Comptes Rendus
Radio science for Humanity/Radiosciences au service de l'humanité
Drone-borne GPR design: Propagation issues
[Conception GPR pour drone : propagation]
Comptes Rendus. Physique, Radio science for Humanity / Radiosciences au service de l’humanité Journées scientifiques URSI-France 2017 – SophiaTech, Sophia Antipolis, France, 1–3 February 2017 / 1er–3 mars 2017, Volume 19 (2018) no. 1-2, pp. 72-84.

Dans cet article, nous allons aborder les problèmes de propagation d'onde électromagnétique qui permettra de déterminer la faisabilité d'un capteur radar à pénétration de sol, embarqué sur un drone, destiné aux applications humanitaires, notamment dans le cadre des catastrophes. L'étude de la fréquence, de la polarisation, de la diffusion, de l'atténuation et de la dispersion des signaux radar pénétrant sous la surface permettra de déterminer l'applicabilité d'un capteur sur drone. La fonctionnalité du radar est donc évaluée en fonction de paramètres clés, qui incluent la fréquence radar, la profondeur de modulation et le mode de fonctionnement des radars (pulsé FM, FM-CW), le type d'antenne, en fonction du budget puissance disponible.

Dans l'analyse présentée, l'équation radar, ainsi que les effets de propagation susmentionnés, serviront à simuler la puissance du signal des échos radar sous différentes conditions découlant des paramètres clés choisis et les propriétés physiques du milieu sous la surface. L'étude a pour objectif de démontrer si le système est réalisable et s'il peut être construit avec les technologies disponibles aujourd'hui.

En raison du contexte très contraignant des applications pour la protection du public et secours en cas de catastrophe, les idées ici développées ont un caractère tout à la fois prospectif et exploratoire, l'objectif étant d'examiner si, dans un avenir proche, une solution se dessinerait.

In this paper, we shall address the electromagnetic wave propagation issues that are critical to determining the feasibility of a drone-borne ground-penetrating radar sensor for humanitarian applications, particularly in the context of disaster management. Frequency- and polarization-dependent scattering, attenuation and dispersion of radar signals penetrating into the sub-surface region will determine the applicability of a drone-mounted radar sensor capable of registering radar echoes for observing and monitoring sub-surface features. The functionality of the radar will thus be assessed depending on key radar parameters that include the central radar frequency, the modulation depth, and the mode of radar operation (pulsed FM, FM-CW), the antenna type, the available power-budget.

In the analysis to be presented, the radar equation, together with the aforementioned propagation effects, will be used to simulate the signal strength of radar echoes under different conditions arising from the chosen key-radar parameters and the assumed physical properties of the sub-surface earth medium. The analysis to be presented will indicate whether or not the drone-borne ground-penetrating radar is a feasible system and if it could be constructed with the technologies available today.

Taking into account the strict constraints involved to design drone applications for Public Protection and Disaster Relief (PPDR), the ideas developed hereafter are both prospective and exploratory. The objective is to see if a solution can be found in the near future.

Publié le :
DOI : 10.1016/j.crhy.2018.01.002
Keywords: Risk assessment, Remote sensing, GPR, Propagation
Mots-clés : Évaluation du risque, Télédétection, Radar à pénétration de sol, Propagation

