Comptes Rendus
Radio science for Humanity / Radiosciences au service de l'humanité
Conforming discretizations of boundary element solutions to the electroencephalography forward problem
Comptes Rendus. Physique, Volume 19 (2018) no. 1-2, pp. 7-25.

In this paper, we present a new discretization strategy for the boundary element formulation of the Electroencephalography (EEG) forward problem. Boundary integral formulations, classically solved with the Boundary Element Method (BEM), are widely used in high resolution EEG imaging because of their recognized advantages, in several real case scenarios, in terms of numerical stability and effectiveness when compared with other differential equation based techniques. Unfortunately, however, it is widely reported in literature that the accuracy of standard BEM schemes for the forward EEG problem is often limited, especially when the current source density is dipolar and its location approaches one of the brain boundary surfaces. This is a particularly limiting problem given that during an high-resolution EEG imaging procedure, several EEG forward problem solutions are required, for which the source currents are near or on top of a boundary surface.

This work will first present an analysis of standardly and classically discretized EEG forward problem operators, reporting on a theoretical issue of some of the formulations that have been used so far in the community. We report on the fact that several standardly used discretizations of these formulations are consistent only with an L2-framework, requiring the expansion term to be a square integrable function (i.e., in a Petrov–Galerkin scheme with expansion and testing functions). Instead, those techniques are not consistent when a more appropriate mapping in terms of fractional-order Sobolev spaces is considered. Such a mapping allows the expansion function term to be a less regular function, thus sensibly reducing the need for mesh refinements and low-precisions handling strategies that are currently required. These more favorable mappings, however, require a different and conforming discretization, which must be suitably adapted to them. In order to appropriately fulfill this requirement, we adopt a mixed discretization based on dual boundary elements residing on a suitably defined dual mesh. We devote also a particular attention to implementation-oriented details of our new technique that will allow the rapid incorporation of our finding in one's own EEG forward solution technology. We conclude by showing how the resulting forward EEG problems show favorable properties with respect to previously proposed schemes, and we show their applicability to real-case modeling scenarios obtained from Magnetic Resonance Imaging (MRI) data.

Dans ce papier, nous présentons une nouvelle stratégie de discrétisation pour la formulation aux éléments de frontière du problème direct de l'électroencéphalographie (EEG). Les méthodes aux éléments frontières (BEM) sont largement utilisées en imagerie EEG à haute résolution dans divers scénarios, pour leur stabilité numérique et leur efficacité reconnues par rapport à d'autres techniques basées sur des équations différentielles.

Malheureusement, il est également reconnu dans la littérature que leur précision diminue particulièrement lorsque la source de courant est dipolaire et se situe près de la surface du cerveau. Ce défaut constitue une importante limitation, étant donné qu'au cours d'une session d'imagerie EEG à haute résolution, plusieurs solutions du problème direct EEG sont requises, pour lesquelles les sources de courant sont proches ou sur la surface de cerveau.

Ce travail présente d'abord une analyse des opérateurs intervenant dans le problème direct et leur discrétisation. Nous montrons que plusieurs discrétisations couramment utilisées ne conviennent que dans un cadre L2, nécessitant que le terme d'expansion soit une fonction de carré intégrable. Dès lors, ces techniques ne sont pas cohérentes avec les propriétés spectrales des opérateurs en termes d'espaces de Sobolev d'ordre fractionnaire.

Nous développons ensuite une nouvelle stratégie de discrétisation conforme aux espaces de Sobolev avec des fonctions d'expansion moins régulières, donnant lieu à une nouvelle formulation intégrale. Le solveur résultant présente des propriétés favorables par rapport aux méthodes existantes et réduit sensiblement le recours à un maillage adaptatif et autres stratégies actuellement requises pour améliorer la précision du calcul. Les résultats numériques présentés corroborent les développements théoriques et mettent en évidence l'impact positif de la nouvelle approche.

