes Atlantique Universités, CNRS, Laboratoire de thermocinétique de Nantes, UMR 6607, La Chantrerie, rue Christian-Pauc, BP 50609, 44306 Nantes cedex 3, France
9 CNRS-PROMES, UPR8521, Tecnosud, rambla de la thermodynamique, 66100 Perpignan, France
10 Université de Toulouse, Mines Albi, CNRS, Centre RAPSODEE, France
@article{CRPHYS_2017__18_7-8_401_0,
     author = {Beno{\^\i}t Stutz and Nolwenn Le Pierres and Fr\'ed\'eric Kuznik and Kevyn Johannes and Elena Palomo Del Barrio and Jean-Pierre B\'ed\'ecarrats and St\'ephane Gibout and Philippe Marty and Laurent Zalewski and Jerome Soto and Nathalie Mazet and R\'egis Olives and Jean-Jacques Bezian and Doan Pham Minh},
     title = {Storage of thermal solar energy},
     journal = {Comptes Rendus. Physique},
     pages = {401--414},
     publisher = {Elsevier},
     volume = {18},
     number = {7-8},
     year = {2017},
     doi = {10.1016/j.crhy.2017.09.008},
     language = {en},
}
TY  - JOUR
AU  - Benoît Stutz
AU  - Nolwenn Le Pierres
AU  - Frédéric Kuznik
AU  - Kevyn Johannes
AU  - Elena Palomo Del Barrio
AU  - Jean-Pierre Bédécarrats
AU  - Stéphane Gibout
AU  - Philippe Marty
AU  - Laurent Zalewski
AU  - Jerome Soto
AU  - Nathalie Mazet
AU  - Régis Olives
AU  - Jean-Jacques Bezian
AU  - Doan Pham Minh
TI  - Storage of thermal solar energy
JO  - Comptes Rendus. Physique
PY  - 2017
SP  - 401
EP  - 414
VL  - 18
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crhy.2017.09.008
LA  - en
ID  - CRPHYS_2017__18_7-8_401_0
ER  - 
%0 Journal Article
%A Benoît Stutz
%A Nolwenn Le Pierres
%A Frédéric Kuznik
%A Kevyn Johannes
%A Elena Palomo Del Barrio
%A Jean-Pierre Bédécarrats
%A Stéphane Gibout
%A Philippe Marty
%A Laurent Zalewski
%A Jerome Soto
%A Nathalie Mazet
%A Régis Olives
%A Jean-Jacques Bezian
%A Doan Pham Minh
%T Storage of thermal solar energy
%J Comptes Rendus. Physique
%D 2017
%P 401-414
%V 18
%N 7-8
%I Elsevier
%R 10.1016/j.crhy.2017.09.008
%G en
%F CRPHYS_2017__18_7-8_401_0
Benoît Stutz; Nolwenn Le Pierres; Frédéric Kuznik; Kevyn Johannes; Elena Palomo Del Barrio; Jean-Pierre Bédécarrats; Stéphane Gibout; Philippe Marty; Laurent Zalewski; Jerome Soto; Nathalie Mazet; Régis Olives; Jean-Jacques Bezian; Doan Pham Minh. Storage of thermal solar energy. Comptes Rendus. Physique, Demain l’énergie, Volume 18 (2017) no. 7-8, pp. 401-414. doi : 10.1016/j.crhy.2017.09.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2017.09.008/

[1] A.I. Fernandez; M. Martinez; M. Segarra; I. Martorell; L.F. Cabeza Selection of materials with potential in sensible thermal energy storage, Sol. Energy Mater. Sol. Cells, Volume 94 (2010), pp. 1723-1729

[2] V. Ho Kon Tiat; E. Palomo del Barrio Recent patents on phase change materials and systems for latent heat thermal energy storage, Rec. Pat. Mech. Eng., Volume 4 (2011), pp. 16-28

[3] M. Liu; W. Saman; F. Bruno Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems, Renew. Sustain. Energy Rev., Volume 16 (2012), pp. 2118-2132

[4] B. Cárdenas; N. León High temperature latent heat thermal energy storage: phase change materials, design considerations and performance enhancement techniques, Renew. Sustain. Energy Rev., Volume 27 (2013), pp. 724-737

[5] B. Xu; P. Li; C. Chan Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments, Appl. Energy, Volume 160 (2015), pp. 286-307

[6] M. Liu; N.H. Tay; S. Bell; M. Belusko; R. Jacob; G. Will; W. Saman; F. Bruno Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies, Renew. Sustain. Energy Rev., Volume 53 (2016), pp. 1411-1432

[7] H. Zhang; J. Baeyens; G. Cáceres; J. Degrève; Y. Lv Thermal energy storage: recent developments and practical aspects, Prog. Energy Combust. Sci., Volume 53 (2016), pp. 1-40

[8] N. Le Pierres; D. Stitou; N. Mazet New deep-freezing process using renewable low grade heat: from the conceptual design to experimental results, Energy, Volume 32 (2007) no. 4, pp. 600-608

[9] W. Wongsuwan; S. Kumar; P. Neveu; F. Meunier A review of chemical heat pump technology and applications, Appl. Therm. Eng., Volume 21 (2001) no. 15, pp. 1489-1519

[10] H. Ogura; T. Yamamoto; K. Hiroyuki Efficiencies of CaO/H2O/Ca(OH)2 chemical heat pump for heat storing and heating/cooling, Energy, Volume 28 (2003) no. 14, pp. 1479-1493

[11] H. Bjurström; W. Raldow The absorption process for heating, cooling and energy storage – an historical survey, Int. J. Energy Res., Volume 5 (1981) no. 1, pp. 43-59

