The realization of the first high-brightness blue-light-emitting diodes (LEDs) in 1993 sparked a more than twenty-year period of intensive research to improve their efficiency. Solutions to critical challenges related to material quality, light extraction, and internal quantum efficiency have now enabled highly efficient blue LEDs that are used to generate white light in solid-state lighting systems that surpass the efficiency of conventional incandescent lighting by 15–20×. Here we discuss the initial invention of blue LEDs, historical developments that led to their current state-of-the-art performance, and potential future directions for blue LEDs and solid-state lighting.
La mise au point des premières diodes électroluminescentes (LED) bleues en 1993 a marqué le début de plus de vingt années de recherches intensives dans le but d'améliorer leur efficacité. Les solutions qui ont été apportées à des défis critiques associés à la qualité des matériaux, à l'extraction de la lumière et au rendement quantique interne permettent à présent de disposer de LED bleues hautement performantes utilisables pour générer de la lumière blanche dans des systèmes d'éclairage à l'état solide qui surpassent en efficacité les ampoules à incandescence d'un facteur de 15 à 20×. Nous évoquons ici les prémices de l'invention des LED à lumière bleue, l'histoire des développements qui ont mené à la performance de l'état de l'art actuel, ainsi que de potentielles futures directions de recherche en matière de LED à lumière bleue et d'éclairage à l'état solide.
Mots-clés : Diodes électroluminescentes, Nitrure de gallium, Éclairage à l'état solide
Daniel Feezell 1; Shuji Nakamura 2
@article{CRPHYS_2018__19_3_113_0, author = {Daniel Feezell and Shuji Nakamura}, title = {Invention, development, and status of the blue light-emitting diode, the enabler of solid-state lighting}, journal = {Comptes Rendus. Physique}, pages = {113--133}, publisher = {Elsevier}, volume = {19}, number = {3}, year = {2018}, doi = {10.1016/j.crhy.2017.12.001}, language = {en}, }
TY - JOUR AU - Daniel Feezell AU - Shuji Nakamura TI - Invention, development, and status of the blue light-emitting diode, the enabler of solid-state lighting JO - Comptes Rendus. Physique PY - 2018 SP - 113 EP - 133 VL - 19 IS - 3 PB - Elsevier DO - 10.1016/j.crhy.2017.12.001 LA - en ID - CRPHYS_2018__19_3_113_0 ER -
Daniel Feezell; Shuji Nakamura. Invention, development, and status of the blue light-emitting diode, the enabler of solid-state lighting. Comptes Rendus. Physique, LEDs: The new revolution in lighting / Les LED : la nouvelle révolution de l’éclairage, Volume 19 (2018) no. 3, pp. 113-133. doi : 10.1016/j.crhy.2017.12.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2017.12.001/
[1] Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (2014). (Accessed 14 November 2017).
[2] Global LED Lighting Market Size & Trends: Industry Growth and Forecast, 2022 (2017). https://www.zionmarketresearch.com/report/led-lighting-market. (Accessed 14 November 2017).
[3] The preparation and properties of vapor-deposited single-crystal-line GaN, Appl. Phys. Lett., Volume 15 (1969), pp. 327-329 | DOI
[4] Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes, Appl. Phys. Lett., Volume 64 (1994), pp. 1687-1689 | DOI
[5] The Blue Laser Diode: The Complete Story, Springer Science & Business Media, 2013
[6] Progress and prospect of growth of wide-band-gap group III nitrides, III-Nitride Based Light Emit. Diodes Appl., Springer, Singapore, 2017, pp. 1-9 | DOI
[7] Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes, CRC Press, 2000
[8] History of gallium-nitride-based light-emitting diodes for illumination, Proc. IEEE, Volume 101 (2013), pp. 2211-2220 | DOI