Published online:
DOI: 10.1016/j.crhy.2018.02.002
Keywords: EEG, Inverse problem, Forward problem, Mixed discretizations, Indirect formulation
Mot clés : EEG, Problème inverse, Problème direct, Discrétisation mixte, Formulation indirecte

Lyes Rahmouni 1; Simon B. Adrian 1, 2; Kristof Cools 3; Francesco P. Andriulli 1, 4

1 IMT Atlantique, Technopole Brest-Iroise, 29238 Brest, France
2 Technische Universität München, Arcisstr. 21, 80333 München, Germany
3 The University of Nottingham, University Park, Nottingham, NG7 2RD, UK
4 Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino, Italy
@article{CRPHYS_2018__19_1-2_7_0,
     author = {Lyes Rahmouni and Simon B. Adrian and Kristof Cools and Francesco P. Andriulli},
     title = {Conforming discretizations of boundary element solutions to the electroencephalography forward problem},
     journal = {Comptes Rendus. Physique},
     pages = {7--25},
     publisher = {Elsevier},
     volume = {19},
     number = {1-2},
     year = {2018},
     doi = {10.1016/j.crhy.2018.02.002},
     language = {en},
}
TY  - JOUR
AU  - Lyes Rahmouni
AU  - Simon B. Adrian
AU  - Kristof Cools
AU  - Francesco P. Andriulli
TI  - Conforming discretizations of boundary element solutions to the electroencephalography forward problem
JO  - Comptes Rendus. Physique
PY  - 2018
SP  - 7
EP  - 25
VL  - 19
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crhy.2018.02.002
LA  - en
ID  - CRPHYS_2018__19_1-2_7_0
ER  - 
%0 Journal Article
%A Lyes Rahmouni
%A Simon B. Adrian
%A Kristof Cools
%A Francesco P. Andriulli
%T Conforming discretizations of boundary element solutions to the electroencephalography forward problem
%J Comptes Rendus. Physique
%D 2018
%P 7-25
%V 19
%N 1-2
%I Elsevier
%R 10.1016/j.crhy.2018.02.002
%G en
%F CRPHYS_2018__19_1-2_7_0
Lyes Rahmouni; Simon B. Adrian; Kristof Cools; Francesco P. Andriulli. Conforming discretizations of boundary element solutions to the electroencephalography forward problem. Comptes Rendus. Physique, Volume 19 (2018) no. 1-2, pp. 7-25. doi : 10.1016/j.crhy.2018.02.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.02.002/

[1] Z.A. Acar; C.E. Acar; S. Makeig Simultaneous head tissue conductivity and EEG source location estimation, NeuroImage, Volume 124 (2016), pp. 168-180

[2] M. Siems; A.-A. Pape; J.F. Hipp; M. Siegel Measuring the cortical correlation structure of spontaneous oscillatory activity with EEG and MEG, NeuroImage (2016)

[3] K. Peng; D.K. Nguyen; P. Vannasing; J. Tremblay; F. Lesage; P. Pouliot Using patient-specific hemodynamic response function in epileptic spike analysis of human epilepsy: a study based on EEG–fNIRS, NeuroImage, Volume 126 (2016), pp. 239-255

[4] J. Dabek; K. Kalogianni; E. Rotgans; F.C. van der Helm; G. Kwakkel; E.E. van Wegen; A. Daffertshofer; J.C. de Munck Determination of head conductivity frequency response in vivo with optimized EIT-EEG, NeuroImage (2015)

[5] C.-G. Bénar; D. Schön; S. Grimault; B. Nazarian; B. Burle; M. Roth; J.-M. Badier; P. Marquis; C. Liegeois-Chauvel; J.-L. Anton Single-trial analysis of oddball event-related potentials in simultaneous EEG-fMRI, Hum. Brain Mapp., Volume 28 (2007) no. 7, pp. 602-613

[6] Y. Huang; L.C. Parra; S. Haufe The New York head—a precise standardized volume conductor model for EEG source localization and TES targeting, NeuroImage (2015)

[7] J. Jorge; F. Grouiller; R. Gruetter; W. Van Der Zwaag; P. Figueiredo Towards high-quality simultaneous EEG-fMRI at 7 T: detection and reduction of EEG artifacts due to head motion, NeuroImage, Volume 120 (2015), pp. 143-153

[8] L. Fiederer; J. Vorwerk; F. Lucka; M. Dannhauer; S. Yang; M. Dümpelmann; A. Schulze-Bonhage; A. Aertsen; O. Speck; C. Wolters et al. The role of blood vessels in high-resolution volume conductor head modeling of EEG, NeuroImage, Volume 128 (2016), pp. 193-208

[9] C. Phillips; M.D. Rugg; K.J. Friston Systematic regularization of linear inverse solutions of the EEG source localization problem, NeuroImage, Volume 17 (2002) no. 1, pp. 287-301