[12] S.C. Kaushik; K.T. Lam; S. Chandra; C.S. Tomar Mass and energy storage analysis of an absorption heat pump with simulated time dependent generator heat input, Energy Convers. Manag., Volume 22 (1982), pp. 183-196

[13] L. Scapino; H.A. Zondag; J. Van Bael; J. Diriken; C.C.M. Rindt Sorption heat storage for long-term low-temperature applications: a review on the advancements at material and prototype scale, App. Energy, Volume 190 (2017), pp. 920-948

[14] B. Michel; N. Mazet; P. Neveu Experimental investigation of an innovative thermochemical process operating with moist air for thermal storage of solar energy: global performances, Appl. Energy, Volume 129 (2014), pp. 177-186

[15] M. Schmidt; A. Gutierrez; M. Linder Thermochemical energy storage with CaO/Ca(OH)2 – Experimental investigation of the thermal capability at low vapor pressures in a lab scale reactor, Appl. Energy, Volume 188 (2017), pp. 672-681

[16] P. Pardo; Z. Anxionnaz-Minvielle; S. Rougé; P. Cognet; M. Cabassud Ca(OH)2/CaO reversible reaction in a fluidized bed reactor for thermochemical heat storage, Sol. Energy, Volume 107 (2014), pp. 605-616

[17] S. Mauran; P. Prades; F. L'Haridon Heat and mass transfer in consolidated reacting beds for thermochemical systems, Heat Recov. Syst. CHP, Volume 13 (1993) no. 4, pp. 315-319

[18] M. Zamengo; J. Ryu; Y. Kato Composite block of magnesium hydroxide – expanded graphite for chemical heat storage and heat pump, Appl. Therm. Eng., Volume 69 (2014), pp. 29-38

[19] G. Boulnois; N. Mazet; S. Mauran; E. Kurt Heat and mass transfers in thermochemical compound used for thermal storage, 30 June–3 July 2015, Pau, France (2015)

[20] , European Commission, 2012 (EU Energy in Figures–Statistical Pocketbook, Tech. rep.)

[21] , European Environment Agency, 2012 (Household Energy Consumption by End-Use in the EU–27, Technical report)

[22] I. Dincer; M. Rosen Thermal Energy Storage: Systems and Applications, John Wiley & Sons, 2002

[23] H. Paksoy Thermal Energy Storage for Sustainable Energy Consumption: Fundamentals, Case Studies and Design, NATO Science Series, Mathematics, Physics, and Chemistry, Springer, 2007

[24] M. Swiatek; G. Fraisse; M. Pailha Stratification enhancement for an integrated collector storage solar water heater (ICSSWH), Energy Build., Volume 106 (2015), pp. 35-43

[25] G. Fraisse; M. Pailha New concept of Integrated Collector Storage using phase change material and thermosyphon heat pipes, Mallorca, Spain, 11–14 October 2016 (2016) (9 p)

[26] P. Cui; N. Diao; C. Gao; Z. Fang Thermal investigation of in-series vertical ground heat exchangers for industrial waste heat storage, Geothermics, Volume 57 (2015), pp. 205-212

[27] L. Gao; J. Zhao; Z. Tang A review on borehole seasonal solar thermal energy storage, Energy Proc., Volume 70 (2015), pp. 209-218

[28] L. Zalewski; S. Lassue; B. Duthoit; M. Butez Study of solar walls – validating a simulation model, Build. Environ., Volume 37 (2002), pp. 109-121

[29] L. Zalewski; A. Joulin; S. Lassue; Y. Dutil; D. Rousse Experimental study of small-scale solar wall integrating phase change material, Sol. Energy, Volume 86 (2012), pp. 208-219

[30] P. Favier; L. Zalewski; S. Lassue; S. Anwar Designing an automatic control system for the improved functioning of a solar wall with phase change material (PCM), Open J. Energy Efficiency, Volume 05 (2016), pp. 19-29

[31] Z. Younsi; L. Zalewski; S. Lassue; D.R. Rousse; A. Joulin A novel technique for experimental thermophysical characterization of phase-change materials, Int. J. Thermophys., Volume 32 (2011), pp. 674-692

[32] A. Joulin; L. Zalewski; S. Lassue; H. Naji Experimental investigation of thermal characteristics of a mortar with or without a micro-encapsulated phase change material, Appl. Therm. Eng., Volume 66 (2014), pp. 171-180

[33] P. Tittelein; S. Gibout; E. Franquet; K. Johannes; L. Zalewski; F. Kuznik; J.-P. Dumas; S. Lassue; J.-P. Bédécarrats; D. David Simulation of the thermal and energy behaviour of a composite material containing encapsulated-PCM: influence of the thermodynamical modelling, Appl. Energy, Volume 140 (2015), pp. 269-274

[34] J.-P. Dumas; S. Gibout; L. Zalewski; K. Johannes; E. Franquet; S. Lassue; J.-P. Bédécarrats; P. Tittelein; F. Kuznik Interpretation of calorimetry experiments to characterise phase change materials, Int. J. Therm. Sci., Volume 78 (2014), pp. 48-55

[35] H. Liu; K.E. N'Tsoukpoe; N. Le Pierrès; L. Luo Numerical dynamic simulation and analysis of a lithium bromide/water long term solar heat-storage system, Energy, Volume 37 (2012) no. 1, pp. 346-358

[36] H. Liu; K.E. N'Tsoukpoe; N. Le Pierrès; L. Luo Evaluation of a seasonal storage system of solar energy for house heating using different absorption couples, Energy Convers. Manag., Volume 52 (2011) no. 6, pp. 2427-2436

[37] V. Bricka, F. Kuznik, K. Johannes, Evaluation of thermal energy storage potential in low-energy buildings in France, in: Proc. ISES Solar World Congress, 28 August–2 September 2011, Kassel, Germany, 10 p.

