Comptes Rendus
LEDs: the new revolution in lighting / Les LED : la nouvelle révolution de l'éclairage
LED lighting efficacy: Status and directions
Comptes Rendus. Physique, Volume 19 (2018) no. 3, pp. 134-145.

A monumental shift from conventional lighting technologies (incandescent, fluorescent, high intensity discharge) to LED lighting is currently transpiring. The primary driver for this shift has been energy efficiency and associated cost savings. LED lighting is now more efficacious than any of the conventional lighting technologies with room to still improve. Near term, phosphor-converted LED packages have the potential for efficacy improvement between 160 lm/W (now) to 255 lm/W. Longer term, color-mixed LED packages have the potential for efficacy levels conceivably as high as 330 lm/W, though reaching these performance levels requires breakthroughs in green and amber LED efficiency. LED package efficacy sets the upper limit to luminaire efficacy, with the luminaire containing its own efficacy loss channels. In this paper, based on analyses performed through the U.S. Department of Energy Solid State Lighting Program, various LED and luminaire loss channels are elucidated, and critical areas for improvement identified. Beyond massive energy savings, LED technology enables a host of new applications and added value not possible or economical with previous lighting technologies. These include connected lighting, lighting tailored for human physiological responses, horticultural lighting, and ecologically conscious lighting. None of these new applications would be viable if not for the high efficacies that have been achieved, and are themselves just the beginning of what LED lighting can do.

Un passage radical des techniques d'éclairage conventionnelles (incandescent, fluorescent, décharge de haute intensité) aux technologies LED est en train de s'opérer. La première raison de cette mutation est à rechercher dans l'efficacité énergétique de ces dernières et dans les économies associées. L'éclairage LED est maintenant plus efficace qu'aucune des technologies d'éclairage conventionnelles, mais il reste de l'espace pour des améliorations. À court terme, les ensembles à LED converties au phosphore peuvent encore voir leur efficacité améliorée de 160 lm/W à 255 lm/W. À long terme, il est concevable que les ensembles à LED à mélange de LED de différentes couleurs puissent atteindre des niveaux d'efficacité de 330 lm/W, quoiqu'atteindre de telles performances demande des avancées majeures du côté des LED de couleurs verte et ambre. L'efficacité des ensembles à LED détermine la limite supérieure du luminaire, ce dernier contenant ses propres canaux de perte d'efficacité. Dans cet article, sur la base d'analyses réalisées au Department of Energy au sein du Solid State Lighting Program américain, différents canaux de perte des LED et des luminaires ont été élucidés, et des domaines critiques permettant leur amélioration ont été identifiés. Au-delà d'économies d'énergie massives, la technologie LED permet de nouvelles applications et une valeur ajoutée non possible ou non économiquement faisable avec les anciennes technologies d'éclairage. Celles-ci incluent l'éclairage connecté, l'éclairage adapté aux réponses physiologiques humaines, l'éclairage horticole et l'éclairage respectueux de l'écologie. Aucune de ces nouvelles applications ne serait viable sans les hautes efficacités qui ont été atteintes, et qui ne sont elles-mêmes que les prémices de ce que l'éclairage LED peut faire.

Published online:
DOI: 10.1016/j.crhy.2017.10.013
Keywords: Light-emitting diodes, Solid-state lighting, Energy efficiency
Mot clés : Diodes émettrices de lumière, Éclairage à l'état solide, Efficacité énergétique

Paul Morgan Pattison 1, 2; Monica Hansen 1, 3; Jeffrey Y. Tsao 1, 4

1 U.S. Department of Energy Solid State Lighting Program, Washington, DC, USA
2 SSLS, Inc., Johnson City, TN, USA
3 LED Lighting Advisors, Santa Barbara, CA, USA
4 Sandia National Laboratories, Albuquerque, NM, USA
@article{CRPHYS_2018__19_3_134_0,
     author = {Paul Morgan Pattison and Monica Hansen and Jeffrey Y. Tsao},
     title = {LED lighting efficacy: {Status} and directions},
     journal = {Comptes Rendus. Physique},
     pages = {134--145},
     publisher = {Elsevier},
     volume = {19},
     number = {3},
     year = {2018},
     doi = {10.1016/j.crhy.2017.10.013},
     language = {en},
}
TY  - JOUR
AU  - Paul Morgan Pattison
AU  - Monica Hansen
AU  - Jeffrey Y. Tsao
TI  - LED lighting efficacy: Status and directions
JO  - Comptes Rendus. Physique
PY  - 2018
SP  - 134
EP  - 145
VL  - 19
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crhy.2017.10.013
LA  - en
ID  - CRPHYS_2018__19_3_134_0
ER  - 
%0 Journal Article
%A Paul Morgan Pattison
%A Monica Hansen
%A Jeffrey Y. Tsao
%T LED lighting efficacy: Status and directions
%J Comptes Rendus. Physique
%D 2018
%P 134-145
%V 19
%N 3
%I Elsevier
%R 10.1016/j.crhy.2017.10.013
%G en
%F CRPHYS_2018__19_3_134_0
Paul Morgan Pattison; Monica Hansen; Jeffrey Y. Tsao. LED lighting efficacy: Status and directions. Comptes Rendus. Physique, Volume 19 (2018) no. 3, pp. 134-145. doi : 10.1016/j.crhy.2017.10.013. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2017.10.013/

