Comptes Rendus
Evaluation of the effect of a phase-change material on the thermal response of a bizone building under the climatic conditions of Tunisia
[Évaluation de l'effet d'un matériau à changement de phase sur la réponse thermique d'un bâtiment bi-zone dans les conditions climatiques de la Tunisie]
Comptes Rendus. Physique, Volume 20 (2019) no. 6, pp. 593-603.

Cet article traite la méthode de l'analogie thermoélectrique pour étudier le comportement thermique de l'enveloppe en béton d'un bâtiment à deux zones contenant un matériau à changement de phase (MCP) microencapsulé et soumis à des conditions climatiques réalistes basées sur des données météorologiques pour une journée d'été typique en Tunisie. Ce travail rapporte une étude numérique basée sur la méthode nodale pour prédire l'effet du changement de phase sur la réponse thermique ainsi que sur la réduction du flux d'énergie associée au bâtiment à enveloppe composite.

This paper extends the thermoelectric analogy method to study the thermal behavior of a concrete envelope of a dual-zone building containing microencapsulated phase-change material (PCM) and subjected to realistic climatic conditions based on weather data for a typical summer day in Tunisia. This work deals with a numerical study based on the nodal method to predict the effect of phase change on the thermal response as well as the energy flux reduction associated with the composite-envelope building.

Publié le :
DOI : 10.1016/j.crhy.2019.01.004
Keywords: Building, Phase-change materials, Composite wall, Thermoelectricity
Mot clés : Bâtiment, Matériaux à changement de phase, Mur composite, Thermoélectricité
Nour Ben Taher 1 ; Nour Lajimi 2 ; Noureddine Boukadida 1

1 High School of Sciences and Technology of Hammam Sousse (ESSTHS), Tunisia
2 Laboratory of Metrology and Energy Systems, National School of Engineering of Monastir (ENIM), Tunisia
@article{CRPHYS_2019__20_6_593_0,
     author = {Nour Ben Taher and Nour Lajimi and Noureddine Boukadida},
     title = {Evaluation of the effect of a phase-change material on the thermal response of a bizone building under the climatic conditions of {Tunisia}},
     journal = {Comptes Rendus. Physique},
     pages = {593--603},
     publisher = {Elsevier},
     volume = {20},
     number = {6},
     year = {2019},
     doi = {10.1016/j.crhy.2019.01.004},
     language = {en},
}
TY  - JOUR
AU  - Nour Ben Taher
AU  - Nour Lajimi
AU  - Noureddine Boukadida
TI  - Evaluation of the effect of a phase-change material on the thermal response of a bizone building under the climatic conditions of Tunisia
JO  - Comptes Rendus. Physique
PY  - 2019
SP  - 593
EP  - 603
VL  - 20
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crhy.2019.01.004
LA  - en
ID  - CRPHYS_2019__20_6_593_0
ER  - 
%0 Journal Article
%A Nour Ben Taher
%A Nour Lajimi
%A Noureddine Boukadida
%T Evaluation of the effect of a phase-change material on the thermal response of a bizone building under the climatic conditions of Tunisia
%J Comptes Rendus. Physique
%D 2019
%P 593-603
%V 20
%N 6
%I Elsevier
%R 10.1016/j.crhy.2019.01.004
%G en
%F CRPHYS_2019__20_6_593_0
Nour Ben Taher; Nour Lajimi; Noureddine Boukadida. Evaluation of the effect of a phase-change material on the thermal response of a bizone building under the climatic conditions of Tunisia. Comptes Rendus. Physique, Volume 20 (2019) no. 6, pp. 593-603. doi : 10.1016/j.crhy.2019.01.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2019.01.004/

[1] G. Barrios; G. Huelsz; J. Rojas Thermal performance of envelope wall/roofs of intermittent air-conditioned rooms, Appl. Therm. Eng., Volume 40 (2012), pp. 1-7

[2] A.D. Granja; L.C. Labakiny Influence of external surface color on the periodic heat flow through a flat solid roof with variable thermal resistance, Int. J. Energy Res., Volume 27 (2003), pp. 771-779