[38] K. Johannes; F. Kuznik; J.L. Hubert; F. Durier; C. Obrecht Design and characterisation of a high powered energy dense zeolite thermal energystorage system for buildings, Appl. Energy, Volume 159 (2015), pp. 80-86

[39] B. Michel; N. Mazet; P. Neveu Experimental investigation of an open thermochemical storage process for thermal of solar energy operating with a hydrate salt: local reactive bed evolution, Appl. Energy, Volume 180 (2016), pp. 234-244

[40] Y. Tian; C.Y. Zhao A review of solar collectors and thermal energy storage in solar thermal applications, Appl. Energy, Volume 104 (2013), pp. 538-553

[41] M. Bunea; C. Hildbrand; A. Duret; S. Eicher; L. Péclat; S. Citherlet Analysis of a medium temperature solar thermal installation with heat storage for industrial applications, Energy Proc., Volume 91 (2016), pp. 601-610

[42] G. Zanganeh; M. Commerford; A. Haselbacher; A. Pedretti; A. Steinfeld Stabilization of the outflow temperature of a packed bed energy storage by combining rocks with phase change materials, Appl. Therm. Eng., Volume 70 (2014), pp. 316-320

[43] X. Py; R. Olives Thermal energy storage for CSP processes, Handbook of Clean Energy Systems, 2015 (1116 pp)

[44] A. Gil; M. Medrano; I. Martorell; A. Lazaro; P. Dolado; B. Zalba; L. Gao; J. Zhao; Z. Tang State of the art on high temperature for power generation. A review on borehole seasonal solar thermal energy storage, Energy Proc., Volume 70 (2015), pp. 209-218

[45] M. Medrano; A. Gil; I. Martorell; X. Potau; L. Cabeza State of the art on high-temperature thermal energy storage for power generation. Part 2-Case studies, Renew. Sustain. Energy Rev., Volume 14 (2010), pp. 56-72

[46] A. Meffre; X. Py; R. Olives; C. Bessada; E. Veron; P. Echegut High-temperature sensible heat-based thermal energy storage materials made of vitrified MSWI fly ashes, Waste Biomass Valoriz., Volume 6 (2015) no. 6, pp. 1003-1014

[47] J.-F. Hoffmann; T. Fasquelle; V. Goetz; X. Py Experimental and numerical investigation of a thermocline thermal energy storage tank, Appl. Therm. Eng., Volume 114 (2017), pp. 896-904

[48] X. Py; N. Calvet; R. Olives; A. Meffre; P. Echegut; C. Bessada; E. Veron; S. Ory Recycled material for sensible heat based thermal energy storage to be used in concentrated solar thermal power plants, J. Solar Energy Eng., Volume 133 (2011), pp. 1-8

[49] F. Motte; Q. Falcoz; E. Veron; X. Py Compatibility tests between Solar Salt and thermal storage ceramics from inorganic industrial wastes, Appl. Energy, Volume 155 (2015), pp. 14-22

[50] T. Fasquelle; Q. Falcoz; P. Neveu; J. Walker; G. Flamant Compatibility study between synthetic oil and vitrified wastes for direct thermal energy storage, Waste Biomass Valoriz., Volume 8 (2017) no. 3, pp. 621-631

[51] S. Tescari; A. Singh; C. Agrafiotis; L. de Oliveira; S. Breuer; B. Schlögl-Knothe; M. Roeb; C. Sattler Experimental evaluation of a pilot-scale thermochemical storage system for a concentrated solar power plant, Appl. Energy, Volume 189 (2017), pp. 66-75

[52] J.P. Muthusamy; S. Abanades; T. Shamim; N. Calvet Numerical modeling and optimization of an entrained particle-flow thermochemical Solar reactor for metal oxide reduction, Energy Proc., Volume 69 (2015), pp. 947-956

[53] L. André; S. Abanades; G. Flamant Screening of thermochemical systems based on solid–gas reversible reactions for high temperature solar thermal energy storage, Renew. Sustain. Energy Rev., Volume 64 (2016), pp. 703-715

[54] E. Serris; L. Favergeon; M. Pijolat; M. Soustelle; P. Nortier; R.S. Gärtner; T. Chopin; Z. Habib Study of the hydration of CaO powder by gas–solid reaction, Cem. Concr. Res., Volume 41 (2011), pp. 1078-1084

[55] Y. Criado; A. Huille; S. Rougé; J.C. Abanades Experimental investigation and model validation of a CaO/Ca(OH)2 fluidized bed reactor for thermochemical energy storage applications, Chem. Eng. J., Volume 313 (2017), pp. 1194-1205

[56] N. Mazet, B. Michel, G. Boulnois, S. Mauran, D. Stitou, Mass transfer in thermochemical solid/gas reactor for thermal storage applications, in: ISHPC 2014, International Sorption Heat Pump Conference, 31 March–3 April 2014, University of Maryland, College Park, Maryland, USA.

