Comptes Rendus
Demain l'énergie – Séminaire Daniel-Dautreppe, Grenoble, France, 2016
Storage of thermal solar energy
[Stockage thermique de l'énergie solaire]
Comptes Rendus. Physique, Volume 18 (2017) no. 7-8, pp. 401-414.

Le stockage thermique de l'énergie solaire touche de très nombreuses applications, qui vont du bâtiment aux centrales solaires à concentration en passant par l'industrie. Les niveaux de température rencontrés vont de la température ambiante à plus d'un millier de degrés, et les durées d'utilisation de quelques heures à plusieurs mois. Cet article passe en revue les différentes familles de stockage d'énergie solaire thermique (stockage sensible, latent et thermochimique), pour des applications à basses (40–120 °C) et moyennes–hautes températures (120–1000 °C).

Solar thermal energy storage is used in many applications, from building to concentrating solar power plants and industry. The temperature levels encountered range from ambient temperature to more than 1000 °C, and operating times range from a few hours to several months. This paper reviews different types of solar thermal energy storage (sensible heat, latent heat, and thermochemical storage) for low- (40–120 °C) and medium-to-high-temperature (120–1000 °C) applications.

Publié le :
DOI : 10.1016/j.crhy.2017.09.008
Keywords: Sensible heat storage, Latent heat storage, Thermochemical heat storage
Mot clés : Stockage de chaleur sensible, Stockage de chaleur latente, Stockage de chaleur enlever l'adjectif latente thermochimique
Benoît Stutz 1 ; Nolwenn Le Pierres 1 ; Frédéric Kuznik 2, 3 ; Kevyn Johannes 2, 3 ; Elena Palomo Del Barrio 4 ; Jean-Pierre Bédécarrats 5 ; Stéphane Gibout 5 ; Philippe Marty 6 ; Laurent Zalewski 7 ; Jerome Soto 8 ; Nathalie Mazet 9 ; Régis Olives 9 ; Jean-Jacques Bezian 10 ; Doan Pham Minh 10