[3] L.F. Cabeza; A. Castell; M. Medrano; I. Martorell; G. Pérez; I. Fernández Experimental study on the performance of insulation materials in Mediterranean construction, Energy Build., Volume 42 ( May 2010 ) no. 5, pp. 630-636

[4] C. Di Perna; F. Stazi; A. Ursini Casalena; M. D'Orazio Influence of the internal inertia of the building envelope on summertime comfort in buildings with high internal heat loads, Energy Build., Volume 43 (2011) no. 1, pp. 200-206

[5] L.F. Cabeza; C. Castellón; M. Nogués; M. Medrano; R. Leppers; O. Zubillaga Use of microencapsulated PCM in concrete walls for energy savings, Energy Build., Volume 39 ( February 2007 ) no. 2, pp. 113-119

[6] A. Castell; I. Martorell; M. Medrano; G. Pérez; L.F. Cabeza Experimental study of using PCM in brick constructive solutions for passive cooling, Energy Build., Volume 42 ( April 2010 ) no. 4, pp. 534-540

[7] K. Kissock; S. Limas Diurnal load reduction through phase-change building components, ASHRAE Trans. (2006), pp. 509-517

[8] S.D. Zwanzig; Y. Lian; E.G. Brehob Numerical simulation of phase-change material composite wallboard in a multi-layered building envelope, Energy Convers. Manag., Volume 69 (2013), pp. 27-40

[9] A.M. Thiele; A. Jamet; G. Sant; L. Pilon Annual energy analysis of concrete containing phase-change materials for building envelope, Energy Convers. Manag., Volume 103 (2015), pp. 374-386

[10] A.M. Thiele; G. Sant; L. Pilon Diurnal thermal analysis of microencapsulated PCM/concrete walls, Energy Convers. Manag., Volume 93 (2015), pp. 215-227

[11] A.M. Thiele; A. Kumar; G. Sant; L. Pilon Effective thermal conductivity of three component composites containing spherical capsules, Int. J. Heat Mass Transf., Volume 73 (2014), pp. 177-185

[12] N. Daouas Impact of external longwave radiation on optimum insulation thickness in Tunisian building roofs based on a dynamic analytical model, Appl. Energy, Volume 177 (2016), pp. 136-148

[13] N. Lajimi; N. Boukadida Numerical study of the thermal behavior of bi-zone buildings, C. R. Physique, Volume 16 (2015) no. 8, pp. 708-720

[14] P.H. Biwole; P. Eclache; F. Kuznik Phase-change materials to improve solar panel's performance, Energy Build., Volume 62 (2013), pp. 59-67

[15] Typical Engineering Properties of High Density Polyethylene, INEOS Olefins & Polymers, League City, TX, USA, 2009 (Technical Report)

[16] F.P. Incropera; A.S. Lavine; D.P. DeWitt Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York, 2011

[17] J.D. Felske Effective thermal conductivity of composite spheres in a continuous medium with contact resistance, Int. J. Heat Mass Transf., Volume 47 (2004), pp. 3459-3461

[18] H. Boyer; J.-P. Chabriat; C. Tourr; J. Brau Thermal building simulation and computer generation of nodal models, Build. Environ., Volume 31 (1996) no. 3, pp. 207-214

[19] A.M. Thiele; R.S. Ligett; G. Sant; L. Pilon Simple thermal evaluation of building envelopes containing phase-change materials using a modified admittance method, Energy Build., Volume 145 (2017), pp. 238-250

[20] T. Khadiran; M.Z. Hussein; Z. Zainal; R. Rusli Encapsulation techniques for organic phase change materials as thermal energy storage medium: a review, Sol. Energy Mater. Sol. Cells, Volume 143 (2015), pp. 78-98

[21] PureTemp 20 Technical Information, Entropy Solutions Inc., Minneapolis, MN, USA, 2011 (Technical Report)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Thermal behavior of Composite Material (nanoPCM/aluminum foam) used for thermal energy storage (TES) applications

H. Mhiri; A. Jemni; H. Sammouda

C. R. Phys (2020)


Storage of thermal solar energy

Benoît Stutz; Nolwenn Le Pierres; Frédéric Kuznik; ...

C. R. Phys (2017)


Numerical study of the thermal behavior of bi-zone buildings

Nour Lajimi; Noureddine Boukadida

C. R. Phys (2015)