Comptes Rendus
LEDs: the new revolution in lighting / Les LED : la nouvelle révolution de l'éclairage
Historical perspective on the physics of artificial lighting
Comptes Rendus. Physique, Volume 19 (2018) no. 3, pp. 89-112.

We describe the evolution of lighting technologies used throughout the ages, and how the need for improvements was such that any new technology giving better and cheaper lighting was immediately implemented. Thus, every revolution in energy sources – gas, petrol electricity – was first put to large-scale use in lighting. We describe in some detail several “ancient” techniques of scientific interest, along with their physical limitations. Electroluminescence – the phenomenon by which LEDs directly convert electricity into light – was long thought to only be of use for indicators or flat panel displays supposed to replace the bulky cathode-ray tubes. The more recent uses of LEDs were mainly for street traffic lights, car indicators, small phone displays, followed by backlighting of TV screens. LED lamps for general lighting only emerged recently as the dominant application of LEDs thanks to dramatic decrease in cost, and continuous improvements of color quality and energy conversion efficiency.

Nous décrivons l'évolution des technologies d'éclairage utilisées à travers les âges, et comment le besoin d'améliorations était tel que toute nouvelle technologie donnant un éclairage meilleur et moins cher a été immédiatement mise en œuvre. Ainsi, chaque révolution en matière de sources d'énergie – gaz, pétrole, électricité – a été dans un premier temps utilisée à grande échelle dans l'éclairage. Nous décrivons en détail plusieurs techniques anciennes présentant un intérêt scientifique, ainsi que leurs limites physiques. L'électroluminescence – le phénomène par lequel les LED convertissent directement l'électricité en lumière – a longtemps été considérée comme étant uniquement utile pour les indicateurs ou les écrans plats censés remplacer les tubes cathodiques volumineux. Les utilisations les plus récentes des LED concernaient principalement les feux de signalisation, les indicateurs pour voitures, les écrans de téléphone, suivies par le rétroéclairage des écrans de télévision. Les lampes LED pour l'éclairage général ne sont apparues que récemment, comme leur application dominante grâce à une réduction spectaculaire des coûts et à des améliorations continues de la qualité des couleurs et de l'efficacité de la conversion d'énergie.

Published online:
DOI: 10.1016/j.crhy.2018.03.001
Keywords: Lighting, Light-emitting diodes, Gas mantle, Lamps, Light sources
Mot clés : Éclairage, Diodes électroluminescentes, Manchon à gaz, Lampes, Sources lumineuses

Claude Weisbuch 1, 2

1 Materials Department, University of California at Santa Barbara, USA
2 Laboratoire de physique de la matière condensée, CNRS, École polytechnique, Palaiseau, France
@article{CRPHYS_2018__19_3_89_0,
     author = {Claude Weisbuch},
     title = {Historical perspective on the physics of artificial lighting},
     journal = {Comptes Rendus. Physique},
     pages = {89--112},
     publisher = {Elsevier},
     volume = {19},
     number = {3},
     year = {2018},
     doi = {10.1016/j.crhy.2018.03.001},
     language = {en},
}
TY  - JOUR
AU  - Claude Weisbuch
TI  - Historical perspective on the physics of artificial lighting
JO  - Comptes Rendus. Physique
PY  - 2018
SP  - 89
EP  - 112
VL  - 19
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crhy.2018.03.001
LA  - en
ID  - CRPHYS_2018__19_3_89_0
ER  - 
%0 Journal Article
%A Claude Weisbuch
%T Historical perspective on the physics of artificial lighting
%J Comptes Rendus. Physique
%D 2018
%P 89-112
%V 19
%N 3
%I Elsevier
%R 10.1016/j.crhy.2018.03.001
%G en
%F CRPHYS_2018__19_3_89_0
Claude Weisbuch. Historical perspective on the physics of artificial lighting. Comptes Rendus. Physique, Volume 19 (2018) no. 3, pp. 89-112. doi : 10.1016/j.crhy.2018.03.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.03.001/

[1] B. Bowers Lengthening the Day: a History of Lighting Technology, Oxford University Press, UK, 1998

[2] D. DeLaura A brief history of lighting, Opt. Photonics News ( September 2008 ), p. 23