1 LOCIE, Université Savoie Mont-Blanc, CNRS UMR5271, 73000 Chambéry, France
2 CETHIL, Université de Lyon, CNRS, INSA Lyon, CETHIL, UMR5008, 69621 Villeurbanne, France
3 Université Lyon 1, 69622 Villeurbanne, France
4 Université de Bordeaux, I2M UMR 5295, 33400 Talence, France
5 Université de Pau & des Pays de l'Adour, Laboratoire de thermique, énergétique et procédés–IPRA, EA1932, ENSGTI, avenue Jules-Ferry, BP7511, 64000 Pau, France
6 LEGI, Laboratoire des écoulements géophysiques et industriels, BP53, 38041 Grenoble, France
7 LGCGE, Université d'Artois, EA 4515, Laboratoire de génie civil et géo-environnement (LGCgE), 62400 Béthune, France
8 Université de Nantes, Nantes Atlantique Universités, CNRS, Laboratoire de thermocinétique de Nantes, UMR 6607, La Chantrerie, rue Christian-Pauc, BP 50609, 44306 Nantes cedex 3, France
9 CNRS-PROMES, UPR8521, Tecnosud, rambla de la thermodynamique, 66100 Perpignan, France
10 Université de Toulouse, Mines Albi, CNRS, Centre RAPSODEE, France
@article{CRPHYS_2017__18_7-8_401_0,
     author = {Beno{\^\i}t Stutz and Nolwenn Le Pierres and Fr\'ed\'eric Kuznik and Kevyn Johannes and Elena Palomo Del Barrio and Jean-Pierre B\'ed\'ecarrats and St\'ephane Gibout and Philippe Marty and Laurent Zalewski and Jerome Soto and Nathalie Mazet and R\'egis Olives and Jean-Jacques Bezian and Doan Pham Minh},
     title = {Storage of thermal solar energy},
     journal = {Comptes Rendus. Physique},
     pages = {401--414},
     publisher = {Elsevier},
     volume = {18},
     number = {7-8},
     year = {2017},
     doi = {10.1016/j.crhy.2017.09.008},
     language = {en},
}
TY  - JOUR
AU  - Benoît Stutz
AU  - Nolwenn Le Pierres
AU  - Frédéric Kuznik
AU  - Kevyn Johannes
AU  - Elena Palomo Del Barrio
AU  - Jean-Pierre Bédécarrats
AU  - Stéphane Gibout
AU  - Philippe Marty
AU  - Laurent Zalewski
AU  - Jerome Soto
AU  - Nathalie Mazet
AU  - Régis Olives
AU  - Jean-Jacques Bezian
AU  - Doan Pham Minh
TI  - Storage of thermal solar energy
JO  - Comptes Rendus. Physique
PY  - 2017
SP  - 401
EP  - 414
VL  - 18
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crhy.2017.09.008
LA  - en
ID  - CRPHYS_2017__18_7-8_401_0
ER  - 
%0 Journal Article
%A Benoît Stutz
%A Nolwenn Le Pierres
%A Frédéric Kuznik
%A Kevyn Johannes
%A Elena Palomo Del Barrio
%A Jean-Pierre Bédécarrats
%A Stéphane Gibout
%A Philippe Marty
%A Laurent Zalewski
%A Jerome Soto
%A Nathalie Mazet
%A Régis Olives
%A Jean-Jacques Bezian
%A Doan Pham Minh
%T Storage of thermal solar energy
%J Comptes Rendus. Physique
%D 2017
%P 401-414
%V 18
%N 7-8
%I Elsevier
%R 10.1016/j.crhy.2017.09.008
%G en
%F CRPHYS_2017__18_7-8_401_0
Benoît Stutz; Nolwenn Le Pierres; Frédéric Kuznik; Kevyn Johannes; Elena Palomo Del Barrio; Jean-Pierre Bédécarrats; Stéphane Gibout; Philippe Marty; Laurent Zalewski; Jerome Soto; Nathalie Mazet; Régis Olives; Jean-Jacques Bezian; Doan Pham Minh. Storage of thermal solar energy. Comptes Rendus. Physique, Volume 18 (2017) no. 7-8, pp. 401-414. doi : 10.1016/j.crhy.2017.09.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2017.09.008/

[1] A.I. Fernandez; M. Martinez; M. Segarra; I. Martorell; L.F. Cabeza Selection of materials with potential in sensible thermal energy storage, Sol. Energy Mater. Sol. Cells, Volume 94 (2010), pp. 1723-1729

[2] V. Ho Kon Tiat; E. Palomo del Barrio Recent patents on phase change materials and systems for latent heat thermal energy storage, Rec. Pat. Mech. Eng., Volume 4 (2011), pp. 16-28

[3] M. Liu; W. Saman; F. Bruno Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems, Renew. Sustain. Energy Rev., Volume 16 (2012), pp. 2118-2132

[4] B. Cárdenas; N. León High temperature latent heat thermal energy storage: phase change materials, design considerations and performance enhancement techniques, Renew. Sustain. Energy Rev., Volume 27 (2013), pp. 724-737

[5] B. Xu; P. Li; C. Chan Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments, Appl. Energy, Volume 160 (2015), pp. 286-307

[6] M. Liu; N.H. Tay; S. Bell; M. Belusko; R. Jacob; G. Will; W. Saman; F. Bruno Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies, Renew. Sustain. Energy Rev., Volume 53 (2016), pp. 1411-1432

[7] H. Zhang; J. Baeyens; G. Cáceres; J. Degrève; Y. Lv Thermal energy storage: recent developments and practical aspects, Prog. Energy Combust. Sci., Volume 53 (2016), pp. 1-40

[8] N. Le Pierres; D. Stitou; N. Mazet New deep-freezing process using renewable low grade heat: from the conceptual design to experimental results, Energy, Volume 32 (2007) no. 4, pp. 600-608

[9] W. Wongsuwan; S. Kumar; P. Neveu; F. Meunier A review of chemical heat pump technology and applications, Appl. Therm. Eng., Volume 21 (2001) no. 15, pp. 1489-1519