[9] Background story of the invention of efficient InGaN blue-light-emitting diodes (Nobel lecture), Angew. Chem. Int. Ed., Volume 54 (2015), pp. 7770-7788 | DOI
[10] Blue light: a fascinating journey (Nobel lecture), Angew. Chem. Int. Ed., Volume 54 (2015), pp. 7750-7763 | DOI
[11] Growth of GaN layers on sapphire by low-temperature-deposited buffer layers and realization of p-type GaN by magesium doping and electron beam irradiation (Nobel lecture), Angew. Chem. Int. Ed., Volume 54 (2015), pp. 7764-7769 | DOI
[12] Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates, Appl. Phys. Lett., Volume 42 (1983), pp. 427-429 | DOI
[13] Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer, Appl. Phys. Lett., Volume 48 (1986), pp. 353-355 | DOI
[14] Novel metalorganic chemical vapor deposition system for GaN growth, Appl. Phys. Lett., Volume 58 (1991), pp. 2021-2023 | DOI
[15] GaN growth using GaN buffer layer, Jpn. J. Appl. Phys., Volume 30 (1991) | DOI
[16] Epitaxial growth of zinc blende and wurtzitic gallium nitride thin films on (001) silicon, Appl. Phys. Lett., Volume 59 (1991), pp. 944-946 | DOI
[17] In situ monitoring and hall measurements of GaN grown with GaN buffer layers, J. Appl. Phys., Volume 71 (1992), pp. 5543-5549 | DOI
[18] P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI), Jpn. J. Appl. Phys., Volume 28 (1989) | DOI
[19] Hole compensation mechanism of P-type GaN films, Jpn. J. Appl. Phys., Volume 31 (1992), p. 1258 | DOI
[20] Hydrogen in GaN: novel aspects of a common impurity, Phys. Rev. Lett., Volume 75 (1995), pp. 4452-4455 | DOI
[21] Role of hydrogen in doping of GaN, Appl. Phys. Lett., Volume 68 (1996), pp. 1829-1831 | DOI
[22] Thermal annealing effects on P-type Mg-doped GaN films, Jpn. J. Appl. Phys., Volume 31 (1992), p. L139 | DOI
[23] Violet luminescence of Mg-doped GaN, Appl. Phys. Lett., Volume 22 (1973), pp. 303-305 | DOI
[24] Luminescence of Be- and Mg-doped GaN, J. Appl. Phys., Volume 44 (1973), pp. 4234-4235 | DOI
[25] MIS Type Blue LEDs with a Brightness of 200 mcd Were Developed by Toyoda Gosei, Nikkan Kogyo Shinbun Jpn. Newsp. Press Release, 1993
[26] High-power GaN P–N junction blue-light-emitting diodes, Jpn. J. Appl. Phys., Volume 30 (1991) | DOI
[27] The Nobel prize in physics 2000, 2000 https://www.nobelprize.org/nobel_prizes/physics/laureates/2000/ (Accessed 2017-11-14)
[28] Diode Lasers and Photonic Integrated Circuits, John Wiley & Sons, 2012
[29] Wide-gap semiconductor (In, Ga)N, Karuizawa, Japan, 1989 (Institute of Physics Conference Series), Volume vol. 106, Institute of Physics, Bristol, UK (1990), p. 141
[30] Efficiency drop in green InGaN/GaN light emitting diodes: the role of random alloy fluctuations, Phys. Rev. Lett., Volume 116 (2016) | DOI
[31] Status and future of high-power light-emitting diodes for solid-state lighting, J. Disp. Technol., Volume 3 (2007), pp. 160-175 | DOI
[32] Fundamental absorption edge in GaN, InN and their alloys, Solid State Commun., Volume 11 (1972), pp. 617-621 | DOI
[33] Preparation and optical properties of Ga1−xInxN thin films, J. Appl. Phys., Volume 46 (1975), pp. 3432-3437 | DOI
[34] Properties of Ga1−xInxN films prepared by MOVPE, Jpn. J. Appl. Phys., Volume 28 (1989) | DOI
[35] Photoluminescence of InGaN films grown at high temperature by metalorganic vapor phase epitaxy, Appl. Phys. Lett., Volume 59 (1991), pp. 2251-2253 | DOI
[36] High-quality InGaN films grown on GaN films, Jpn. J. Appl. Phys., Volume 31 (1992) | DOI
[37] P-GaN/N-InGaN/N-GaN double-heterostructure blue-light-emitting diodes, Jpn. J. Appl. Phys., Volume 32 (1993), p. L8 | DOI
[38] High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures, Jpn. J. Appl. Phys., Volume 34 (1995), p. L797 | DOI
