Comptes Rendus
Radio science for Humanity / Radiosciences au service de l'humanité
DEMETER observations of manmade waves that propagate in the ionosphere
[Observations par Demeter d'ondes d'origine humaine se propageant dans l'ionosphère]
Comptes Rendus. Physique, Radio science for Humanity / Radiosciences au service de l’humanité Journées scientifiques URSI-France 2017 – SophiaTech, Sophia Antipolis, France, 1–3 February 2017 / 1er–3 mars 2017, Volume 19 (2018) no. 1-2, pp. 26-35.

Cet article constitue une revue des ondes d'origine humaine observées par le satellite ionosphérique Demeter. Cela concerne les ondes émises par les émetteurs TBF et EBF, par les stations de radio, par le rayonnement des lignes électriques et par les expériences actives. Des exemples sont présentés dont, pour la première fois, l'enregistrement d'une onde émise par un émetteur EBF. Ces ondes se propagent vers la magnétosphère, et elles peuvent être observées au point conjugué magnétique de leur région d'émission. Selon leurs fréquences, elles perturbent l'ionosphère et les particules dans les ceintures de radiation, et de nouvelles émissions sont déclenchées.

This paper is a review of manmade waves observed by the ionospheric satellite DEMETER. It concerns waves emitted by the ground-based VLF and ELF transmitters, by broadcasting stations, by the power line harmonic radiation, by industrial noise, and by active experiments. Examples are shown including, for the first time, the record of a wave coming from an ELF transmitter. These waves propagate upwards in the magnetosphere and they can be observed in the magnetically conjugated region of emission. Depending on their frequencies, they perturb the ionosphere and the particles in the radiation belts, and additional emissions are triggered.

Publié le :
DOI : 10.1016/j.crhy.2018.02.001
Keywords: Ionosphere, Manmade waves, Propagation
Mots-clés : Ionosphère, Ondes d'origine humaine, Propagation

Michel Parrot 1

1 Université d'Orléans, LPC2E/CNRS, 3A, avenue de la Recherche-Scientifique, 45071 Orléans cedex 2, France
@article{CRPHYS_2018__19_1-2_26_0,
     author = {Michel Parrot},
     title = {DEMETER observations of manmade waves that propagate in the ionosphere},
     journal = {Comptes Rendus. Physique},
     pages = {26--35},
     publisher = {Elsevier},
     volume = {19},
     number = {1-2},
     year = {2018},
     doi = {10.1016/j.crhy.2018.02.001},
     language = {en},
}
TY  - JOUR
AU  - Michel Parrot
TI  - DEMETER observations of manmade waves that propagate in the ionosphere
JO  - Comptes Rendus. Physique
PY  - 2018
SP  - 26
EP  - 35
VL  - 19
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crhy.2018.02.001
LA  - en
ID  - CRPHYS_2018__19_1-2_26_0
ER  - 
%0 Journal Article
%A Michel Parrot
%T DEMETER observations of manmade waves that propagate in the ionosphere
%J Comptes Rendus. Physique
%D 2018
%P 26-35
%V 19
%N 1-2
%I Elsevier
%R 10.1016/j.crhy.2018.02.001
%G en
%F CRPHYS_2018__19_1-2_26_0
Michel Parrot. DEMETER observations of manmade waves that propagate in the ionosphere. Comptes Rendus. Physique, Radio science for Humanity / Radiosciences au service de l’humanité
Journées scientifiques URSI-France 2017 – SophiaTech, Sophia Antipolis, France, 
1–3 February 2017 / 1er–3 mars 2017, Volume 19 (2018) no. 1-2, pp. 26-35. doi : 10.1016/j.crhy.2018.02.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.02.001/

[1] Planet. Space Sci., 54 (2006) no. 5, pp. 411-558 (Special Issue: First Results of the DEMETER Micro-Satellite)

[2] P. Kulkarni et al. Precipitation signatures of ground-based VLF transmitters, J. Geophys. Res., Volume 113 (2008) | DOI

[3] M. Parrot et al. First in-situ observations of strong ionospheric perturbations generated by a powerful VLF ground-based transmitter, Geophys. Res. Lett., Volume 34 (2007) | DOI