[57] S. Biloe; S. Mauran Gas flow through highly porous graphite matrices, Carbon, Volume 41 (2003) no. 3, pp. 525-537

[58] F. Achchaq; E. Palomo del Barrio; A. Renaud; S. Ben-Khemis Characterization of Li2K(OH)3 as material for thermal energy storage at high temperature, 19-21 May 2015, Beijin, China (2015)

[59] F. Achchaq; E. Palomo del Barrio A proposition of peritectic structures as candidates for thermal energy storage, 17–20 May 2016, La Rochelle, France (2016) (6 p)

  • Sinem Kılıçkap Işık GO, GNP ve hBN nanoparçacık katkılı sodyum asetat trihidrat faz değişim malzemesinin farklı soğutma koşulları altında T-history yöntemi kullanılarak erime ve süpercooling davranışının incelenmesi, DÜMF Mühendislik Dergisi, Volume 16 (2025) no. 1, p. 157 | DOI:10.24012/dumf.1578017
  • Guillermo Benítez-Olivares; Alejandro Torres-Aldaco; Raúl Lugo-Leyte; José Javier Valencia-López; Luis Alberto Romero-Vázquez; Helen D. Lugo-Méndez The Influence of the Cu-Al2O3 Ratio of the Receiving Tube in a 50 MW Hybrid Solar Plant, Energies, Volume 18 (2025) no. 2, p. 409 | DOI:10.3390/en18020409
  • Rafał Twaróg; Piotr Szatkowski; Kinga Pielichowska Phase Change Materials in Electrothermal Conversion Systems: A Review, Energies, Volume 18 (2025) no. 3, p. 569 | DOI:10.3390/en18030569
  • Sulaiman Al-Hashmi; Mingjie Chen; Shaima Al-Saidi Advancing sustainable energy solutions for hot regions: an in-depth exploration of solar thermal energy storage (STES) technologies and applications, Engineering Research Express, Volume 7 (2025) no. 1, p. 012101 | DOI:10.1088/2631-8695/adb8a0
  • Nikolaos Georgousis; Jan Diriken; Michel Speetjens; Camilo Rindt Comprehensive review on packed-bed sensible heat storage systems, Journal of Energy Storage, Volume 121 (2025), p. 116516 | DOI:10.1016/j.est.2025.116516
  • Silvino A. Balderrama Prieto; Piyush Sabharwall Technical and economic evaluation of heat transfer fluids for a TES system integrated to an advanced nuclear reactor, Applied Energy, Volume 360 (2024), p. 122714 | DOI:10.1016/j.apenergy.2024.122714
  • Sinem Kılıçkap Işık; Emin El Experimental investigation of distilled water production performance of conventional solar stills using CaCl2·6H2O phase change material reinforced with SrCl2·6H2O and graphene-based nanoparticles, Case Studies in Thermal Engineering, Volume 62 (2024), p. 105184 | DOI:10.1016/j.csite.2024.105184
  • Michal Gorás; Ján Domanický; Daniela Káposztásová; František Vranay; Zuzana Vranayová Innovative Approaches to Bridging Energy Supply and Demand Gaps Through Thermal Energy Storage: A Case Study, Energies, Volume 17 (2024) no. 23, p. 6197 | DOI:10.3390/en17236197
  • Luckywell Seyitini; Christopher Enweremadu Potential for Solar Industrial Process Heat Systems for Tea Drying Applications – A Case Study, Environmental and Climate Technologies, Volume 28 (2024) no. 1, p. 329 | DOI:10.2478/rtuect-2024-0026
  • Kokouvi Edem N'TSOUKPOE Materials for Thermochemical and Sorption Heat Storage, Heat and Cold Storage 2 (2024), p. 1 | DOI:10.1002/9781394312559.ch1
  • Nolwenn LE PIERRÈS Heat Storage Using Absorption Processes, Heat and Cold Storage 2 (2024), p. 95 | DOI:10.1002/9781394312559.ch2
  • Nathalie Mazet; Gabriel Boulnois; Erdanay Kurt; Emeric Tapachès; Sylvain Mauran Fixed-bed thermochemical reactor for high-temperature thermal storage: Experimental and numerical investigations of implementations and operating conditions, Journal of Energy Storage, Volume 84 (2024), p. 110826 | DOI:10.1016/j.est.2024.110826
  • Maryam El Fiti; Yasser Harmen; Mustapha Salihi; Ahmed Chebak; Charafeddine Jama; Younes Chhiti Optimisation of a novel configuration of combined eccentricity and unevenly distributed fins for enhanced energy efficiency in a PCM regenerator, Journal of Energy Storage, Volume 91 (2024), p. 112041 | DOI:10.1016/j.est.2024.112041
  • Renping Zhang; Zuxiang Zhou Research and optimization of heat transfer characteristics of heat pipe-coupled phase change energy storage system, Journal of Physics: Conference Series, Volume 2838 (2024) no. 1, p. 012032 | DOI:10.1088/1742-6596/2838/1/012032
  • Neelam Khandelwal; Hritik Yadav; Jatin Singh; Manav Bhatia; Rishabh Pratap Singh Parametric Analysis of Various Concentrated Solar Power Technologies with Different Heat Transfer Fluids and Thermal Energy Storage, Scientific and Technological Advances in Materials for Energy Storage and Conversions (2024), p. 189 | DOI:10.1007/978-981-97-2481-9_14
  • Benjamin Fumey; Robert Weber; Luca Baldini Heat transfer constraints and performance mapping of a closed liquid sorption heat storage process, Applied Energy, Volume 335 (2023), p. 120755 | DOI:10.1016/j.apenergy.2023.120755