[3] R. Fouquet; P.J.G. Pearson Seven centuries of energy services: the price and use of light in the United Kingdom (1300–2000), Energy J., Volume 27 (2006), p. 139

[4] History of street lighting http://www.historyoflighting.net/electric-lighting-history/history-of-street-lighting/ (available at)

[5] M.G. Craford From Holonyak to today, Proc. IEEE, Volume 101 (2013), p. 2170

[6] J.Y. Tsao; J.J. Wierer; L.E.S. Rohwer; M.E. Coltrin; M.H. Crawford; J.A. Simmons; P.-C. Hung; H. Saunders; D.S. Sizov; R. Bhat; C.-E. Zah Ultra-efficient solid-state lighting: likely characteristics, economic benefits, technological approaches (T.-Y. Seong et al., eds.), III – Nitride Based Light Emitting Diodes and Applications, Top. Appl. Phys., vol. 133, Springer, Dordrecht, The Netherlands, 2017, p. 11

[7] J.Y. Tsao; H.D. Saunders; J.R. Creighton; M.E. Coltrin; J.A. Simmons Solid-state lighting: an energy-economics perspective, J. Phys. D, Appl. Phys., Volume 43 (2010)

[8] The History of Stage and Theatre Lighting, The Edison Electric Illuminating Company of Boston, 1929

[9] Anon The Welsbach Light, Science (N.S.), Volume 12 (1900) no. 312, p. 951

[10] E. Baumgartner Carl Auer von Welsbach: a pioneer in the industrial application of rare earths (C.H. Evans, ed.), Episodes from the History of the Rare Earth Elements, Kluwer, 1996, p. 113

[11] V. Gutmann More light: a short historical sketch of Carl Auer von Welsbach, J. Chem. Educ., Volume 47 (1970), p. 209

[12] E. Furuta; Y. Yoshizawa; T. Aburai Comparisons between radioactive and non-radioactive gas lantern mantles, J. Radiol. Prot., Volume 20 (2000), p. 423

[13] H.F. Ivey Candoluminescence and radical-excited luminescence, J. Lumin., Volume 8 (1974), p. 271

[14] P. Alstone; A. Jacobson LED advances accelerate universal access to electric lighting, C. R. Physique, Volume 19 (2018), pp. 146-158 ( in this issue )

[15] T. Bauer Thermophotovoltaics: Basic Principles and Critical Aspects of System Design, Springer, Berlin, Heidelberg, 2011

[16] P. Aigrain, Thermophotovoltaic conversion of radiant energy (unpublished lecture series at MIT), 1956.

[17] T.J. Coutts A review of progress in thermophotovoltaic generation of electricity, Renew. Sustain. Energy Rev., Volume 3 (1999), p. 77

[18] R.E. Nelson Thermophotovoltaic emitter development, AIP Conf. Proc., Volume 321 (1995), p. 80

[19] O. Ilic; P. Bermel; G. Chen; J.D. Joannopoulos; I. Celanovic; M. Soljačić Tailoring high-temperature radiation and the resurrection of the incandescent source, Nat. Nanotechnol., Volume 11 (2016), p. 320

[20] O. Ilic Tailoring thermal radiation through light recycling http://www.its.caltech.edu/~ilic/recycling-light/ (retrieved at)

[21] J.F. Waymouth Handbook of Advanced Lighting Technology (R. Karlicek et al., eds.), Springer International Publishing, Switzerland, 2017, p. 3 (For an excellent review of electrical lighting, see History of light sources)

[22] DOE, Energy savings forecast of solid-state lighting in general illumination applications, 2016, available at: https://energy.gov/sites/prod/files/2016/09/f33/energysavingsforecast16_2.pdf.

[23] M.F. Gendre Handbook of Advanced Lighting Technology (R. Karlicek et al., eds.), Springer International Publishing, Switzerland, 2017, p. 1013 (For an excellent review of incandescent lamps, see Incandescent lamps)

[24] G. Lister, Electrodeless lamps and UV sources, ibid., 1141.

[25] H.J. Round A note on carborundum, Electron. World, Volume 47 (1907), p. 308

[26] J.-M. Dilhac; E. Branly The Coherer, and the Branly effect, IEEE Commun. Mag. ( September 2009 ), p. 20

[27] H.F. Ivey Electroluminescence seen in 1907, Science, Volume 164 (1969), p. 1342

[28] O.V. Losev, Detector–generator. Detector–amplifier, TiTbp, June 1922, pp. 374–386 (in Russian).