[4] J.-A. Sauvaud et al. Radiation belt electron precipitation due to VLF transmitters: satellite observations, Geophys. Res. Lett., Volume 35 (2008) | DOI

[5] M.B. Cohen; U.S. Inan Terrestrial VLF transmitter injection into the magnetosphere, J. Geophys. Res., Volume 117 (2012) | DOI

[6] U.S. Inan et al. Subionospheric VLF observations of transmitter-induced precipitation of inner radiation belt electrons, Geophys. Res. Lett., Volume 34 (2007) | DOI

[7] K.L. Graf et al. Extended lateral heating of the nighttime ionosphere by ground-based VLF transmitters, J. Geophys. Res. Space Phys., Volume 118 (2013), pp. 7783-7797 | DOI

[8] M. Parrot et al. Unexpected very low frequency (VLF) radio events recorded by the ionospheric satellite DEMETER, Surv. Geophys., Volume 36 (2015) no. 3, pp. 483-511

[9] M. Fullekrug et al. Transionospheric attenuation of 100 kHz radio waves inferred from satellite and ground based observations, Geophys. Res. Lett., Volume 36 (2009) | DOI

[10] M.L. Kaiser et al. WIND/WAVES observations of man-made radio transmissions, Geophys. Res. Lett., Volume 23 (1996) no. 10, pp. 1287-1290

[11] A.C. Fraser-Smith; P.R. Bannister Reception of ELF signals at antipodal distances, Radio Sci., Volume 33 (1998), pp. 83-88

[12] M. Yano et al. Reception of ELF transmitter signals at Moshiri, Japan, and their propagation characteristics, Radio Sci., Volume 45 (2010) | DOI

[13] R.A. Helliwell et al. VLF line radiation in the Earth's magnetosphere and its association with power system radiation, J. Geophys. Res., Volume 80 (1975) no. 31, pp. 4249-4258

[14] F. Němec et al. Power line harmonic radiation (PLHR) observed by the DEMETER spacecraft, J. Geophys. Res., Volume 111 (2006) | DOI

[15] F. Němec et al. Power line harmonic radiation: a systematic study using DEMETER spacecraft, Adv. Space Res., Volume 40 (2007) no. 3, pp. 398-403 | DOI

[16] F. Němec et al. Power line harmonic radiation observed by satellite: properties and propagation through the ionosphere, J. Geophys. Res., Volume 113 (2008) | DOI

[17] F. Němec et al. Influence of power line harmonic radiation on the VLF wave activity in the upper ionosphere: is it capable to trigger new emissions?, J. Geophys. Res., Volume 115 (2010) | DOI

[18] D. Nunn et al. On the nonlinear triggering of VLF emissions by power line harmonic radiation, Ann. Geophys., Volume 17 (1999), pp. 79-94

[19] J. Manninen Some Aspects of ELF–VLF Emissions in Geophysical Research, vol. 98, Oulu University Press, 2005

[20] J. Wu et al. Systematic investigation of power line harmonic radiation in near-Earth space above China based on observed satellite data, J. Geophys. Res. Space Phys., Volume 122 (2017) | DOI

[21] T. Onishi et al. The DEMETER mission, recent investigations on ionospheric effects associated with man-made activities and seismic phenomena, C. R. Phys., Volume 12 (2011) no. 2, pp. 160-170 | DOI

[22] R.A. Helliwell Whistlers and Related Ionospheric Phenomena, Stanford University Press, Stanford, CA, USA, 1965

[23] D. Piddyachiy et al. DEMETER observations of an intense upgoing column of ELF/VLF radiation excited by the HAARP HF heater, J. Geophys. Res., Volume 113 (2008) | DOI

[24] M. Gołkowski et al. Magnetospheric amplification and emission triggering by ELF/VLF waves injected by the 3.6 MW HAARP ionospheric heater, J. Geophys. Res. Space Phys., Volume 113 (2008) | DOI

[25] M. Parrot; Y. Zaslavski Physical mechanisms of man-made influences on the magnetosphere, Surv. Geophys., Volume 17 (1996), pp. 67-100