[10] H. Ogura; T. Yamamoto; K. Hiroyuki Efficiencies of CaO/H2O/Ca(OH)2 chemical heat pump for heat storing and heating/cooling, Energy, Volume 28 (2003) no. 14, pp. 1479-1493

[11] H. Bjurström; W. Raldow The absorption process for heating, cooling and energy storage – an historical survey, Int. J. Energy Res., Volume 5 (1981) no. 1, pp. 43-59

[12] S.C. Kaushik; K.T. Lam; S. Chandra; C.S. Tomar Mass and energy storage analysis of an absorption heat pump with simulated time dependent generator heat input, Energy Convers. Manag., Volume 22 (1982), pp. 183-196

[13] L. Scapino; H.A. Zondag; J. Van Bael; J. Diriken; C.C.M. Rindt Sorption heat storage for long-term low-temperature applications: a review on the advancements at material and prototype scale, App. Energy, Volume 190 (2017), pp. 920-948

[14] B. Michel; N. Mazet; P. Neveu Experimental investigation of an innovative thermochemical process operating with moist air for thermal storage of solar energy: global performances, Appl. Energy, Volume 129 (2014), pp. 177-186

[15] M. Schmidt; A. Gutierrez; M. Linder Thermochemical energy storage with CaO/Ca(OH)2 – Experimental investigation of the thermal capability at low vapor pressures in a lab scale reactor, Appl. Energy, Volume 188 (2017), pp. 672-681

[16] P. Pardo; Z. Anxionnaz-Minvielle; S. Rougé; P. Cognet; M. Cabassud Ca(OH)2/CaO reversible reaction in a fluidized bed reactor for thermochemical heat storage, Sol. Energy, Volume 107 (2014), pp. 605-616

[17] S. Mauran; P. Prades; F. L'Haridon Heat and mass transfer in consolidated reacting beds for thermochemical systems, Heat Recov. Syst. CHP, Volume 13 (1993) no. 4, pp. 315-319

[18] M. Zamengo; J. Ryu; Y. Kato Composite block of magnesium hydroxide – expanded graphite for chemical heat storage and heat pump, Appl. Therm. Eng., Volume 69 (2014), pp. 29-38

[19] G. Boulnois; N. Mazet; S. Mauran; E. Kurt Heat and mass transfers in thermochemical compound used for thermal storage, 30 June–3 July 2015, Pau, France (2015)

[20] , European Commission, 2012 (EU Energy in Figures–Statistical Pocketbook, Tech. rep.)

[21] , European Environment Agency, 2012 (Household Energy Consumption by End-Use in the EU–27, Technical report)

[22] I. Dincer; M. Rosen Thermal Energy Storage: Systems and Applications, John Wiley & Sons, 2002

[23] H. Paksoy Thermal Energy Storage for Sustainable Energy Consumption: Fundamentals, Case Studies and Design, NATO Science Series, Mathematics, Physics, and Chemistry, Springer, 2007

[24] M. Swiatek; G. Fraisse; M. Pailha Stratification enhancement for an integrated collector storage solar water heater (ICSSWH), Energy Build., Volume 106 (2015), pp. 35-43

[25] G. Fraisse; M. Pailha New concept of Integrated Collector Storage using phase change material and thermosyphon heat pipes, Mallorca, Spain, 11–14 October 2016 (2016) (9 p)

[26] P. Cui; N. Diao; C. Gao; Z. Fang Thermal investigation of in-series vertical ground heat exchangers for industrial waste heat storage, Geothermics, Volume 57 (2015), pp. 205-212

[27] L. Gao; J. Zhao; Z. Tang A review on borehole seasonal solar thermal energy storage, Energy Proc., Volume 70 (2015), pp. 209-218

[28] L. Zalewski; S. Lassue; B. Duthoit; M. Butez Study of solar walls – validating a simulation model, Build. Environ., Volume 37 (2002), pp. 109-121

[29] L. Zalewski; A. Joulin; S. Lassue; Y. Dutil; D. Rousse Experimental study of small-scale solar wall integrating phase change material, Sol. Energy, Volume 86 (2012), pp. 208-219