[1] https://energy.gov/eere/ssl/downloads/2016-led-roundtable-reports (U.S. Department of Energy Solid State Lighting Program)

[2] U.S. Department of Energy Energy Savings Forecast of Solid-State Lighting in General Illumination Applications, Building Technologies Office, Office of Energy Efficiency and Renewable Energy, US Department of Energy, Washington, DC, September 2016 https://energy.gov/sites/prod/files/2016/10/f33/energysavingsforecast16_0.pdf (Solid-State Lighting Program)

[3] https://energy.gov/eere/ssl/downloads/solid-state-lighting-2016-rd-plan (U.S. Department of Energy 2016 Solid State Lighting Research and Development Plan section 5.1)

[4] J.M. Phillips; M.E. Coltrin; M.H. Crawford; A.J. Fischer; M.R. Krames; R. Mueller-Mach; G.O. Mueller; Y. Ohno; L.E. Rohwer; J.A. Simmons; J.Y. Tsao Research challenges to ultra-efficient inorganic solid-state lighting, Laser Photonics Rev., Volume 1 (2007) no. 4, pp. 307-333

[5] B. Bugbee Toward an optimal spectral quality for plant growth and development: the importance of radiation capture, VIII International Symposium on Light in Horticulture 1134, 2016, pp. 1-12

[6] J.A. Nelson; B. Bugbee Economic analysis of greenhouse lighting: light emitting diodes vs. high intensity discharge fixtures, PLoS ONE, Volume 9 (2014) no. 6

[7] M.C. Snowden; K.R. Cope; B. Bugbee Sensitivity of seven diverse species to blue and green light: Interactions with photon flux, PLoS ONE, Volume 11 (2016) no. 10

[8] J.Y. Tsao; M.E. Coltrin; M.H. Crawford; J.A. Simmons Solid-state lighting: an integrated human factors, technology, and economic perspective, Proc. IEEE, Volume 98 (2010) no. 7, pp. 1162-1179

[9] J.E. Murphy et al. 62.4: PFS, K2SiF6: Mn4+: The Red-line Emitting LED Phosphor behind GE's TriGain Technology™ Platform, SID Symposium Digest of Technical Papers., Volume 46 (2015) no. 1

[10] P. Pust et al. Narrow-band red-emitting Sr [LiAl3N4]: Eu2+ as a next-generation LED-phosphor material, Nat. Mater., Volume 13 (2014) no. 9, p. 891

[11] K.T. Shimizu et al. Toward commercial realization of quantum dot based white light-emitting diodes for general illumination, Photonics Res., Volume 5 (2017) no. 2, p. A1-A6

[12] C.A. Hurni; A. David; M.J. Cich; R.I. Aldaz; B. Ellis; K. Huang; A. Tyagi; R.A. DeLille; M.D. Craven; F.M. Steranka; M.R. Krames Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation, Appl. Phys. Lett., Volume 106 (2015) no. 3

[13] https://energy.gov/eere/ssl/led-systems-reliability-consortium (LED System Reliability Consortium)

[14] https://energy.gov/sites/prod/files/2017/04/f34/2017_led-impact-sky-glow_0.pdf (An Investigation of LED Street Lighting's Impact on Sky Glow)

[15] E.F. Schubert; J.K. Kim Solid-state light sources getting smart, Science, Volume 308 (2005), pp. 1274-1278

[16] R.J. Lucas; S.N. Peirson; D.M. Berson; T.M. Brown; H.M. Cooper; C.A. Czeisler; M.G. Figueiro; P.D. Gamlin; S.W. Lockley; J.B. O'Hagan; L.L.A. Price; I. Provencio; D.J. Skene; G.C. Brainard Measuring and using light in the melanopsin age, Trends Neurosci., Volume 37 (2014), pp. 1-9

[17] S. Ancoli-Israel; J.L. Martin; D.F. Kripke; M. Marler; M.R. Klauber Effect of light treatment on sleep and circadian rhythms in demented nursing home patients, J. Am. Geriatr. Soc., Volume 50 (2002) no. 2, pp. 282-289

[18] R. Spivock, 2015 https://www.energy.gov/sites/prod/files/2015/02/f19/spivock_horticultural-lighting_sanfrancisco2015.pdf

[19] K.M. Folta; K.S. Childers Light as a growth regulator: controlling plant biology with narrow-bandwidth solid-state lighting systems, HortScience, Volume 43 (2008) no. 7, pp. 1957-1964

[20] https://energy.gov/sites/prod/files/2016/06/f32/ssl_animalresponse_jun2016.pdf

[21] DOE SSL Program Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, April 2013 http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/lca_factsheet_apr2013.pdf ([Online]. Available:)

Cited by Sources:

Comments - Policy