[26] J.-P. Luette et al. Longitudinal variations of very-low-frequency chorus activity in the magnetosphere: evidence of excitation by electrical power transmission lines, Geophys. Res. Lett., Volume 4 (1977), pp. 275-278

[27] M. Parrot et al. Chorus and chorus-like emissions seen by the ionospheric satellite DEMETER, J. Geophys. Res. Space Phys., Volume 121 (2016), pp. 3781-3792 | DOI

[28] R.J. Gamble et al. Radiation belt electron precipitation by man-made VLF transmissions, J. Geophys. Res., Volume 113 (2008) | DOI

  • Vyacheslav Pilipenko; Shufan Zhao; Natalia Savelieva; Nikolay Mazur; Evgeniy Fedorov; Zhenhui Ma ELF emission in the topside ionosphere from the ZEVS transmitter detected by CSES satellite, Advances in Space Research, Volume 74 (2024) no. 10, p. 4937 | DOI:10.1016/j.asr.2024.07.074
  • Xiang Xu; Chen Zhou; Zhuangkai Wang; Xiaohui Du Modeling the Propagation of Extremely Low Frequency Electromagnetic Emissions From the Power Lines to the Inner Magnetosphere in a Dipole Field, Journal of Geophysical Research: Space Physics, Volume 129 (2024) no. 7 | DOI:10.1029/2023ja032403
  • Ying Han; Qingjie Liu; Jianping Huang; Zhong Li; Rui Yan; Jing Yuan; Xuhui Shen; Lili Xing; Guoli Pang Automatic Extraction of VLF Constant‐Frequency Electromagnetic Wave Frequency Based on an Improved Vgg16‐Unet, Radio Science, Volume 59 (2024) no. 10 | DOI:10.1029/2024rs008019
  • Ying Han; Jing Yuan; Qunbo Ouyang; Jianping Huang; Zhong Li; Yanxia Zhang; Yali Wang; Xuhui Shen; Zhima Zeren Automatic Recognition of Constant-Frequency Electromagnetic Disturbances Observed by the Electric Field Detector on Board the CSES, Atmosphere, Volume 14 (2023) no. 2, p. 290 | DOI:10.3390/atmos14020290
  • Jing Wu; Zhengkai Wang; Jingwen Zhang; Chao Yue; Li Xie Conjugate observations of power line harmonic radiation onboard DEMETER, Earth, Planets and Space, Volume 75 (2023) no. 1 | DOI:10.1186/s40623-023-01819-2
  • E. N. Fedorov; N. G. Mazur; V. A. Pilipenko; V. V. Vakhnina Generation of Artificial ULF/ELF Electromagnetic Emission in the Ionosphere by Horizontal Ground‐Based Current System, Journal of Geophysical Research: Space Physics, Volume 128 (2023) no. 12 | DOI:10.1029/2023ja031590
  • E. N. Fedorov; N. G. Mazur; V. A. Pilipenko Electromagnetic Field in the Upper Ionosphere Fromhorizontal ELF Ground-Based Transmitter of Finite Length, Radiophysics and Quantum Electronics, Volume 65 (2023) no. 9, p. 635 | DOI:10.1007/s11141-023-10245-z
  • Ying Han; Qiao Wang; Jianping Huang; Jing Yuan; Zhong Li; Yali Wang; Jingyi Jin; Xuhui Shen Spatial Characteristics of Global Strong Constant-Frequency Electromagnetic Disturbances from Electric-Field VLF Data of the CSES, Remote Sensing, Volume 15 (2023) no. 15, p. 3815 | DOI:10.3390/rs15153815
  • Ying Han; Qiao Wang; Jianping Huang; Jing Yuan; Zhong Li; Yali Wang; Haijun Liu; Xuhui Shen Frequency Extraction of Global Constant Frequency Electromagnetic Disturbances from Electric Field VLF Data on CSES, Remote Sensing, Volume 15 (2023) no. 8, p. 2057 | DOI:10.3390/rs15082057