[10] L. Koessler; C. Benar; L. Maillard; J.-M. Badier; J.P. Vignal; F. Bartolomei; P. Chauvel; M. Gavaret Source localization of ictal epileptic activity investigated by high resolution EEG and validated by sEEG, NeuroImage, Volume 51 (2010) no. 2, pp. 642-653

[11] R. Grech; T. Cassar; J. Muscat; K.P. Camilleri; S.G. Fabri; M. Zervakis; P. Xanthopoulos; V. Sakkalis; B. Vanrumste Review on solving the inverse problem in EEG source analysis, J. NeuroEng. Rehabil., Volume 5 (2008) no. 1, p. 25

[12] R.D. Pascual-Marqui Review of methods for solving the EEG inverse problem, Int. J. Bioelectromagn., Volume 1 (1999) no. 1, pp. 75-86

[13] Z.A. Acar; S. Makeig Effects of forward model errors on EEG source localization, Brain Topogr., Volume 26 (2013) no. 3, pp. 378-396

[14] H. Hallez; B. Vanrumste; R. Grech; J. Muscat; W. De Clercq; A. Vergult; Y. D'Asseler; K.P. Camilleri; S.G. Fabri; S. Van Huffel et al. Review on solving the forward problem in EEG source analysis, J. NeuroEng. Rehabil., Volume 4 (2007) no. 1, p. 46

[15] H. Hallez; B. Vanrumste; R. Grech; J. Muscat; W. De Clercq; A. Vergult; Y. D'Asseler; K.P. Camilleri; S.G. Fabri; S. Van Huffel et al. Review on solving the forward problem in EEG source analysis, J. NeuroEng. Rehabil., Volume 4 (2007) no. 1, p. 46

[16] B. He; T. Musha; Y. Okamoto; S. Homma; Y. Nakajima; T. Sato Electric dipole tracing in the brain by means of the boundary element method and its accuracy, IEEE Trans. Biomed. Eng., Volume 6 (1987), pp. 406-414

[17] M. Fuchs; M. Wagner; J. Kastner Boundary element method volume conductor models for EEG source reconstruction, Clin. Neurophysiol., Volume 112 (2001) no. 8, pp. 1400-1407

[18] B. He; Y. Wang; D. Wu Estimating cortical potentials from scalp EEGs in a realistically shaped inhomogeneous head model by means of the boundary element method, IEEE Trans. Biomed. Eng., Volume 46 (1999) no. 10, pp. 1264-1268

[19] D. Cosandier-Rimélé; I. Merlet; J.-M. Badier; P. Chauvel; F. Wendling The neuronal sources of EEG: modeling of simultaneous scalp and intracerebral recordings in epilepsy, NeuroImage, Volume 42 (2008) no. 1, pp. 135-146

[20] M. Fuchs; R. Drenckhahn; H. Wischmann; M. Wagner An improved boundary element method for realistic volume-conductor modeling, IEEE Trans. Biomed. Eng., Volume 45 (1998) no. 8, pp. 980-997

[21] B. Yvert; A. Crouzeix-Cheylus; J. Pernier Fast realistic modeling in bioelectromagnetism using lead-field interpolation, Hum. Brain Mapp., Volume 14 (2001) no. 1, pp. 48-63

[22] J.W. Meijs; O.W. Weier; M.J. Peters; A. van Oosterom On the numerical accuracy of the boundary element method (EEG application), IEEE Trans. Biomed. Eng., Volume 36 (1989) no. 10, pp. 1038-1049

[23] F. Zanow; M. Peters Individually shaped volume conductor models of the head in EEG source localisation, Med. Biol. Eng. Comput., Volume 33 (1995) no. 4, pp. 582-588

[24] G. Adde; M. Clerc; O. Faugeras; R. Keriven; J. Kybic; T. Papadopoulo Symmetric BEM formulation for the m/EEG forward problem, Information Processing in Medical Imaging, Springer, 2003, pp. 524-535

[25] J. Kybic; M. Clerc; T. Abboud; O. Faugeras; R. Keriven; T. Papadopoulo A common formalism for the integral formulations of the forward EEG problem, IEEE Trans. Med. Imaging, Volume 24 (2005) no. 1, pp. 12-28

[26] O. Scherzer Handbook of Mathematical Methods in Imaging, vol. 1, Springer Science & Business Media, 2011