  • T. K. Koishiyev; Z. B. Bekzhan; A. S. Saribayev Optimization Issues, Computer Modeling, and Visualization of the Efficiency Coefficient of Optical Systems of Solar Furnaces and Solar Power Plants, Applied Solar Energy, Volume 59 (2023) no. 3, p. 324 | DOI:10.3103/s0003701x2260148x
  • Weiguang Wang; Hua Tian; Dongxing Huo; Gequn Shu Review of thermally regenerative batteries based on redox reaction and distillation for harvesting low-grade heat as electricity, Chemical Engineering Journal, Volume 474 (2023), p. 145503 | DOI:10.1016/j.cej.2023.145503
  • Isye Hayatina; Amar Auckaili; Mohammed Farid Review on Salt Hydrate Thermochemical Heat Transformer, Energies, Volume 16 (2023) no. 12, p. 4668 | DOI:10.3390/en16124668
  • Filip Vrbanc; Mario Vašak; Vinko Lešić Simple and Accurate Model of Thermal Storage with Phase Change Material Tailored for Model Predictive Control, Energies, Volume 16 (2023) no. 19, p. 6849 | DOI:10.3390/en16196849
  • Kaiqi Jiang; Hanming Liu; Kangkang Li Amine-based thermal energy storage system towards industrial application, Energy Conversion and Management, Volume 283 (2023), p. 116954 | DOI:10.1016/j.enconman.2023.116954
  • Rahul Khatri; Rahul Goyal; Ravi Kumar Sharma Analysis of energy storage materials for developments in solar cookers, F1000Research, Volume 11 (2023), p. 1292 | DOI:10.12688/f1000research.126864.2
  • Ali Pourahmadiyan; Meisam Sadi; Ahmad Arabkoohsar Seasonal thermal energy storage, Future Grid-Scale Energy Storage Solutions (2023), p. 215 | DOI:10.1016/b978-0-323-90786-6.00013-3
  • Maziar Dehghan; Mahsa Ghasemizadeh; Saman Rashidi; Abolfazl Pourrajabian; Saeed Rahgozar; Ahmad Arabkoohsar Sensible thermal energy storage, Future Grid-Scale Energy Storage Solutions (2023), p. 65 | DOI:10.1016/b978-0-323-90786-6.00009-1
  • Andrea Zambotti; Mattia Biesuz; Mauro Bortolotti; Andrea Dorigato; Francesco Valentini; Giulia Fredi; Gian Domenico Sorarù Low‐temperature thermal energy storage with polymer‐derived ceramic aerogels, International Journal of Applied Ceramic Technology, Volume 20 (2023) no. 1, p. 39 | DOI:10.1111/ijac.14158
  • Yuanhao Wu; Maji Luo; Sheng Chen; Weiguang Zhou; Yang Yu; Zijian Zhou Numerical simulation study of the effect of mechanical vibration on heat transfer in a six-fin latent heat thermal energy storage unit, International Journal of Heat and Mass Transfer, Volume 207 (2023), p. 123996 | DOI:10.1016/j.ijheatmasstransfer.2023.123996
  • R. Christodoulaki; I. S. Akmandor; O. Bayer; U. Desideri; L. Ferrari; G. F. Frate; V. Drosou On the design of a solar heat storage tank at 120°C, International Journal of Sustainable Energy, Volume 42 (2023) no. 1, p. 1278 | DOI:10.1080/14786451.2023.2246080
  • Tawfiq Chekifi; Moustafa Boukraa CFD applications for sensible heat storage: A comprehensive review of numerical studies, Journal of Energy Storage, Volume 68 (2023), p. 107893 | DOI:10.1016/j.est.2023.107893
  • Henrik Zsiborács; András Vincze; Gábor Pintér; Nóra Hegedűsné Baranyai The potentials of thermal energy storage using domestic electric water heater technology with PV systems in the EU countries, MRS Energy Sustainability, Volume 11 (2023) no. 1, p. 74 | DOI:10.1557/s43581-023-00072-0
  • Riheb Mabrouk; Hassane Naji; Ali Cemal Benim; Hacen Dhahri A State of the Art Review on Sensible and Latent Heat Thermal Energy Storage Processes in Porous Media: Mesoscopic Simulation, Applied Sciences, Volume 12 (2022) no. 14, p. 6995 | DOI:10.3390/app12146995
  • Dimitris Drikakis; Talib Dbouk The Role of Computational Science in Wind and Solar Energy: A Critical Review, Energies, Volume 15 (2022) no. 24, p. 9609 | DOI:10.3390/en15249609
  • Rami M. Saeed; Konor L. Frick; Amey Shigrekar; Daniel Mikkelson; Shannon Bragg-Sitton Mapping thermal energy storage technologies with advanced nuclear reactors, Energy Conversion and Management, Volume 267 (2022), p. 115872 | DOI:10.1016/j.enconman.2022.115872
  • Farzad Jaliliantabar; Rizalman Mamat; Sudhakar Kumarasamy Latent Heat Prediction of Nano Enhanced Phase Change Material by ANN Method, Energy Engineering, Volume 119 (2022) no. 3, p. 847 | DOI:10.32604/ee.2022.019051
  • Guozhi Xu; Lei Hu; Yongqiang Luo; Zhiyong Tian; Jie Deng; Guofeng Yuan; Jianhua Fan Numerical modeling and parametric analysis of thermal performance for the large-scale seasonal thermal energy storage, Energy and Buildings, Volume 275 (2022), p. 112459 | DOI:10.1016/j.enbuild.2022.112459
  • Abhishek Saxena; Brian Norton; Varun Goel; Desh Bandhu Singh Solar cooking innovations, their appropriateness, and viability, Environmental Science and Pollution Research, Volume 29 (2022) no. 39, p. 58537 | DOI:10.1007/s11356-022-21670-4
  • Rahul Khatri; Rahul Goyal; Ravi Kumar Sharma Analysis of energy storage materials for developments in solar cookers, F1000Research, Volume 11 (2022), p. 1292 | DOI:10.12688/f1000research.126864.1