[29] O. Lossev Oscillating crystals, Wireless World Radio Rev. ( 22 October 1924 ), p. 93

[30] O.V. Lossev Luminous carborundum detector and detection effect and oscillations with crystals, Philos. Mag., Volume 7 (1928), p. 1024

[31] C. Hilsum Light from semiconductors, New Sci., Volume 20 (1963) no. 12, p. 666

[32] O.W. Lossew Anwendung der Quantentheorie zur Leuchtenerscheinung, Phys. Z., Volume 30 (1929), p. 920

[33] A.H. Wilson The theory of electronic semi-conductors, Proc. R. Soc. Lond. Ser. A, Volume 133 (1931), p. 458

[34] O.W. Lossew Uber den Lichtelektrischen Effekt in besonderen activen Schicht der Karborundum Krystalle, Phys. Z., Volume 34 (1933), p. 397

[35] O.V. Losev Spectral distribution of the rectifying effect in single crystals of carborundum, Dokl. Akad. Nauk SSSR, Volume 29 (1940), p. 363

[36] E.O. Loebner Subhistories of the light emitting diode, IEEE Trans. Electron Devices, Volume ED-23 (1976), p. 675

[37] M.A. Novikov Oleg Vladimirovich Losev: pioneer of semiconductor electronics (celebrating one hundred years since his birth), Phys. Solid State, Volume 1 (2004), p. 46

[38] N. Zheludev The life and times of the LED — a 100-year history, Nat. Photonics, Volume 1 (2007), p. 189

[39] T. Figielski; A. Torun On the origin of light emitted from reverse biased p–n junctions, Exeter, UK, Inst. Phys., London (1962), p. 863

[40] T. Brazzini et al. Mechanism of hot electron electroluminescence in GaN-based transistors, J. Phys. D, Appl. Phys., Volume 49 (2016)

[41] R. Ostermeir; F. Koch; H. Brugger; P. Narozny; H. Dambkes Hot carrier light emission from GaAs HEMT devices, Semicond. Sci. Technol., Volume 7 (1992), p. B564

[42] G.M. Destriau Recherches sur les scintillations des sulfures de zinc aux rayons α, J. Chim. Phys., Volume 33 (1936), p. 620

[43] S.P. David; R. Gaume Electroluminescent thin film phosphors (B.K. Moorthy, ed.), Thin Film Structures in Energy Applications, Springer International Publishing, Switzerland, 2015, p. 243

[44] A.N. Krasnov Electroluminescent displays: history and lessons learned, Displays, Volume 24 (2003), p. 73

[45] M. Bredol; H. Schulze Dieckhoff Materials for powder-based AC-electroluminescence, Materials, Volume 3 (2010), p. 1353

[46] P.F. Smet; I. Moreels; Z. Hens; D. Poelman Luminescence in sulfides: a rich history and a bright future, Materials, Volume 3 (2010), p. 2834

[47] G.M. Destriau; H.F. Ivey Electroluminescence and related topics, Proc. Inst. Radio Eng., Volume 43 (1955), p. 1911

[48] A.G. Fischer Injection electroluminescence, Solid-State Electron., Volume 2 (1961), p. 232

[49] P.J. Dean Comparisons and contrasts between light emitting diodes and high field electroluminescent devices, J. Lumin., Volume 23 (1981), p. 17

[50] P.J. Dean Junction electroluminescence (R. Wolfe, ed.), Applied Solid State Science, vol. 1, Academic Press, New York, London, 1969, p. 2

[51] G.M. Destriau The new phenomenon of electrophotoluminescence and its possibilities for the investigation of crystal lattice, Philos. Mag. Ser. 7, Volume 38 (1947), p. 700

[52] A.H. Wilson The theory of electronic semi-conductors II, Proc. R. Soc. Lond. Ser. A, Volume 134 (1931), p. 277

[53] M. Riordan; L. Hoddeson The origins of the pn junction, IEEE Spectr., Volume 34 (1997), p. 46