[27] C.H. Wolters; H. Köstler; C. Möller; J. Härdtlein; L. Grasedyck; W. Hackbusch Numerical mathematics of the subtraction method for the modeling of a current dipole in EEG source reconstruction using finite element head models, SIAM J. Sci. Comput., Volume 30 (2007) no. 1, pp. 24-45

[28] S.A. Sauter; C. Schwab Boundary Element Methods, Springer, 2011

[29] K. Cools; F.P. Andriulli; F. Olyslager; E. Michielssen Improving the mfie's accuracy by using a mixed discretization, IEEE Antennas and Propagation Society International Symposium, 2009, APSURSI'09, IEEE, 2009, pp. 1-4

[30] K. Cools; F. Andriulli; D. De Zutter; E. Michielssen Accurate and conforming mixed discretization of the MFIE, IEEE Antennas Wirel. Propag. Lett., Volume 10 (2011), pp. 528-531

[31] S. Yan; J.-M. Jin; Z. Nie Improving the accuracy of the second-kind Fredholm integral equations by using the Buffa–Christiansen functions, IEEE Trans. Antennas Propag., Volume 59 (2011) no. 4, pp. 1299-1310

[32] P. Ylä-Oijala; S.P. Kiminki; S. Järvenpää Conforming boundary element methods in acoustics, Eng. Anal. Bound. Elem., Volume 50 (2015), pp. 447-458

[33] L. Rahmouni; F. Andriulli Mixed discretization formulations for the direct EEG problem, EuCAP ( April 2014 ), pp. 3183-3185

[34] G. Pruis; B.H. Gilding; M. Peters A comparison of different numerical methods for solving the forward problem in EEG and MEG, Physiol. Meas., Volume 14 (1993) no. 4A (A1)

[35] G. Huiskamp; M. Vroeijenstijn; R. van Dijk; G. Wieneke; A.C. van Huffelen The need for correct realistic geometry in the inverse EEG problem, IEEE Trans. Biomed. Eng., Volume 46 (1999) no. 11, pp. 1281-1287

[36] O. Steinbach Numerical Approximation Methods for Elliptic Boundary Value Problems. Finite and Boundary Elements, 2008

[37] J. De Munck; B. Van Dijk; H. Spekreijse Mathematical dipoles are adequate to describe realistic generators of human brain activity, IEEE Trans. Biomed. Eng., Volume 35 (1988) no. 11, pp. 960-966

[38] J. Sarvas Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem, Phys. Med. Biol., Volume 32 (1987) no. 1, p. 11

[39] P.H. Schimpf; C. Ramon; J. Haueisen Dipole models for the EEG and MEG, IEEE Trans. Biomed. Eng., Volume 49 (2002) no. 5, pp. 409-418

[40] M. Stenroos; J. Sarvas Bioelectromagnetic forward problem: isolated source approach revis(it)ed, Phys. Med. Biol., Volume 57 (2012) no. 11, p. 3517

[41] A. Gramfort; M. Luessi; E. Larson; D.A. Engemann; D. Strohmeier; C. Brodbeck; L. Parkkonen; M.S. Hämäläinen MNE software for processing MEG and EEG data, NeuroImage, Volume 86 (2014), pp. 446-460

[42] G. Birot; L. Spinelli; S. Vulliémoz; P. Mégevand; D. Brunet; M. Seeck; C.M. Michel Head model and electrical source imaging: a study of 38 epileptic patients, NeuroImage: Clinical, Volume 5 (2014), pp. 77-83

[43] O. Steinbach; W.L. Wendland The construction of some efficient preconditioners in the boundary element method, Adv. Comput. Math., Volume 9 (1998) no. 1–2, pp. 191-216

[44] W. Hackbusch Integral Equations: Theory and Numerical Treatment, vol. 120, Birkhäuser, 2012

[45] R.D. Graglia Static and dynamic potential integrals for linearly varying source distributions in two-and three-dimensional problems, IEEE Trans. Antennas Propag., Volume 35 (1987) no. 6, pp. 662-669

[46] R.D. Graglia On the numerical integration of the linear shape functions times the 3-d Green's function or its gradient on a plane triangle, IEEE Trans. Antennas Propag., Volume 41 (1993) no. 10, pp. 1448-1455

[47] J. De Munck A linear discretization of the volume conductor boundary integral equation using analytically integrated elements, IEEE Trans. Biomed. Eng., Volume 39 (1992) no. 9, pp. 986-990

[48] A. Buffa; S. Christiansen A dual finite element complex on the barycentric refinement, Math. Comput., Volume 76 (2007) no. 260, pp. 1743-1769