[30] P. Favier; L. Zalewski; S. Lassue; S. Anwar Designing an automatic control system for the improved functioning of a solar wall with phase change material (PCM), Open J. Energy Efficiency, Volume 05 (2016), pp. 19-29

[31] Z. Younsi; L. Zalewski; S. Lassue; D.R. Rousse; A. Joulin A novel technique for experimental thermophysical characterization of phase-change materials, Int. J. Thermophys., Volume 32 (2011), pp. 674-692

[32] A. Joulin; L. Zalewski; S. Lassue; H. Naji Experimental investigation of thermal characteristics of a mortar with or without a micro-encapsulated phase change material, Appl. Therm. Eng., Volume 66 (2014), pp. 171-180

[33] P. Tittelein; S. Gibout; E. Franquet; K. Johannes; L. Zalewski; F. Kuznik; J.-P. Dumas; S. Lassue; J.-P. Bédécarrats; D. David Simulation of the thermal and energy behaviour of a composite material containing encapsulated-PCM: influence of the thermodynamical modelling, Appl. Energy, Volume 140 (2015), pp. 269-274

[34] J.-P. Dumas; S. Gibout; L. Zalewski; K. Johannes; E. Franquet; S. Lassue; J.-P. Bédécarrats; P. Tittelein; F. Kuznik Interpretation of calorimetry experiments to characterise phase change materials, Int. J. Therm. Sci., Volume 78 (2014), pp. 48-55

[35] H. Liu; K.E. N'Tsoukpoe; N. Le Pierrès; L. Luo Numerical dynamic simulation and analysis of a lithium bromide/water long term solar heat-storage system, Energy, Volume 37 (2012) no. 1, pp. 346-358

[36] H. Liu; K.E. N'Tsoukpoe; N. Le Pierrès; L. Luo Evaluation of a seasonal storage system of solar energy for house heating using different absorption couples, Energy Convers. Manag., Volume 52 (2011) no. 6, pp. 2427-2436

[37] V. Bricka, F. Kuznik, K. Johannes, Evaluation of thermal energy storage potential in low-energy buildings in France, in: Proc. ISES Solar World Congress, 28 August–2 September 2011, Kassel, Germany, 10 p.

[38] K. Johannes; F. Kuznik; J.L. Hubert; F. Durier; C. Obrecht Design and characterisation of a high powered energy dense zeolite thermal energystorage system for buildings, Appl. Energy, Volume 159 (2015), pp. 80-86

[39] B. Michel; N. Mazet; P. Neveu Experimental investigation of an open thermochemical storage process for thermal of solar energy operating with a hydrate salt: local reactive bed evolution, Appl. Energy, Volume 180 (2016), pp. 234-244

[40] Y. Tian; C.Y. Zhao A review of solar collectors and thermal energy storage in solar thermal applications, Appl. Energy, Volume 104 (2013), pp. 538-553

[41] M. Bunea; C. Hildbrand; A. Duret; S. Eicher; L. Péclat; S. Citherlet Analysis of a medium temperature solar thermal installation with heat storage for industrial applications, Energy Proc., Volume 91 (2016), pp. 601-610

[42] G. Zanganeh; M. Commerford; A. Haselbacher; A. Pedretti; A. Steinfeld Stabilization of the outflow temperature of a packed bed energy storage by combining rocks with phase change materials, Appl. Therm. Eng., Volume 70 (2014), pp. 316-320

[43] X. Py; R. Olives Thermal energy storage for CSP processes, Handbook of Clean Energy Systems, 2015 (1116 pp)

[44] A. Gil; M. Medrano; I. Martorell; A. Lazaro; P. Dolado; B. Zalba; L. Gao; J. Zhao; Z. Tang State of the art on high temperature for power generation. A review on borehole seasonal solar thermal energy storage, Energy Proc., Volume 70 (2015), pp. 209-218

[45] M. Medrano; A. Gil; I. Martorell; X. Potau; L. Cabeza State of the art on high-temperature thermal energy storage for power generation. Part 2-Case studies, Renew. Sustain. Energy Rev., Volume 14 (2010), pp. 56-72

