In this paper, we shall address the electromagnetic wave propagation issues that are critical to determining the feasibility of a drone-borne ground-penetrating radar sensor for humanitarian applications, particularly in the context of disaster management. Frequency- and polarization-dependent scattering, attenuation and dispersion of radar signals penetrating into the sub-surface region will determine the applicability of a drone-mounted radar sensor capable of registering radar echoes for observing and monitoring sub-surface features. The functionality of the radar will thus be assessed depending on key radar parameters that include the central radar frequency, the modulation depth, and the mode of radar operation (pulsed FM, FM-CW), the antenna type, the available power-budget.
In the analysis to be presented, the radar equation, together with the aforementioned propagation effects, will be used to simulate the signal strength of radar echoes under different conditions arising from the chosen key-radar parameters and the assumed physical properties of the sub-surface earth medium. The analysis to be presented will indicate whether or not the drone-borne ground-penetrating radar is a feasible system and if it could be constructed with the technologies available today.
Taking into account the strict constraints involved to design drone applications for Public Protection and Disaster Relief (PPDR), the ideas developed hereafter are both prospective and exploratory. The objective is to see if a solution can be found in the near future.
Dans cet article, nous allons aborder les problèmes de propagation d'onde électromagnétique qui permettra de déterminer la faisabilité d'un capteur radar à pénétration de sol, embarqué sur un drone, destiné aux applications humanitaires, notamment dans le cadre des catastrophes. L'étude de la fréquence, de la polarisation, de la diffusion, de l'atténuation et de la dispersion des signaux radar pénétrant sous la surface permettra de déterminer l'applicabilité d'un capteur sur drone. La fonctionnalité du radar est donc évaluée en fonction de paramètres clés, qui incluent la fréquence radar, la profondeur de modulation et le mode de fonctionnement des radars (pulsé FM, FM-CW), le type d'antenne, en fonction du budget puissance disponible.
Dans l'analyse présentée, l'équation radar, ainsi que les effets de propagation susmentionnés, serviront à simuler la puissance du signal des échos radar sous différentes conditions découlant des paramètres clés choisis et les propriétés physiques du milieu sous la surface. L'étude a pour objectif de démontrer si le système est réalisable et s'il peut être construit avec les technologies disponibles aujourd'hui.
En raison du contexte très contraignant des applications pour la protection du public et secours en cas de catastrophe, les idées ici développées ont un caractère tout à la fois prospectif et exploratoire, l'objectif étant d'examiner si, dans un avenir proche, une solution se dessinerait.
Mot clés : Évaluation du risque, Télédétection, Radar à pénétration de sol, Propagation
Madhu Chandra 1; Tullio Joseph Tanzi 2
@article{CRPHYS_2018__19_1-2_72_0, author = {Madhu Chandra and Tullio Joseph Tanzi}, title = {Drone-borne {GPR} design: {Propagation} issues}, journal = {Comptes Rendus. Physique}, pages = {72--84}, publisher = {Elsevier}, volume = {19}, number = {1-2}, year = {2018}, doi = {10.1016/j.crhy.2018.01.002}, language = {en}, }
Madhu Chandra; Tullio Joseph Tanzi. Drone-borne GPR design: Propagation issues. Comptes Rendus. Physique, Volume 19 (2018) no. 1-2, pp. 72-84. doi : 10.1016/j.crhy.2018.01.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.01.002/
[1] Annual Disaster Statistical Review 2012: The Number and Trends, CRED, Brussels, 2013
[2] Radio sciences and disaster management, C. R. Physique, Volume 11 (2010), pp. 114-224
[3] Overview of modern multi-parameter methods of radar remote sensing in context of disaster management, Beijing, China (CIE), 17–23 August (2014)
[4] The role of the radio sciences in the disaster management, Radio Sci. Bull., Volume 3358 (2010), pp. 45-51
[5] F. Lefeuvre, T. Tanzi, International Union of Radio Science, International Council for Science (ICSU), Joint Board of Geospatial Information Societies (jBGIS), in United Nations Office for Outer Space Affairs (OOSA), 2013.
[6] The contribution of radio sciences to disaster management, Gi4DM 2011, Antalya, Turkey (2011)
[7] Drone Adventures Uses UAVs to Help Make the World a Better Place, IEEE Spectrum, May 2013
[8] Towards a new architecture for autonomous data collection, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., Volume XL-3/W3 (2015), pp. 363-369
[9] Télécoms pour l'ingénierie du risque (in French), Collection technique et scientifique des Télécoms, Éditions Hermès, Paris, France, 2009
[10] European Space Agency, Bergen, Norway (2010)
[11] Using general public connected devices for disasters victims location, Beijing, China, August (2014)
[12] Use of UAVs in the NGO world, ICT4 Development, Nairobi, Kenya, 25–28 March (2014)
[13] Humanitarians in the sky: using UAVs for disaster response http://irevolution.net/2014/06/25/ (25 June 2014, last viewed, 30 June 2014)
[14] Automation architecture for single operator, multiple UAV command and control, Int. C2 J., Volume 1 (2007) no. 2, pp. 1-24
[15] Design of a decision support architecture for human operators in UAV fleet C2 applications, ICCRTS, Washington, DC ( June 2009 )
[16] Cavalry to the rescue: drones fleet to help rescuers operations over disasters scenarios, CAMA, Antibes, France (2014)
[17] Rec. ITU-R P. 527-4 Electrical characteristics of the surface of the Earth.
[18] Rec. ITU-R P. 2040-1 Effects of building materials and structures on radiowave propagation above about 100 MHz.
[19] Report ITU-R P. 2346-0 Compilation of measurement data relating to building entry loss (in support of the material in Rec. ITU-R P.2040).
[20] Rec. ITU-R SM.1754 Measurement techniques of ultra-wideband transmissions, Rec. ITU-R SM.1755 Characteristics, Rec. ITU-R SM.1756 Framework & Rec. ITU-R SM.1757 Impact of ultra-wideband technology.
[21] Introduction to Ground-Penetrating Radar: Inverse Scattering and Data Processing, John Wiley, 2014 (ISBN: 9781118305003)
[22] H.D. Griffiths, C. Baker, D. Adamy (Eds.), Stimson's Introduction to Airborne Radar (Electromagnetics and Radar), 3rd edition, ISBN-13:978-1613530.
[23] D.M. Pozar, Microwave Engineering, 4th edition, John Wiley, December 2011, ©2012, ISBN:978-1-118-29813-8.
[24] P. Tristant, in: ITU/WMO seminar on use of radio spectrum for meteorology: weather, water and climate monitoring and prediction, 16–18 September 2009.
Cited by Sources:
Comments - Policy