  • Sedat EMİR; Halime PAKSOY Isıl Enerji Depolama Uygulamaları için n-heptedekan@MgCO3 ve n-heptadekan@MgCO3@Ag Mikrokapsüllerinin Yeşil Kimya ile Sentezi, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, Volume 37 (2022) no. 2, p. 1111 | DOI:10.17341/gazimmfd.876626
  • Youssef Boukdir; Hamid EL Omari Novel high precision low-cost dual axis sun tracker based on three light sensors, Heliyon, Volume 8 (2022) no. 12, p. e12412 | DOI:10.1016/j.heliyon.2022.e12412
  • Imane Mahroug; Stefania Doppiu; Jean-Luc Dauvergne; Elena Palomo del Barrio Li4(OH)3Br/MgO shape stabilized composite as novel high temperature thermal energy storage material, Journal of Energy Storage, Volume 52 (2022), p. 104921 | DOI:10.1016/j.est.2022.104921
  • Guizhen Ke; Xinya Jin; Guangming Cai; Wenbin Li; Anchang Xu A novel composite cotton yarn with phase change and electrical conductivity functions, Journal of Industrial Textiles, Volume 51 (2022) no. 1_suppl, p. 554S | DOI:10.1177/15280837211003166
  • Devendra Raut; Arunendra K. Tiwari; Vilas R. Kalamkar A comprehensive review of latent heat energy storage for various applications: an alternate to store solar thermal energy, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Volume 44 (2022) no. 10 | DOI:10.1007/s40430-022-03740-3
  • Baoshan Xie; Nicolas Baudin; Jérôme Soto; Yilin Fan; Lingai Luo Thermocline packed bed thermal energy storage system, Renewable Energy Production and Distribution (2022), p. 325 | DOI:10.1016/b978-0-323-91892-3.24001-6
  • Md Momtazur Rahman; Imran Khan; Kamal Alameh The role of energy storage technologies for sustainability in developing countries, Renewable Energy and Sustainability (2022), p. 347 | DOI:10.1016/b978-0-323-88668-0.00004-8
  • Dylan D. Furszyfer Del Rio; Benjamin K. Sovacool; Aoife M. Foley; Steve Griffiths; Morgan Bazilian; Jinsoo Kim; David Rooney Decarbonizing the ceramics industry: A systematic and critical review of policy options, developments and sociotechnical systems, Renewable and Sustainable Energy Reviews, Volume 157 (2022), p. 112081 | DOI:10.1016/j.rser.2022.112081
  • Mariam Jadal; Jérôme Soto; Didier Delaunay Thermal conductivity evolution of a compressed expanded natural graphite – Phase change material composite after thermal cycling, Thermal Science and Engineering Progress, Volume 28 (2022), p. 101047 | DOI:10.1016/j.tsep.2021.101047
  • Edder J. García; Daniel Bahamon; Lourdes F. Vega Systematic Search of Suitable Metal–Organic Frameworks for Thermal Energy-Storage Applications with Low Global Warming Potential Refrigerants, ACS Sustainable Chemistry Engineering, Volume 9 (2021) no. 8, p. 3157 | DOI:10.1021/acssuschemeng.0c07797
  • Sh. I. Klychev; S. A. Bakhramov; I. G. Kenjaev; V. V. Kharchenko; A. S. Bagyshev Convective and Radiative Heat Losses of a Cylindrical Accumulator for Solar Water Heating Collectors, Applied Solar Energy, Volume 57 (2021) no. 2, p. 143 | DOI:10.3103/s0003701x21020043
  • Sh. I. Klychev; I. G. Kenzhaev; A. S. Bagyshev; S. A. Bakhramov; D. E. Kadyrgulov Thermal Losses of a Three-Layer Underground Cylindrical Heat Accumulator of Solar Installations, Applied Solar Energy, Volume 57 (2021) no. 6, p. 523 | DOI:10.3103/s0003701x21060116
  • A.J. Cetina-Quiñones; J. Xamán; A. Bassam; M.A. Escalante Soberanis; I. Perez-Quintana Thermo-economic analysis of a flat solar collector with a phase changing material under tropical climate conditions: Residential and industrial case, Applied Thermal Engineering, Volume 182 (2021), p. 116082 | DOI:10.1016/j.applthermaleng.2020.116082
  • Hamza Ayaz; Veerakumar Chinnasamy; Junhyeok Yong; Honghyun Cho Review of Technologies and Recent Advances in Low-Temperature Sorption Thermal Storage Systems, Energies, Volume 14 (2021) no. 19, p. 6052 | DOI:10.3390/en14196052
  • Georgios E. Arnaoutakis; Dimitris Al. Katsaprakakis Concentrating Solar Power Advances in Geometric Optics, Materials and System Integration, Energies, Volume 14 (2021) no. 19, p. 6229 | DOI:10.3390/en14196229
  • Sedat Emir; Halime Paksoy New multilayered microencapsulated phase change material with CaCO3 and Ag shells, Energy Storage, Volume 3 (2021) no. 1 | DOI:10.1002/est2.214
  • Evan D. Sherwin Electrofuel Synthesis from Variable Renewable Electricity: An Optimization-Based Techno-Economic Analysis, Environmental Science Technology, Volume 55 (2021) no. 11, p. 7583 | DOI:10.1021/acs.est.0c07955
  • Bashria A A Yousef; Ahmed A Hachicha; Ivette Rodriguez; Mohammad Ali Abdelkareem; Abrar Inyaat Perspective on integration of concentrated solar power plants, International Journal of Low-Carbon Technologies, Volume 16 (2021) no. 3, p. 1098 | DOI:10.1093/ijlct/ctab034
  • Selvaraj Jegadheeswaran; Athimoolam Sundaramahalingam; Sanjay D. Pohekar Alternative Heat Transfer Enhancement Techniques for Latent Heat Thermal Energy Storage System: A Review, International Journal of Thermophysics, Volume 42 (2021) no. 12 | DOI:10.1007/s10765-021-02921-x