[54] K. Lehovec; C.A. Accardo; E. Jamgochian Injected light emission of silicon carbide crystals, Phys. Rev., Volume 83 (1951), p. 603

[55] A. Van Dormael The ‘French’ transistor, Proceedings of the 2004 IEEE Conference on the History of Electronics, Bletchley Park, England, June 2004 http://www.cdvandt.org/VanDormael.pdf (available at)

[56] M. Riordan How Europe missed the transistor, IEEE Spectr. ( November 2005 ), p. 47

[57] B. Lojek History of Semiconductor Engineering, Springer, Berlin, 2007

[58] K. Lehovec; C.A. Accardo; E. Jamgochian Light emission produced by current injected into a green silicon-carbide crystal, Phys. Rev., Volume 89 (1953), p. 20

[59] J.R. Haynes; H.B. Briggs Radiation produced in germanium and silicon by electron–hole recombination, Phys. Rev., Volume 86 (1952), p. 647

[60] R.D. Dupuis; M.R. Krames History, development, and applications of high-brightness visible light-emitting diodes, J. Lightwave Technol., Volume 26 (2008), p. 1154

[61] R. Braunstein Radiative transitions in semiconductors, Phys. Rev., Volume 99 (1955), p. 1892

[62] R.J. Keyes; T.M. Quist Recombination radiation emitted by gallium arsenide, Proc. IRE, Volume 50 (1962), p. 1822

[63] M.R. Krames et al. Status and future of high-power light-emitting diodes for solid-state lighting, J. Disp. Technol., Volume 3 (2007), p. 160

[64] C. Lalau-Keraly; L.Y. Kuritzky; M. Cochet; C. Weisbuch Ray tracing for light extraction efficiency (LEE) modeling in nitride LEDs (T.-Y. Seong et al., eds.), III-Nitride Based Light Emitting Diodes and Applications, Springer Netherlands, Dordrecht, The Netherlands, 2013, p. 231

[65] R.J. Keyes (Festkörperprobleme/Advances in Solid State Physics), Volume vol. 7, Springer, Berlin, Heidelberg (1967), p. 217

[66] C. Hilsum The GaAs scene in 1962: the battle with Si, Semicond. Sci. Technol., Volume 28 (2013)

[67] R.D. Dupuis An introduction to the development of the semiconductor laser, IEEE J. Quantum Electron., Volume 23 (1987), p. 651

[68] H.G. Grimmeiss; J.W. Allen Light emitting diodes – how it started, J. Non-Cryst. Solids, Volume 352 (2006), p. 871

[69] J.W. Allen; H.G. Grimmeiss Visible light-emitting diodes – the formative years, Mater. Sci. Forum, Volume 590 (2008), p. 1

[70] M. Gershenzon Electroluminescence from p–n junctions in semiconductors (P. Goldberg, ed.), Luminescence of Inorganic Solids, Academic Press, New York, 1966, p. 603

[71] E.F. Schubert Light Emitting Diodes, Cambridge University Press, 2006

[72] J.W. Allen; P.E. Gibbons Gallium phosphide diodes for the production of fast light pulses, Nucl. Instrum. Methods, Volume 14 (1961), p. 355

[73] J.W. Allen Firsts for LEDs, Phys. World ( September 2005 ), p. 20

[74] G.A. Wolff; R.A. Hebert; J.D. Broder, Polytechnic Institute of Brooklyn ( Sept. 1955 ), pp. 9-10 (unpublished)

[75] G.A. Wolff, R.A. Hebert, J.D. Broder, Recent investigations on the electroluminescence of gallium phosphide, in: M. Schön, H. Welker (Eds.), Vorträge des Internationalen Kolloquiums 1956 “Halbleiter und Phosphore” in Garmisch-Partenkirchen, Germany, Halbleiter und Phosphore/Semiconductors and Phosphors/Semiconducteurs et Phosphores. Vieweg+Teubner Verlag, Wiesbaden, Germany, p. 547.

[76] N. Holonyak; D.C. Jillson; S.F. Bevacqua Halogen vapor transport and growth of epitaxial layers of intermetallic compounds and compound mixtures (J.B. Schroeder, ed.), Metallurgy of Semiconductor Materials, vol. 15, Interscience, New York, 1962, pp. 49-59

[77] N. Holonyak; S.F. Bevacqua Coherent (visible) light emission from GaAs1−xPx junctions, Appl. Phys. Lett., Volume 1 (1962), p. 82

[78] H. Manchester, Light of hope – or terror? Readers Digest (February 1963) 97.