[46] A. Meffre; X. Py; R. Olives; C. Bessada; E. Veron; P. Echegut High-temperature sensible heat-based thermal energy storage materials made of vitrified MSWI fly ashes, Waste Biomass Valoriz., Volume 6 (2015) no. 6, pp. 1003-1014

[47] J.-F. Hoffmann; T. Fasquelle; V. Goetz; X. Py Experimental and numerical investigation of a thermocline thermal energy storage tank, Appl. Therm. Eng., Volume 114 (2017), pp. 896-904

[48] X. Py; N. Calvet; R. Olives; A. Meffre; P. Echegut; C. Bessada; E. Veron; S. Ory Recycled material for sensible heat based thermal energy storage to be used in concentrated solar thermal power plants, J. Solar Energy Eng., Volume 133 (2011), pp. 1-8

[49] F. Motte; Q. Falcoz; E. Veron; X. Py Compatibility tests between Solar Salt and thermal storage ceramics from inorganic industrial wastes, Appl. Energy, Volume 155 (2015), pp. 14-22

[50] T. Fasquelle; Q. Falcoz; P. Neveu; J. Walker; G. Flamant Compatibility study between synthetic oil and vitrified wastes for direct thermal energy storage, Waste Biomass Valoriz., Volume 8 (2017) no. 3, pp. 621-631

[51] S. Tescari; A. Singh; C. Agrafiotis; L. de Oliveira; S. Breuer; B. Schlögl-Knothe; M. Roeb; C. Sattler Experimental evaluation of a pilot-scale thermochemical storage system for a concentrated solar power plant, Appl. Energy, Volume 189 (2017), pp. 66-75

[52] J.P. Muthusamy; S. Abanades; T. Shamim; N. Calvet Numerical modeling and optimization of an entrained particle-flow thermochemical Solar reactor for metal oxide reduction, Energy Proc., Volume 69 (2015), pp. 947-956

[53] L. André; S. Abanades; G. Flamant Screening of thermochemical systems based on solid–gas reversible reactions for high temperature solar thermal energy storage, Renew. Sustain. Energy Rev., Volume 64 (2016), pp. 703-715

[54] E. Serris; L. Favergeon; M. Pijolat; M. Soustelle; P. Nortier; R.S. Gärtner; T. Chopin; Z. Habib Study of the hydration of CaO powder by gas–solid reaction, Cem. Concr. Res., Volume 41 (2011), pp. 1078-1084

[55] Y. Criado; A. Huille; S. Rougé; J.C. Abanades Experimental investigation and model validation of a CaO/Ca(OH)2 fluidized bed reactor for thermochemical energy storage applications, Chem. Eng. J., Volume 313 (2017), pp. 1194-1205

[56] N. Mazet, B. Michel, G. Boulnois, S. Mauran, D. Stitou, Mass transfer in thermochemical solid/gas reactor for thermal storage applications, in: ISHPC 2014, International Sorption Heat Pump Conference, 31 March–3 April 2014, University of Maryland, College Park, Maryland, USA.

[57] S. Biloe; S. Mauran Gas flow through highly porous graphite matrices, Carbon, Volume 41 (2003) no. 3, pp. 525-537

[58] F. Achchaq; E. Palomo del Barrio; A. Renaud; S. Ben-Khemis Characterization of Li2K(OH)3 as material for thermal energy storage at high temperature, 19-21 May 2015, Beijin, China (2015)

[59] F. Achchaq; E. Palomo del Barrio A proposition of peritectic structures as candidates for thermal energy storage, 17–20 May 2016, La Rochelle, France (2016) (6 p)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Thermal behavior of Composite Material (nanoPCM/aluminum foam) used for thermal energy storage (TES) applications

H. Mhiri; A. Jemni; H. Sammouda

C. R. Phys (2020)


Evaluation of the effect of a phase-change material on the thermal response of a bizone building under the climatic conditions of Tunisia

Nour Ben Taher; Nour Lajimi; Noureddine Boukadida

C. R. Phys (2019)


Recent advances in the metallurgy of aluminium alloys. Part I: Solidification and casting

Philippe Jarry; Michel Rappaz

C. R. Phys (2018)