[39] Superbright green InGaN single-quantum-well-structure light-emitting diodes, Jpn. J. Appl. Phys., Volume 34 (1995) | DOI
[40] Development and Application of High-Brightness White LEDs, 1996
[41] Development of high-bright and pure-white LED lamps, J. Light Vis. Environ., Volume 22 (1998) (5pp) | DOI
[42] Surface-roughened light-emitting diodes: an accurate model, J. Disp. Technol., Volume 9 (2013), pp. 301-316 | DOI
[43] Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening, Appl. Phys. Lett., Volume 84 (2004), pp. 855-857 | DOI
[44] InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode, Jpn. J. Appl. Phys., Volume 41 (2002) | DOI
[45] High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency, Appl. Phys. Lett., Volume 75 (1999), pp. 2365-2367 | DOI
[46] Effects of the refractive index of the encapsulant on the light-extraction efficiency of light-emitting diodes, Opt. Express, Volume 19 (2011), p. A1135-A1140 | DOI
[47] Ray tracing for light extraction efficiency (LEE) modeling in nitride LEDs, III-Nitride Based Light Emit. Diodes Appl., Springer, Singapore, 2017, pp. 301-340 | DOI
[48] Light extraction of high-efficient light-emitting diodes, III-Nitride Based Light Emit. Diodes Appl., Springer, Singapore, 2017, pp. 341-361 | DOI
[49] Nitride-based LEDs with an insulating SiO2 layer underneath p-pad electrodes, Electrochem. Solid-State Lett., Volume 10 (2007), p. H175-H177 | DOI
[50] Illumination with solid state lighting technology, IEEE J. Sel. Top. Quantum Electron., Volume 8 (2002), pp. 310-320 | DOI
[51] High-power AlGaInN flip-chip light-emitting diodes, Appl. Phys. Lett., Volume 78 (2001), pp. 3379-3381 | DOI
[52] Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off, Appl. Phys. Lett., Volume 75 (1999), pp. 1360-1362 | DOI
[53] High brightness LEDs for general lighting applications using the new ThinGaNTM-technology, Phys. Status Solidi A, Volume 201 (2004), pp. 2736-2739 | DOI
[54] Analytical treatment of light extraction from textured surfaces using classical ray optics, Opt. Commun., Volume 284 (2011), pp. 4874-4878 | DOI
[55] High performance thin-film flip-chip InGaN–GaN light-emitting diodes, Appl. Phys. Lett., Volume 89 (2006) | DOI
[56] High output power InGaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy, Jpn. J. Appl. Phys., Volume 40 (2001), p. L583 | DOI
[57] Epitaxial growth of GaN on patterned sapphire substrates, III-Nitride Based Light Emit. Diodes Appl., Springer, Singapore, 2017, pp. 69-92 | DOI
[58] White light emitting diodes with super-high luminous efficacy, J. Phys. Appl. Phys., Volume 43 (2010) | DOI
[59] Development of gallium nitride substrates, SEI Tech. Rev., Volume 70 (2010), pp. 28-35
[60] Growth and strain characterization of high quality GaN crystal by HVPE, J. Cryst. Growth, Volume 350 (2012), pp. 44-49 | DOI
[61] Development of bulk GaN crystals and nonpolar/semipolar substrates by HVPE, Mater. Res. Soc. Bull., Volume 34 (2009), pp. 313-317 | DOI
[62] Quality, low cost ammonothermal bulk GaN substrates, Jpn. J. Appl. Phys., Volume 52 (2013) | DOI
[63] Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation, Appl. Phys. Lett., Volume 106 (2015) | DOI
[64] Bulk GaN based violet light-emitting diodes with high efficiency at very high current density, Appl. Phys. Lett., Volume 101 (2012) | DOI
[65] Enhanced light extraction from triangular GaN-based light-emitting diodes, IEEE Photonics Technol. Lett., Volume 19 (2007), pp. 1865-1867 | DOI
[66] High light extraction efficiency in bulk-GaN based volumetric violet light-emitting diodes, Appl. Phys. Lett., Volume 105 (2014) | DOI