[79] H.G. Grimmeiss; H. Scholz Efficiency of recombination radiation in GaP, Phys. Lett., Volume 8 (1964), p. 233

[80] D. Feezell; S. Nakamura Invention, development, and status of the blue light-emitting diode, the enabler of solid-state lighting, C. R. Physique, Volume 19 (2018), pp. 113-133 ( in this issue )

[81] J.J. Wierer; J.Y. Tsao; D.S. Sizov The potential of III-nitride laser diodes for solid-state lighting, Phys. Status Solidi C, Volume 11 (2014), p. 674

[82] A. Neumann; J.J. Wierer; W. Davis; Y. Ohno; S.R.J. Brueck; J.Y. Tsao Four-color laser white illuminant demonstrating high color rendering quality, Opt. Express, Volume 19 (2011), p. A982

[83] Anon The early history of gallium nitride research http://www.compoundsemi.com/the-early-history-of-gallium-nitride-research/ (retrieved at)

[84] C. Weyrich Light emitting diodes for the visible spectrum, Festkörperprobleme/Advances in Solid State Physics, vol. 18, Springer, Berlin, Heidelberg, 1978, p. 265

[85] C.J. Nuese; H. Kressel; I. Ladany Light-emitting diodes and semiconductor materials for displays, J. Vac. Sci. Technol., Volume 10 (1973), p. 772

[86] A.A. Bergh; P.J. Dean Light-emitting diodes, Proc. IEEE, Volume 6 (1972), p. 156

[87] M.G. Craford LEDs challenge the incandescents, IEEE Circuits Devices Mag. ( 24 September 1992 )

[88] M. Shur; R. Gaska Deep-ultraviolet light-emitting diodes, IEEE Trans. Electron Devices, Volume 57 (2010), p. 121

[89] F.M. Steranka et al. Red AlGaAs light-emitting diodes, Hewlett-Packard J. ( August 1988 ), p. 84

[90] A.A. Bergh; P.J. Dean Light Emitting Diodes, Oxford University Press, 1976

[91] G.B. Stringfellow Materials issues in high brightness light emitting diodes (G.B. Stringfellow; M.G. Craford, eds.), High Brightness Light Emitting Diodes, Academic Press, San Diego, CA, USA, 1997, p. 1

[92] V.A. Mishurnyi et al. Growth of quantum-well heterostructures by liquid phase epitaxy, Crit. Rev. Solid State Mater. Sci., Volume 31 (2006), p. 1

[93] M. Fukuda Reliability and Degradation in Semiconductor Lasers and LEDs, Artech House, Boston, London, 1991

[94] J.W. Matthews; A.E. Blakeslee Defects in epitaxial multilayers, J. Cryst. Growth, Volume 27 (1974), p. 118

[95] G. Lasher; F. Stern Spontaneous and stimulated recombination radiation in semiconductors, Phys. Rev., Volume 133 (1946), p. A553

[96] C. Weisbuch; R.C. Miller; R. Dingle; A.C. Gossard; W. Wiegmann Intrinsic radiative recombination from quantum states in GaAs–AlGaAs multi-quantum well structures, Solid State Commun., Volume 37 (1981), p. 219

[97] B. Deveaud; F. Clérot; N. Roy; K. Satzke; B. Sermage; D.S. Katzer Enhanced radiative decay of free excitons in GaAs quantum wells, Phys. Rev. Lett., Volume 67 (1991), p. 2355

[98] C. Weisbuch; H. Benisty; R. Houdré Overview of fundamentals and applications of electrons, excitons and photons in confined structures, J. Lumin., Volume 85 (2000), p. 271

[99] I. Galbraith; S.W. Koch A comparison of lasing mechanisms in ZnSe and GaAs, J. Cryst. Growth, Volume 159 (1996), p. 667

[100] M. Kira; F. Jahnke; S.W. Koch Microscopic theory of excitonic signatures in semiconductor photoluminescence, Phys. Rev. Lett., Volume 81 (1998), p. 3263