  • Khandelwal Neelam; Sharma Meeta; Singh Onkar; Shukla Anoop Kumar Thermo-economic analysis of an integrated solar thermal cycle (ISTC) using thermal storage, Journal of Cleaner Production, Volume 320 (2021), p. 128725 | DOI:10.1016/j.jclepro.2021.128725
  • Andrea Zambotti; Edoardo Caldesi; Massimo Pellizzari; Francesco Valentini; Alessandro Pegoretti; Andrea Dorigato; Giorgio Speranza; Kan Chen; Mauro Bortolotti; Gian D. Sorarù; Mattia Biesuz Polymer-derived silicon nitride aerogels as shape stabilizers for low and high-temperature thermal energy storage, Journal of the European Ceramic Society, Volume 41 (2021) no. 11, p. 5484 | DOI:10.1016/j.jeurceramsoc.2021.04.056
  • Deniz YILDIRIM YALÇINKAYA; Hüseyin GÜNERHAN; Arif HEPBAŞLI; Hourieh BAYRAMİANDANALOU Duyulur Isıl Enerji Depolama Sistemlerinin Enerji Yönünden İncelenmesi, Mühendis ve Makina, Volume 63 (2021) no. 706, p. 159 | DOI:10.46399/muhendismakina.951649
  • Imane Mahroug; Stefania Doppiu; Jean-Luc Dauvergne; Angel Serrano; Elena Palomo del Barrio Li4(OH)3Br-Based Shape Stabilized Composites for High-Temperature TES Applications: Selection of the Most Convenient Supporting Material, Nanomaterials, Volume 11 (2021) no. 5, p. 1279 | DOI:10.3390/nano11051279
  • Esraa Darwish; Moufida Mansouri; Duygu Yilmaz; Henrik Leion Effect of Mn and Cu Substitution on the SrFeO3 Perovskite for Potential Thermochemical Energy Storage Applications, Processes, Volume 9 (2021) no. 10, p. 1817 | DOI:10.3390/pr9101817
  • Kokouvi Edem N’Tsoukpoe; Frédéric Kuznik A reality check on long-term thermochemical heat storage for household applications, Renewable and Sustainable Energy Reviews, Volume 139 (2021), p. 110683 | DOI:10.1016/j.rser.2020.110683
  • Yongliang Shen; Shuli Liu; Abdur Rehman Mazhar; Xiaojing Han; Liu Yang; Xiu'e Yang A review of solar-driven short-term low temperature heat storage systems, Renewable and Sustainable Energy Reviews, Volume 141 (2021), p. 110824 | DOI:10.1016/j.rser.2021.110824
  • Rahul Khatri; Rahul Goyal; Ravi Kumar Sharma Advances in the developments of solar cooker for sustainable development: A comprehensive review, Renewable and Sustainable Energy Reviews, Volume 145 (2021), p. 111166 | DOI:10.1016/j.rser.2021.111166
  • Mariam JADAL; jerome SOTO; Didier DELAUNAY Experimental Determination of Crystallization Kinetic Model of Ceng-Pcm Composite Material. Validation at Macro and Meso Scales, SSRN Electronic Journal (2021) | DOI:10.2139/ssrn.3985492
  • Jérôme Soto; Mariam Jadal; Nicolas de Guyenro; Didier Delaunay Thermal cycling aging of encapsulated phase change material – Compressed expanded natural graphite composite, Thermal Science and Engineering Progress, Volume 22 (2021), p. 100836 | DOI:10.1016/j.tsep.2020.100836
  • Meisam Sadi; Ahmad Arabkoohsar, 2020 IEEE 8th International Conference on Smart Energy Grid Engineering (SEGE) (2020), p. 27 | DOI:10.1109/sege49949.2020.9181995
  • Ahmad Arabkoohsar; Meisam Sadi, 2020 IEEE 8th International Conference on Smart Energy Grid Engineering (SEGE) (2020), p. 39 | DOI:10.1109/sege49949.2020.9181942
  • Girolama Airò Farulla; Maurizio Cellura; Francesco Guarino; Marco Ferraro A Review of Thermochemical Energy Storage Systems for Power Grid Support, Applied Sciences, Volume 10 (2020) no. 9, p. 3142 | DOI:10.3390/app10093142
  • SHAVKAT KLYCHEV; BAKHRAMOV SAGDULLA; VALERIY KHARCHENKO; VLADIMIR PANCHENKO DYNAMICS OF THERMAL LOSSES BY CONVECTION AND RADIATION OF THE SPHERICAL HEAT ACCUMULATOR OF SOLAR PLANTS, Elektrotekhnologii i elektrooborudovanie v APK, Volume 4 (2020) no. 41, p. 57 | DOI:10.22314/2658-4859-2020-67-4-57-62
  • Adrian Gonzalez Gonzalez; J. Valeriano Alvarez Cabal; Vicente Rodríguez Montequin; Joaquín Villanueva Balsera; Rogelio Peón Menéndez CSP Quasi-Dynamic Performance Model Development for All Project Life Cycle Stages and Considering Operation Modes. Validation Using One Year Data, Energies, Volume 14 (2020) no. 1, p. 14 | DOI:10.3390/en14010014
  • Dinesh Kumar Sharma; Dilip Sharma; Ahmed Hamza H. Ali A state of the art on solar-powered vapor absorption cooling systems integrated with thermal energy storage, Environmental Science and Pollution Research, Volume 27 (2020) no. 1, p. 158 | DOI:10.1007/s11356-019-06941-x
  • Aleksandrs Zajacs; Anatolijs Borodiņecs; Igors Neviero Optimal use of solar collectors in small-scale districts, IOP Conference Series: Materials Science and Engineering, Volume 869 (2020) no. 4, p. 042039 | DOI:10.1088/1757-899x/869/4/042039
  • Duygu Yilmaz; Esraa Darwish; Henrik Leion Investigation of the combined Mn-Si oxide system for thermochemical energy storage applications, Journal of Energy Storage, Volume 28 (2020), p. 101180 | DOI:10.1016/j.est.2019.101180