[67] High dislocation densities in high efficiency GaN-based light-emitting diodes, Appl. Phys. Lett., Volume 66 (1995), pp. 1249-1251 | DOI
[68] High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes, Appl. Phys. Lett., Volume 67 (1995), pp. 1868-1870 | DOI
[69] Origin of defect-insensitive emission probability in In-containing (Al, In, Ga)N alloy semiconductors, Nat. Mater., Volume 5 (2006) | DOI
[70] The influence of random indium alloy fluctuations in indium gallium nitride quantum wells on the device behavior, J. Appl. Phys., Volume 116 (2014) | DOI
[71] Current status and future prospects of ZnSe-based light-emitting devices, J. Cryst. Growth, Volume 214–215 (2000), pp. 1029-1034 | DOI
[72] Spontaneous polarization and piezoelectric constants of III–V nitrides, Phys. Rev. B, Volume 56 (1997), p. R10024-R10027 | DOI
[73] Effects of macroscopic polarization in III–V nitride multiple quantum wells, Phys. Rev. B, Volume 60 (1999), pp. 8849-8858 | DOI
[74] Strain-induced polarization in wurtzite III-nitride semipolar layers, J. Appl. Phys., Volume 100 (2006) | DOI
[75] Interplay of polarization fields and Auger recombination in the efficiency droop of nitride light-emitting diodes, Appl. Phys. Lett., Volume 101 (2012) | DOI
[76] Semipolar (20-2-1) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting, J. Disp. Technol., Volume 9 (2013), pp. 190-198 | DOI
[77] Analyzing the physical properties of InGaN multiple quantum well light emitting diodes from nano scale structure, Appl. Phys. Lett., Volume 101 (2012) | DOI
[78] Study on the current spreading effect and light extraction enhancement of vertical GaN/InGaN LEDs, IEEE Trans. Electron Devices, Volume 59 (2012), pp. 400-407 | DOI
[79] Recombination balance in green-light-emitting GaN/InGaN/AlGaN quantum wells, Appl. Phys. Lett., Volume 75 (1999), pp. 3838-3840 | DOI
[80] Droop in InGaN light-emitting diodes: a differential carrier lifetime analysis, Appl. Phys. Lett., Volume 96 (2010) | DOI
[81] Carrier recombination mechanisms and efficiency droop in GaInN/GaN light-emitting diodes, Appl. Phys. Lett., Volume 97 (2010) | DOI
[82] The efficiency challenge of nitride light-emitting diodes for lighting, Phys. Status Solidi A, Volume 212 (2015), pp. 899-913 | DOI
[83] Auger recombination in InGaN measured by photoluminescence, Appl. Phys. Lett., Volume 91 (2007) | DOI
[84] Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop, Phys. Rev. Lett., Volume 110 (2013) | DOI
[85] Analysis of dominant carrier recombination mechanisms depending on injection current in InGaN green light emitting diodes, Appl. Phys. Lett., Volume 104 (2014) | DOI
[86] Origin of efficiency droop in GaN-based light-emitting diodes, Appl. Phys. Lett., Volume 91 (2007) | DOI
[87] Temperature-dependence of the internal efficiency droop in GaN-based diodes, Appl. Phys. Lett., Volume 99 (2011) | DOI
[88] Study of droop phenomena in InGaN-based blue and green light-emitting diodes by temperature-dependent electroluminescence, Appl. Phys. Lett., Volume 100 (2012) | DOI
[89] Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2, Appl. Phys. Lett., Volume 91 (2007) | DOI
[90] On the origin of IQE-‘droop’ in InGaN LEDs, Phys. Status Solidi C, Volume 6 (2009), p. S913-S916 | DOI
[91] Influence of polarization fields on carrier lifetime and recombination rates in InGaN-based light-emitting diodes, Appl. Phys. Lett., Volume 97 (2010) | DOI
[92] Identification of nnp and npp Auger recombination as significant contributor to the efficiency droop in (GaIn)N quantum wells by visualization of hot carriers in photoluminescence, Appl. Phys. Lett., Volume 103 (2013) | DOI
[93] Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes, Appl. Phys. Lett., Volume 98 (2011) | DOI