Madhu Chandra 1 ; Tullio Joseph Tanzi 2

1 Chemnitz University of Technology, Germany
2 Institut Mines Télécom, Télécom ParisTech, LTCI, Paris, France
@article{CRPHYS_2018__19_1-2_72_0,
     author = {Madhu Chandra and Tullio Joseph Tanzi},
     title = {Drone-borne {GPR} design: {Propagation} issues},
     journal = {Comptes Rendus. Physique},
     pages = {72--84},
     publisher = {Elsevier},
     volume = {19},
     number = {1-2},
     year = {2018},
     doi = {10.1016/j.crhy.2018.01.002},
     language = {en},
}
TY  - JOUR
AU  - Madhu Chandra
AU  - Tullio Joseph Tanzi
TI  - Drone-borne GPR design: Propagation issues
JO  - Comptes Rendus. Physique
PY  - 2018
SP  - 72
EP  - 84
VL  - 19
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crhy.2018.01.002
LA  - en
ID  - CRPHYS_2018__19_1-2_72_0
ER  - 
%0 Journal Article
%A Madhu Chandra
%A Tullio Joseph Tanzi
%T Drone-borne GPR design: Propagation issues
%J Comptes Rendus. Physique
%D 2018
%P 72-84
%V 19
%N 1-2
%I Elsevier
%R 10.1016/j.crhy.2018.01.002
%G en
%F CRPHYS_2018__19_1-2_72_0
Madhu Chandra; Tullio Joseph Tanzi. Drone-borne GPR design: Propagation issues. Comptes Rendus. Physique, Radio science for Humanity / Radiosciences au service de l’humanité
Journées scientifiques URSI-France 2017 – SophiaTech, Sophia Antipolis, France, 
1–3 February 2017 / 1er–3 mars 2017, Volume 19 (2018) no. 1-2, pp. 72-84. doi : 10.1016/j.crhy.2018.01.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.01.002/

[1] D. Guha-Sapir; P. Hoyois; R. Below Annual Disaster Statistical Review 2012: The Number and Trends, CRED, Brussels, 2013

[2] T.J. Tanzi; F. Lefeuvre Radio sciences and disaster management, C. R. Physique, Volume 11 (2010), pp. 114-224

[3] M. Chandra Overview of modern multi-parameter methods of radar remote sensing in context of disaster management, Beijing, China (CIE), 17–23 August (2014)

[4] P. Wilkinson; D. Cole The role of the radio sciences in the disaster management, Radio Sci. Bull., Volume 3358 (2010), pp. 45-51

[5] F. Lefeuvre, T. Tanzi, International Union of Radio Science, International Council for Science (ICSU), Joint Board of Geospatial Information Societies (jBGIS), in United Nations Office for Outer Space Affairs (OOSA), 2013.

[6] T. Tanzi; F. Lefeuvre The contribution of radio sciences to disaster management, Gi4DM 2011, Antalya, Turkey (2011)

[7] E. Ackerman Drone Adventures Uses UAVs to Help Make the World a Better Place, IEEE Spectrum, May 2013

[8] T.J. Tanzi; Y. Roudier; L. Apvrille Towards a new architecture for autonomous data collection, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., Volume XL-3/W3 (2015), pp. 363-369

[9] T. Tanzi; P. Perrot Télécoms pour l'ingénierie du risque (in French), Collection technique et scientifique des Télécoms, Éditions Hermès, Paris, France, 2009

[10] A. Gademer; B. Petitpas; L. Beaudoin; T.J. Tanzi; B. Riera; J.-P. Rudant European Space Agency, Bergen, Norway (2010)

[11] O. Sebastien; F. Harivelo; D. Sebastien Using general public connected devices for disasters victims location, Beijing, China, August (2014)

[12] J. Pedersen Use of UAVs in the NGO world, ICT4 Development, Nairobi, Kenya, 25–28 March (2014)

[13] P. Meier Humanitarians in the sky: using UAVs for disaster response http://irevolution.net/2014/06/25/ (25 June 2014, last viewed, 30 June 2014)

[14] M.L. Cummings; S. Bruni; S. Mercier; P.J. Mitchell Automation architecture for single operator, multiple UAV command and control, Int. C2 J., Volume 1 (2007) no. 2, pp. 1-24

[15] O. Arslan; G. Inalhan Design of a decision support architecture for human operators in UAV fleet C2 applications, ICCRTS, Washington, DC ( June 2009 )

[16] D. Camara Cavalry to the rescue: drones fleet to help rescuers operations over disasters scenarios, CAMA, Antibes, France (2014)

[17] Rec. ITU-R P. 527-4 Electrical characteristics of the surface of the Earth.

[18] Rec. ITU-R P. 2040-1 Effects of building materials and structures on radiowave propagation above about 100 MHz.