  • Ryan D. McGillicuddy; Surendra Thapa; Malia B. Wenny; Miguel I. Gonzalez; Jarad A. Mason Metal–Organic Phase-Change Materials for Thermal Energy Storage, Journal of the American Chemical Society, Volume 142 (2020) no. 45, p. 19170 | DOI:10.1021/jacs.0c08777
  • A.M. Morzhukhin; D.S. Testov; S.V. Morzhukhina Selection Principles and Investigation of Substances for Synthesis of Composite Medium-Temperature Phase Change Materials for Space Heating and Domestic Hot Water, Materials Science Forum, Volume 989 (2020), p. 165 | DOI:10.4028/www.scientific.net/msf.989.165
  • Burcu Koçak; Ana Ines Fernandez; Halime Paksoy Review on sensible thermal energy storage for industrial solar applications and sustainability aspects, Solar Energy, Volume 209 (2020), p. 135 | DOI:10.1016/j.solener.2020.08.081
  • Burcu Kocak; Halime Paksoy Performance of laboratory scale packed-bed thermal energy storage using new demolition waste based sensible heat materials for industrial solar applications, Solar Energy, Volume 211 (2020), p. 1335 | DOI:10.1016/j.solener.2020.10.070
  • Yosef Elia; Dorin Dumitru Lucache; Elena Serea, 2019 8th International Conference on Modern Power Systems (MPS) (2019), p. 1 | DOI:10.1109/mps.2019.8759797
  • Pankaj Kumar Singh; Anil Kumar; Prashant Mishra; V K Sethi, 2019 International Conference on Power Electronics, Control and Automation (ICPECA) (2019), p. 1 | DOI:10.1109/icpeca47973.2019.8975636
  • Abdulrahman Dahash; Fabian Ochs; Michele Bianchi Janetti; Wolfgang Streicher Advances in seasonal thermal energy storage for solar district heating applications: A critical review on large-scale hot-water tank and pit thermal energy storage systems, Applied Energy, Volume 239 (2019), p. 296 | DOI:10.1016/j.apenergy.2019.01.189
  • Alexis Godefroy; Maxime Perier-Muzet; Nathalie Mazet Thermodynamic analyses on hybrid sorption cycles for low-grade heat storage and cogeneration of power and refrigeration, Applied Energy, Volume 255 (2019), p. 113751 | DOI:10.1016/j.apenergy.2019.113751
  • M. Mofijur; Teuku Mahlia; Arridina Silitonga; Hwai Ong; Mahyar Silakhori; Muhammad Hasan; Nandy Putra; S.M. Rahman Phase Change Materials (PCM) for Solar Energy Usages and Storage: An Overview, Energies, Volume 12 (2019) no. 16, p. 3167 | DOI:10.3390/en12163167
  • Seon Tae Kim; Takuya Nihei; Chisato Kurahashi; Hitoshi Hoshino; Hiroki Takasu; Yukitaka Kato Kinetic study of lithium orthosilicate pellets for high‐temperature chemical heat pumps, Energy Storage, Volume 1 (2019) no. 4 | DOI:10.1002/est2.72
  • Drew A. Sheppard; Craig E. Buckley The potential of metal hydrides paired with compressed hydrogen as thermal energy storage for concentrating solar power plants, International Journal of Hydrogen Energy, Volume 44 (2019) no. 18, p. 9143 | DOI:10.1016/j.ijhydene.2019.01.271
  • A.E. Kabeel; Gamal B. Abdelaziz; Emad M.S. El-Said Experimental investigation of a solar still with composite material heat storage: Energy, exergy and economic analysis, Journal of Cleaner Production, Volume 231 (2019), p. 21 | DOI:10.1016/j.jclepro.2019.05.200
  • Mustafa S. Mahdi; Ahmed F. Hasan; Hameed B. Mahood; Alasdair N. Campbell; Anees A. Khadom; Abdul Mun’em A. Karim; Adel O. Sharif Numerical study and experimental validation of the effects of orientation and configuration on melting in a latent heat thermal storage unit, Journal of Energy Storage, Volume 23 (2019), p. 456 | DOI:10.1016/j.est.2019.04.013
  • Lauren Farcot; Nolwenn Le Pierrès; Jean-François Fourmigué Experimental investigation of a moving-bed heat storage thermochemical reactor with SrBr2/H2O couple, Journal of Energy Storage, Volume 26 (2019), p. 101009 | DOI:10.1016/j.est.2019.101009
  • A. Reyes; N. Pailahueque; L. Henríquez-Vargas; J. Vásquez; F. Sepúlveda Analysis of a multistage solar thermal energy accumulator, Renewable Energy, Volume 136 (2019), p. 621 | DOI:10.1016/j.renene.2018.12.103
  • Christoph Bott; Ingo Dressel; Peter Bayer State-of-technology review of water-based closed seasonal thermal energy storage systems, Renewable and Sustainable Energy Reviews, Volume 113 (2019), p. 109241 | DOI:10.1016/j.rser.2019.06.048
  • A.F. Mohamed; A.A. Hegazi; G.I. Sultan; Emad M.S. El-Said Enhancement of a solar still performance by inclusion the basalt stones as a porous sensible absorber: Experimental study and thermo-economic analysis, Solar Energy Materials and Solar Cells, Volume 200 (2019), p. 109958 | DOI:10.1016/j.solmat.2019.109958
  • Mustafa S. Mahdi; Hameed B. Mahood; Anees A. Khadom; Alasdair N. Campbell; Mohanad Hasan; Adel O. Sharif Experimental investigation of the thermal performance of a helical coil latent heat thermal energy storage for solar energy applications, Thermal Science and Engineering Progress, Volume 10 (2019), p. 287 | DOI:10.1016/j.tsep.2019.02.010

Cité par 91 documents. Sources : Crossref

Commentaires - Politique