[94] First-principles calculations of indirect Auger recombination in nitride semiconductors, Phys. Rev. B, Volume 92 (2015) | DOI
[95] Temperature and carrier-density dependence of Auger and radiative recombination in nitride optoelectronic devices, New J. Phys., Volume 15 (2013) | DOI
[96] Auger carrier leakage in III-nitride quantum-well light emitting diodes, Phys. Status Solidi RRL, Volume 6 (2012), pp. 418-420 | DOI
[97] Origin of electrons emitted into vacuum from InGaN light emitting diodes, Appl. Phys. Lett., Volume 105 (2014) | DOI
[98] Identification of Auger effect as the dominant mechanism for efficiency droop of LEDs, Proc. SPIE, 9003, International Society for Optics and Photonics, 2014, p. 90030Z | DOI
[99] Efficiency droop in nitride-based light-emitting diodes, Phys. Status Solidi A, Volume 207 (2010), pp. 2217-2225 | DOI
[100] Internal quantum efficiency, III-Nitride Based Light Emit. Diodes Appl, Springer, Singapore, 2017, pp. 163-207 | DOI
[101] Efficiency droop in light-emitting diodes: challenges and countermeasures, Laser Photonics Rev., Volume 7 (2013), pp. 408-421 | DOI
[102] Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes, Appl. Phys. Lett., Volume 92 (2008) | DOI
[103] Localization landscape theory of disorder in semiconductors. III. Application to carrier transport and recombination in light emitting diodes, Phys. Rev. B, Volume 95 (2017) | DOI
[104] Tunneling-based carrier regeneration in cascaded GaN light emitting diodes to overcome efficiency droop, Appl. Phys. Lett., Volume 103 (2013) | DOI
[105] III-Nitride tunnel junctions and their applications, III-Nitride Based Light Emit. Diodes Appl., Springer, Singapore, 2017, pp. 209-238 | DOI
[106] InGaN based micro light emitting diodes featuring a buried GaN tunnel junction, Appl. Phys. Lett., Volume 107 (2015) | DOI
[107] GaInN-based tunnel junctions with graded layers, Appl. Phys. Express, Volume 9 (2016) | DOI
[108] Hybrid tunnel junction contacts to III-nitride light-emitting diodes, Appl. Phys. Express, Volume 9 (2016) | DOI
[109] Silver free III-nitride flip chip light-emitting-diode with wall plug efficiency over 70% utilizing a GaN tunnel junction, Appl. Phys. Lett., Volume 109 (2016) | DOI
[110] Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact, Appl. Phys. Lett., Volume 107 (2015) | DOI
[111] Demonstration of a III-nitride edge-emitting laser diode utilizing a GaN tunnel junction contact, Opt. Express, Volume 24 (2016), pp. 7816-7822 | DOI
[112] Explanation of low efficiency droop in semipolar (20-2-1) InGaN/GaN LEDs through evaluation of carrier recombination coefficients, Opt. Express, Volume 25 (2017), pp. 19343-19353 | DOI
[113] Influence of polarity on carrier transport in semipolar (202-1) and (20-2-1) multiple-quantum-well light-emitting diodes, Appl. Phys. Lett., Volume 100 (2012) | DOI
[114] Droop in III-nitrides: comparison of bulk and injection contributions, Appl. Phys. Lett., Volume 97 (2010) | DOI
[115] Defect-reduction mechanism for improving radiative efficiency in InGaN/GaN light-emitting diodes using InGaN underlayers, J. Appl. Phys., Volume 117 (2015) | DOI
[116] Solid-state lighting: an energy-economics perspective, J. Phys. Appl. Phys., Volume 43 (2010) | DOI
[117] Solid-state lighting: ‘the case’ 10 years after and future prospects, Phys. Status Solidi A, Volume 208 (2011), pp. 17-29 | DOI
[118] White light-emitting diodes: history, progress, and future, Laser Photonics Rev., Volume 11 (2017) | DOI
[119] Y. Shimizu, Japanese patent application publication H08-7614, 1996.
[120] Y. Shimizu, K. Sakano, Y. Noguchi, T. Moriguchi, Japanese priority patent applications to U.S, 1999, patent 5,998,925.