[19] Report ITU-R P. 2346-0 Compilation of measurement data relating to building entry loss (in support of the material in Rec. ITU-R P.2040).

[20] Rec. ITU-R SM.1754 Measurement techniques of ultra-wideband transmissions, Rec. ITU-R SM.1755 Characteristics, Rec. ITU-R SM.1756 Framework & Rec. ITU-R SM.1757 Impact of ultra-wideband technology.

[21] R. Persico Introduction to Ground-Penetrating Radar: Inverse Scattering and Data Processing, John Wiley, 2014 (ISBN: 9781118305003)

[22] H.D. Griffiths, C. Baker, D. Adamy (Eds.), Stimson's Introduction to Airborne Radar (Electromagnetics and Radar), 3rd edition, ISBN-13:978-1613530.

[23] D.M. Pozar, Microwave Engineering, 4th edition, John Wiley, December 2011, ©2012, ISBN:978-1-118-29813-8.

[24] P. Tristant, in: ITU/WMO seminar on use of radio spectrum for meteorology: weather, water and climate monitoring and prediction, 16–18 September 2009.

  • Carlos Osorio Quero; Jose Martinez-Carranza Unmanned aerial systems in search and rescue: A global perspective on current challenges and future applications, International Journal of Disaster Risk Reduction, Volume 118 (2025), p. 105199 | DOI:10.1016/j.ijdrr.2025.105199
  • Gennady Linets; Anatoliy Bazhenov; Sergey Malygin; Natalia Grivennaya; Vladislav Goncharov Mathematical Modeling of Electromagnetic Wave Interference During Oblique Irradiation of Plane-Layered Dielectrics of Natural Origin, Current Problems of Applied Mathematics and Computer Systems, Volume 1044 (2024), p. 547 | DOI:10.1007/978-3-031-64010-0_51
  • Mercedes Solla; Vega Pérez-Gracia; Susana Lagüela; Simona Fontul Applications of the ground-penetrating radar technique to heritage buildings: Case studies and combination with other non-destructive testing, Diagnosis of Heritage Buildings by Non-Destructive Techniques (2024), p. 575 | DOI:10.1016/b978-0-443-16001-1.00022-x
  • Dimitris Perikleous; Katerina Margariti; Pantelis Velanas; Cristina Saez Blazquez; Pedro Carrasco Garcia; Diego Gonzalez-Aguilera Application of Magnetometer-Equipped Drone for Mineral Exploration in Mining Operations, Drones, Volume 9 (2024) no. 1, p. 24 | DOI:10.3390/drones9010024
  • Ersin Özkan; Mustafa Yıldırım; Mehmet Dinçtürk; Ozan Mert; Eyüp Çuğalır; Ahmet Akgöz; Mehmet Akif Paksoy; Hakkı Nazlı; D. Vural Özbudak; Esra Özkan, IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium (2024), p. 4169 | DOI:10.1109/igarss53475.2024.10640535
  • John D. Stuhler; Carlos Portillo‐Quintero; Jim R. Goetze; Richard D. Stevens Efficacy of remote sensing technologies for burrow count estimates of a rare kangaroo rat, Wildlife Society Bulletin, Volume 48 (2024) no. 1 | DOI:10.1002/wsb.1510
  • Gennady Linets; Anatoliy Bazhenov; Sergey Malygin; Natalia Grivennaya; Sergey Melnikov; Vladislav Goncharov, 2023 25th International Conference on Digital Signal Processing and its Applications (DSPA) (2023), p. 1 | DOI:10.1109/dspa57594.2023.10113418
  • Gennadiy Ivanovich Linets; Anatoliy Vyacheslavovich Bazhenov; Sergey Vladimirovich Malygin; Natalia Vladimirovna Grivennaya; Sergey Vladimirovich Melnikov; Vladislav Dmitrievich Goncharov Evaluation of the Accuracy of the Remote Determination of the Brewster Angle When Measuring Physicochemical Parameters of Soil, AgriEngineering, Volume 5 (2023) no. 4, p. 1893 | DOI:10.3390/agriengineering5040116