[101] J. Szczytko; L. Kappei; F. Morier-Genoud; T. Guillet; M.T. Portella-Oberli; B. Deveaud Excitons or free carriers? That is the question, Phys. Status Solidi C, Volume 1 (2004), p. 493

[102] Z.I. Alferov; V.M. Andreev; E.L. Portnoi; M.K. Trukan AlAs-GaAs heterojunction injection lasers with a low room-temperature threshold, Fiz. Tekh. Poluprov., Volume 3 (1969), p. 1328

[103] I. Hayashi; M.B. Panish; P.W. Foy; S. Sumski Junction lasers which operate continuously at room temperature, Appl. Phys. Lett., Volume 17 (1970), p. 109

[104] J.J. Coleman The development of the semiconductor laser diode after the first demonstration in 1962, Semicond. Sci. Technol., Volume 27 (2012)

[105] S. Strite The III–V Nitride Semiconductors for blue light emission: recent progress and a critical evaluation of their potential in comparison to the ZnSe based II–VI semiconductors, Festkörperprobleme/Advances in Solid State Physics, vol. 34, Springer, Berlin, 1994, p. 79

[106] H.G. Grimmeiss; H. Koelmans Uber die Kantenemission und Andere Emissionen des GaN, Z. Naturforsch. A, Volume 14 (1959), p. 264

[107] H.G. Grimmeiss; H. Koelmans Lumineszenz- und Photoleitungseigenschaften von dotiertem GaN, Z. Naturforsch. A, Volume 15 (1960), p. 799

[108] H.P. Maruska; J.J. Tietjen The preparation and properties of vapor-deposited single-crystalline GaN, Appl. Phys. Lett., Volume 15 (1969), p. 327

[109] H.P. Maruska; W.C. Rhines A modern perspective on the history of semiconductor nitride blue light sources, Solid-State Electron., Volume 111 (2015), p. 32

[110] R. Dingle; D.D. Sell; S.E. Stokowski; M. Ilegems Absorption, reflectance, and luminescence of GaN epitaxial layers, Phys. Rev. B, Volume 4 (1971), p. 1211

[111] R. Dingle; K.L. Shaklee; R.F. Leheny; R.B. Zetterstrom Stimulated emission and laser action in gallium nitride, Appl. Phys. Lett., Volume 19 (1971), p. 5

[112] M. Ilegems; H.C. Montgomery Electrical properties of n-type vapor-grown gallium nitride, J. Phys. Chem. Solids, Volume 34 (1973), p. 885

[113] S. Nakamura; M.R. Krames History of gallium–nitride-based light-emitting diodes for illumination, Proc. IEEE, Volume 101 (2012), p. 2211

[114] H. Amano Progress and prospect of growth of wide-band-gap group III nitrides (T.-Y. Seong et al., eds.), III-Nitride Based Light Emitting Diodes and Applications, Springer Netherlands, Dordrecht, The Netherlands, 2013, p. 1

[115] M. Stavola Hydrogen passivation in semiconductors, Acta Phys. Pol. A, Volume 82 (1992), p. 585

[116] A. David; M.J. Grundmann Influence of polarization fields on carrier lifetime and recombination rates in InGaN-based light-emitting diodes, Appl. Phys. Lett., Volume 97 (2010)

[117] A.E. Romanov; E.C. Young; F. Wu; A. Tyagi; C.S. Gallinat; S. Nakamura; S.P. DenBaars; J.S. Speck Basal plane misfit dislocations and stress relaxation in III-nitride semipolar heteroepitaxy, J. Appl. Phys., Volume 109 (2011)

[118] M. Pattison; M. Hansen; J.Y. Tsao C. R. Physique, 19 (2018), pp. 134-145 ( in this issue )

[119] Committee on Optical Science and Engineering; National Research Council Optical Science and Engineering for the 21st Century, National Academies Press, 1998

[120] R. Haitz; J.Y. Tsao Solid-state lighting: ‘the case’ 10 years after and future prospects, Phys. Status Solidi A, Volume 208 (2011), p. 17

[121] M. Pope; H.P. Kallmann; P. Magnante Electroluminescence in organic crystals, J. Chem. Phys., Volume 38 (1963), p. 2042

[122] W. Helfrich; W.G. Schneider Recombination radiation in anthracene crystals, Phys. Rev. Lett., Volume 14 (1965), p. 229