[121] Full-visible-spectrum LEDs by Soraa — LED professional - LED lighting technology, application magazine, 2016 https://www.led-professional.com/resources-1/articles/high-color-rendering-full-visible-spectrum-leds-the-first-wave-of-conventional-white-leds-primarily-focused-on-lumens-per-watt-these-leds-were-by-soraa (Accessed 2017-11-15)
[122] https://www.soraa.com/news_releases/31 (Accessed 2017-11-15)
, 2015[123] https://energy.gov/sites/prod/files/2016/06/f32/ssl_rd-plan_%20jun2016_2.pdf (Accessed 2017-11-14)
, 2016[124] Innovations in LEDs, 2015 https://www.energy.gov/sites/prod/files/2015/02/f19/craford_innovation_sanfrancisco2015.pdf
[125] Research challenges to ultra-efficient inorganic solid-state lighting, Laser Photonics Rev., Volume 1 (2007), pp. 307-333 | DOI
[126] High luminous efficacy green light-emitting diodes with AlGaN cap layer, Opt. Express, Volume 24 (2016), pp. 17868-17873 | DOI
[127] http://www.osram-os.com/osram_os/en/press/press-releases/led-for-automotive,-consumer,-industry/2014/osram-achieves-record-figures-with-green-leds/index.jsp (Accessed 2017-11-15)
, 2014[128] White-light LEDS, Opt. Photonics News, Volume 15 (2004), pp. 24-29 | DOI
[129] Ultra-high efficiency white light emitting diodes, Jpn. J. Appl. Phys., Volume 45 (2006) | DOI
[130] http://www.cree.com/news-media/news/article/cree-breaks-200-lumen-per-watt-efficacy-barrier (Accessed 2017-11-14)
, 2010[131] Recent development of nitride LEDs and LDs, Proc. SPIE, 7216, International Society for Optics and Photonics, 2009, p. 72161Z | DOI
[132] http://www.osram.com.au/osram_au/press/press-releases/_trade_press/2014/osram-constructs-the-worlds-most-efficient-led-lamp/index.jsp (Accessed 2017-11-15)
, 2014[133] http://www.cree.com/news-events/news/article/cree-first-to-break-300-lumens-per-watt-barrier (Accessed 2017-11-14)
, 2014[134] Emerging system level applications for LED technology, III-Nitride Based Light Emit. Diodes Appl., Springer, Singapore, 2017, pp. 481-492 | DOI
[135] Cellular architecture and key technologies for 5G wireless communication networks, IEEE Commun. Mag., Volume 52 (2014), pp. 122-130 | DOI
[136] A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications, Semicond. Sci. Technol., Volume 32 (2017) | DOI
[137] Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges, IEEE Commun. Mag., Volume 54 (2016), pp. 64-71 | DOI
[138] What is LiFi?, J. Lightwave Technol., Volume 34 (2016), pp. 1533-1544 | DOI
[139] Visible light communications for 5G wireless networking systems: from fixed to mobile communications, IEEE Netw., Volume 28 (2014), pp. 41-45 | DOI
[140] Optical hotspots speed up wireless communication, Nat. Photonics, Volume 1 (2007), pp. 245-247 | DOI
[141] High-speed nonpolar InGaN/GaN LEDs for visible-light communication, IEEE Photonics Technol. Lett., Volume 29 (2017), pp. 381-384 | DOI
[142] High bandwidth GaN-based micro-LEDs for multi-gb/s visible light communications, IEEE Photonics Technol. Lett., Volume 28 (2016), pp. 2023-2026 | DOI
[143] III-Nitride-based cyan light-emitting diodes with GHz bandwidth for high-speed visible light communication, IEEE Electron Device Lett., Volume 37 (2016), pp. 894-897 | DOI
[144] High-speed visible light communications using individual pixels in a micro light-emitting diode array, IEEE Photonics Technol. Lett., Volume 22 (2010), pp. 1346-1348 | DOI
[145] High-speed GaN-based blue light-emitting diodes with gallium-doped ZnO current spreading layer, IEEE Electron Device Lett., Volume 34 (2013), pp. 611-613 | DOI
[146] High bandwidth freestanding semipolar (11-22) InGaN/GaN light-emitting diodes, IEEE Photonics J., Volume 8 (2016), pp. 1-8 | DOI
[147] Visible-light communications using a CMOS-controlled micro-light- emitting-diode array, J. Lightwave Technol., Volume 30 (2012), pp. 61-67 | DOI
[148] Differential carrier lifetime and transport effects in electrically injected III-nitride light-emitting diodes, J. Appl. Phys., Volume 122 (2017) | DOI
[149] Carrier dynamics and Coulomb-enhanced capture in III-nitride quantum heterostructures, Appl. Phys. Lett., Volume 109 (2016) | DOI