  • Gennady Linets; Anatoliy Bazhenov; Sergey Malygin; Natalia Grivennaya; Тatiana Сhernysheva; Sergey Melnikov Algorithm for the Joint Flight of Two Uncrewed Aerial Vehicles Constituting a Bistatic Radar System for the Soil Remote Sensing, Pertanika Journal of Science and Technology, Volume 31 (2023) no. 4 | DOI:10.47836/pjst.31.4.25
  • Lapo Miccinesi; Alessandra Beni; Massimiliano Pieraccini UAS-Borne Radar for Remote Sensing: A Review, Electronics, Volume 11 (2022) no. 20, p. 3324 | DOI:10.3390/electronics11203324
  • Adam D. Booth; Tiffany M. Koylass Drone-mounted ground-penetrating radar surveying: Flight-height considerations for diffraction-based velocity analysis, GEOPHYSICS, Volume 87 (2022) no. 4, p. WB69 | DOI:10.1190/geo2021-0602.1
  • Kaijun Wu; Sebastien Lambot Effect of Radar Incident Angle on Full-Wave Inversion for the Retrieval of Medium Surface Permittivity for Drone-Borne Applications, IEEE Transactions on Geoscience and Remote Sensing, Volume 60 (2022), p. 1 | DOI:10.1109/tgrs.2022.3157370
  • Takumi Ueda; Yuji Mitsuhata; Shigeo Okuma Review of geophysical exploration methods using unmanned aerial vehicles (UAV), BUTSURI-TANSA(Geophysical Exploration), Volume 74 (2021) no. 0, p. 93 | DOI:10.3124/segj.74.93
  • Konstantin Muzalevskiy A new method for remote sensing of moisture profiles in the arable layer at three frequencies; experimental case study, International Journal of Remote Sensing, Volume 42 (2021) no. 7, p. 2377 | DOI:10.1080/01431161.2020.1851795
  • Matteo Bertolino; Tullio J. Tanzi Towards 3D Simulation for Disaster Intervention Robot Behaviour Assessment, Advances in Radio Science, Volume 18 (2020), p. 23 | DOI:10.5194/ars-18-23-2020
  • Yasser El Masri; Tarek Rakha A scoping review of non-destructive testing (NDT) techniques in building performance diagnostic inspections, Construction and Building Materials, Volume 265 (2020), p. 120542 | DOI:10.1016/j.conbuildmat.2020.120542
  • Laila Moreira; Felicio Castro; Juliana A. Goes; Leonardo Bins; Barbara Teruel; Juliana Fracarolli; Valquiria Castro; Marlon Alcantara; Gian Ore; Dieter Luebeck; Luciano P. Oliveira; Lucas Gabrielli; Hugo E. Hernandez-Figueroa, 2019 IEEE Radar Conference (RadarConf) (2019), p. 1 | DOI:10.1109/radar.2019.8835653
  • Tullio Joseph Tanzi; Madhu Chandra, 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC) (2019), p. 1 | DOI:10.23919/ursiap-rasc.2019.8738499
  • Dalei Wu; Maxwell M. Omwenga; Yu Liang; Li Yang; Dryver Huston; Tian Xia, ICC 2019 - 2019 IEEE International Conference on Communications (ICC) (2019), p. 1 | DOI:10.1109/icc.2019.8761107
  • Pageoph Topical Volumes, 2019 | DOI:10.1007/978-3-030-03171-8_1
  • JinYoung Kwon; YeonWoong Kim; Se-Hyu Choi Airspace map design to implement customer-friendly service on unmanned aerial vehicles, Spatial Information Research, Volume 27 (2019) no. 1, p. 87 | DOI:10.1007/s41324-018-0205-z
  • Tomasz Niedzielski Applications of Unmanned Aerial Vehicles in Geosciences: Introduction, Pure and Applied Geophysics, Volume 175 (2018) no. 9, p. 3141 | DOI:10.1007/s00024-018-1992-9

Cité par 22 documents. Sources : Crossref

Commentaires - Politique