[49] J. Rahola; S. Tissari Iterative solution of dense linear systems arising from the electrostatic integral equation in MEG, Phys. Med. Biol., Volume 47 (2002) no. 6, p. 961

[50] T.F. Chan Deflated decomposition of solutions of nearly singular systems, SIAM J. Numer. Anal., Volume 21 (1984) no. 4, pp. 738-754

[51] D. Dunavant High degree efficient symmetrical Gaussian quadrature rules for the triangle, Int. J. Numer. Methods Eng., Volume 21 (1985) no. 6, pp. 1129-1148

[52] M.S. Hamalainen; J. Sarvas Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data, IEEE Trans. Biomed. Eng., Volume 36 (1989) no. 2, pp. 165-171

[53] N.G. Gençer; Z. Akalin-Acar Use of the isolated problem approach for multi-compartment BEM models of electro-magnetic source imaging, Phys. Med. Biol., Volume 50 (2005) no. 13, p. 3007

[54] J. De Munck The potential distribution in a layered anisotropic spheroidal volume conductor, J. Appl. Phys., Volume 64 (1988) no. 2, pp. 464-470

[55] d.J. Munck; M.J. Peters A fast method to compute the potential in the multisphere model, IEEE Trans. Biomed. Eng., Volume 40 (1993) no. 11, pp. 1166-1174

[56] Z. Zhang A fast method to compute surface potentials generated by dipoles within multilayer anisotropic spheres, Phys. Med. Biol., Volume 40 (1995) no. 3, p. 335

[57] T.F. Oostendorp; J. Delbeke; D.F. Stegeman The conductivity of the human skull: results of in vivo and in vitro measurements, IEEE Trans. Biomed. Eng., Volume 47 (2000) no. 11, pp. 1487-1492

[58] R. Oostenveld; P. Fries; E. Maris; J.-M. Schoffelen Fieldtrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data, Comput. Intell. Neurosci., Volume 2011 (2010)

[59] S.M. Smith Fast robust automated brain extraction, Hum. Brain Mapp., Volume 17 (2002) no. 3, pp. 143-155

[60] B. Fischl; A. van der Kouwe; C. Destrieux; E. Halgren; F. Ségonne; D.H. Salat; E. Busa; L.J. Seidman; J. Goldstein; D. Kennedy et al. Automatically parcellating the human cerebral cortex, Cereb. Cortex, Volume 14 (2004) no. 1, pp. 11-22

[61] D. Geffroy; D. Rivière; I. Denghien; N. Souedet; S. Laguitton; Y. Cointepas Brainvisa: a complete software platform for neuroimaging, Python in Neuroscience Workshop, Euroscipy, Paris, 2011

[62] D.W. Shattuck; R.M. Leahy Brainsuite: an automated cortical surface identification tool, Med. Image Anal., Volume 6 (2002) no. 2, pp. 129-142

[63] A. Fedorov; R. Beichel; J. Kalpathy-Cramer; J. Finet; J.-C. Fillion-Robin; S. Pujol; C. Bauer; D. Jennings; F. Fennessy; M. Sonka et al. 3d slicer as an image computing platform for the quantitative imaging network, Magn. Reson. Imaging, Volume 30 (2012) no. 9, pp. 1323-1341

[64] R. Goebel Brainvoyager—past, present, future, NeuroImage, Volume 62 (2012) no. 2, pp. 748-756

[65] S. Gonçalves; J.C. De Munck; J. Verbunt; F. Bijma; R.M. Heethaar; F. Lopes da Silva et al. In vivo measurement of the brain and skull resistivities using an EIT-based method and realistic models for the head, IEEE Trans. Biomed. Eng., Volume 50 (2003) no. 6, pp. 754-767

[66] Y. Zhang; W. van Drongelen; B. He Estimation of in vivo brain-to-skull conductivity ratio in humans, Appl. Phys. Lett., Volume 89 (2006) no. 22

[67] M. Clerc; G. Adde; J. Kybic; T. Papadopoulo; J.-M. Badier In vivo conductivity estimation with symmetric boundary elements, Int. J. Bioelectromagn., Volume 7 (2005), pp. 307-310

[68] L. Tartar An Introduction to Sobolev Spaces and Interpolation, Springer, 2007

[69] J.-C. Nédélec Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems, vol. 144, Springer, 2001

Cited by Sources:

Comments - Policy