  • Ying Han; Jing Yuan; Jianping Huang; Zhong Li; Xuhui Shen Automatic Detection of Electric Field VLF Electromagnetic Wave Abnormal Disturbance on Zhangheng-1 Satellite, Atmosphere, Volume 13 (2022) no. 5, p. 807 | DOI:10.3390/atmos13050807
  • F. Němec; O. Santolík; G. B. Hospodarsky; W. S. Kurth; C. Kletzing Power Line Harmonic Radiation Observed by the Van Allen Probes Spacecraft, Journal of Geophysical Research: Space Physics, Volume 127 (2022) no. 6 | DOI:10.1029/2022ja030320
  • Francisco Portillo; Alfredo Alcayde; Rosa M. García; Nuria Novas; José Antonio Gázquez; Manuel Férnadez-Ros Grid Frequency Measurement through a PLHR Analysis Obtained from an ELF Magnetometer, Sensors, Volume 22 (2022) no. 8, p. 2954 | DOI:10.3390/s22082954
  • Zeren Zhima; Yunpeng Hu; Xuhui Shen; Wei Chu; Mirko Piersanti; Alexandra Parmentier; Zhenxia Zhang; Qiao Wang; Jianping Huang; Shufan Zhao; Yanyan Yang; Dehe Yang; Xiaoying Sun; Qiao Tan; Na Zhou; Feng Guo Storm-Time Features of the Ionospheric ELF/VLF Waves and Energetic Electron Fluxes Revealed by the China Seismo-Electromagnetic Satellite, Applied Sciences, Volume 11 (2021) no. 6, p. 2617 | DOI:10.3390/app11062617
  • E. N. Fedorov; N. G. Mazur; V. A. Pilipenko Electromagnetic Response of the Mid‐Latitude Ionosphere to Power Transmission Lines, Journal of Geophysical Research: Space Physics, Volume 126 (2021) no. 10 | DOI:10.1029/2021ja029659
  • M. Parrot Observations by DEMETER of Man‐Made MF Waves Escaping From the Ionosphere, Journal of Geophysical Research: Space Physics, Volume 126 (2021) no. 3 | DOI:10.1029/2020ja028954
  • Xiangwei Zhao; Shun Pan; Zhongchang Sun; Huadong Guo; Lei Zhang; Kang Feng Advances of Satellite Remote Sensing Technology in Earthquake Prediction, Natural Hazards Review, Volume 22 (2021) no. 1 | DOI:10.1061/(asce)nh.1527-6996.0000419
  • Paul A. Bernhardt; Michael K. Griffin; William C. Bougas; Andrew D. Howarth; H. Gordon James; Carl L. Siefring; Stanley J. Briczinski Satellite Observations of Strong Plasma Wave Emissions With Frequency Shifts Induced by an Engine Burn From the Cygnus Spacecraft, Radio Science, Volume 56 (2021) no. 2 | DOI:10.1029/2020rs007143
  • Piero Diego; Jianping Huang; Mirko Piersanti; Davide Badoni; Zhima Zeren; Rui Yan; Gianmaria Rebustini; Roberto Ammendola; Maurizio Candidi; Yi-Bing Guan; Jungang Lei; Giuseppe Masciantonio; Igor Bertello; Cristian De Santis; Pietro Ubertini; Xuhui Shen; Piergiorgio Picozza The Electric Field Detector on Board the China Seismo Electromagnetic Satellite—In-Orbit Results and Validation, Instruments, Volume 5 (2020) no. 1, p. 1 | DOI:10.3390/instruments5010001
  • Xuemin Zhang; Yalu Wang; Mohammed Boudjada; Jing Liu; Werner Magnes; Yulin Zhou; Xiaohui Du Multi-Experiment Observations of Ionospheric Disturbances as Precursory Effects of the Indonesian Ms6.9 Earthquake on August 05, 2018, Remote Sensing, Volume 12 (2020) no. 24, p. 4050 | DOI:10.3390/rs12244050
  • V. A. Pilipenko; M. Parrot; E. N. Fedorov; N. G. Mazur Electromagnetic Field in the Upper Ionosphere From ELF Ground‐Based Transmitter, Journal of Geophysical Research: Space Physics, Volume 124 (2019) no. 10, p. 8066 | DOI:10.1029/2019ja026929

Cité par 20 documents. Sources : Crossref

Commentaires - Politique