[150] InGaN-based multi-quantum-well-structure laser diodes, Jpn. J. Appl. Phys., Volume 35 (1996), p. L74 | DOI
[151] Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes, Appl. Phys. Lett., Volume 69 (1996), pp. 4056-4058 | DOI
[152] Blue InGaN-based laser diodes with an emission wavelength of 450 nm, Appl. Phys. Lett., Volume 76 (1999), pp. 22-24 | DOI
[153] High-power and high-temperature operation of an InGaN laser over 3 W at 85 °C using a novel double-heat-flow packaging technology, Jpn. J. Appl. Phys., Volume 55 (2016) | DOI
[154] Optical-loss suppressed InGaN laser diodes using undoped thick waveguide structure, Proc. SPIE, 9748, International Society for Optics and Photonics, 2016, p. 974818 | DOI
[155] Recent advances in c-plane GaN visible lasers, Proc. SPIE, 8986, International Society for Optics and Photonics, 2014, p. 89861L | DOI
[156] Recent improvement in nitride lasers, Proc. SPIE, 1014, International Society for Optics and Photonics, 2017, p. 101041H | DOI
[157] https://energy.gov/sites/prod/files/2016/02/f29/raring_leddroop_raleigh2016.pdf (Accessed 2017-11-15)
, 2016[158] Comparison between blue lasers and light-emitting diodes for future solid-state lighting, Laser Photonics Rev., Volume 7 (2013), pp. 963-993 | DOI
[159] Toward smart and ultra-efficient solid-state lighting, Adv. Opt. Mater., Volume 2 (2014), pp. 809-836 | DOI
[160] The potential of III-nitride laser diodes for solid-state lighting, Phys. Status Solidi C, Volume 11 (2014), pp. 674-677 | DOI
[161] Analysis of lasers as a solution to efficiency droop in solid-state lighting, Appl. Phys. Lett., Volume 107 (2015) | DOI
[162] 2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system, Opt. Express, Volume 23 (2015), pp. 29779-29787 | DOI
[163] 4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication, Opt. Express, Volume 23 (2015), pp. 16232-16237 | DOI
[164] Laser light for headlights: latest trend in car lighting | OSRAM Automotive, (n.d.). https://www.osram.com/am/specials/trends-in-automotive-lighting/laser-light-new-headlight-technology/index.jsp. (Accessed 16 November 2017).
[165] Four-color laser white illuminant demonstrating high color-rendering quality, Opt. Express, Volume 19 (2011), p. A982-A990 | DOI
[166] High-efficiency high-reliability laser diodes at JDS uniphase, Proc. SPIE, 5711, International Society for Optics and Photonics, 2005, pp. 142-152 | DOI
[167] 85% power conversion efficiency 975-nm broad area diode lasers at −50 °C, 76% at 10 °C, Conf. Lasers Electro-Opt. Electron. Laser Sci. Conf. Photonic Appl. Syst. Technol. 2006 Pap. JWB24, Optical Society of America, 2006, p. JWB24 https://www.osapublishing.org/abstract.cfm?uri=QELS-2006-JWB24 (Accessed 2017-11-15)
[168] Miniaturized LEDs for flat-panel displays, Proc. SPIE, 10124, International Society for Optics and Photonics, 2017, p. 1012418 | DOI
[169] Fabrication of a vertically-stacked passive-matrix micro-LED array structure for a dual color display, Opt. Express, Volume 25 (2017), pp. 2489-2495 | DOI
[170] III-nitride full-scale high-resolution microdisplays, Appl. Phys. Lett., Volume 99 (2011) | DOI
[171] Monolithic integration of InGaN-based nanocolumn light-emitting diodes with different emission colors, Appl. Phys. Express, Volume 6 (2012) | DOI
[172] Chapter seven – Nanowire-based visible light emitters, present status and outlook (S.A. Dayeh; A. Fontcuberta i Morral; C. Jagadish, eds.), Semicond. Semimet., Elsevier, 2016, pp. 227-271 | DOI
[173] Tailoring the morphology and luminescence of GaN/InGaN core–shell nanowires using bottom-up selective-area epitaxy, Nanotechnology, Volume 28 (2017) | DOI
[174] Google Invests 15 Million USD in University Spin-out Focused on Micro LED Technology – LEDinside (2017). http://www.ledinside.com/news/2017/8/google_invests_15_million_usd_in_university_spin_out_focused_on_micro_led_technology. (Accessed 16 November 2017).
[175] Apple's Micro-LED Display Could Replace OLED Screens in Wearable Devices – LEDinside (2015). http://www.ledinside.com/news/2015/7/apples_micro_led_display_could_replace_oled_screens_in_wearable_devices. (Accessed 16 November 2017).
Cited by Sources:
Comments - Policy