[123] C.W. Tang; S.A. VanSlyke Organic electroluminescent diodes, Appl. Phys. Lett., Volume 51 (1987), p. 913

[124] J.H. Burroughes; D.D.C. Bradley; A.R. Brown; R.N. Marks; K. Mackay; R.H. Friend; P.L. Burns; A.B. Holmes Light-emitting diodes based on conjugated polymers, Nature (London), Volume 347 (1990), p. 539

[125] S. Reineke; M. Thomschke; B. Lüssem; K. Leo White organic light-emitting diodes: status and perspective, Rev. Mod. Phys., Volume 85 (2013), p. 1245

[126] M.-H. Lu; J.C. Sturm Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment, J. Appl. Phys., Volume 91 (2002), p. 595

[127] W. Brütting; J. Frischeisen; T.D. Schmidt; B.J. Scholz; C. Mayr Device efficiency of organic light-emitting diodes: progress by improved light outcoupling, Phys. Status Solidi A, Volume 210 (2013), p. 44

[128] DOE Solid-State Lighting 2017 Suggested Research Topics Supplement: Technology and Market Context, edited by James Brodrick, Ph.D; available at: https://energy.gov/sites/prod/files/2017/09/f37/ssl_supplement_suggested-topics_sep2017_0.pdf.

[129] A. David; L.A. Whitehead LED-based white light, C. R. Physique, Volume 19 (2018), pp. 169-181 ( in this issue )

[130] W.E. Bradley, Electronic cooling device and method for the fabrication thereof, US patent 2 898 743 (filed 23 July 23 1956).

[131] G.C. Dousmanis; C.W. Mueller; H. Nelson; K.G. Petzinger Evidence of refrigerating action by means of photon emission in semiconductor diodes, Phys. Rev., Volume 133 (1964), p. A316

[132] P. Lenard; F. Schmidt; R. Tomaschek, Akademische Verlag, Leipzig (1928), p. 9461

[133] P. Pringsheim Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturstrahlung, Z. Phys., Volume 57 (1929), p. 739

[134] S. Vavilov Some remarks on the Stokes law, J. Phys. (USSR), Volume 9 (1945), p. 68

[135] P. Pringsheim Some remarks concerning the difference between luminescence and temperature radiation, anti-Stokes fluorescence, J. Phys. (USSR), Volume 10 (1946), p. 495

[136] S. Vavilov Photoluminescence and thermodynamics, J. Phys. (USSR), Volume 10 (1946), p. 499

[137] L. Landau On the thermodynamics of photoluminescence, J. Phys. (USSR), Volume (Moscow)10 (1946), p. 503

[138] J.J. Hopfield Aspects of polaritons, J. Phys. Soc. Jpn., Suppl., Volume 21 (1966), p. 77

[139] C. Weisbuch; H. Benisty; R. Houdré Overview of fundamentals and applications of electrons, excitons and photons in confined structures, J. Lumin., Volume 85 (2000), p. 271

[140] C. Weisbuch; N. Nishioka; A. Ishikawa; Y. Arakawa Observation of the coupled exciton–photon mode splitting in a semiconductor quantum microcavity, Phys. Rev. Lett., Volume 69 (1992), p. 3314

[141] R.P. Stanley; R. Houdré; C. Weisbuch; U. Oesterle; M. Ilegems Cavity-polariton photoluminescence in semiconductor microcavities: experimental evidence, Phys. Rev. B, Volume 53 (1996)

[142] A. Kastler Quelques suggestions concernant la production optique et la détection optique d'une inegalité de population des niveaux de quantification spatiale des atomes. Application à l'experience de Stern et Gerlach et à la résonance magnétique, J. Phys. Radium, Volume 11 (1950), p. 255

[143] R.I. Epstein; M.I. Buchwald; B.C. Edwards; T.R. Gosnell; C.E. Mungan Observation of laser-induced fluorescent cooling of a solid, Nature, Volume 377 (1995), p. 500

[144] P. Santhanam; D.J. Gray; R.J. Ram Thermoelectrically pumped light-emitting diodes operating above unity efficiency, Phys. Rev. Lett., Volume 108 (2012)

[145] L.Y. Kuritzky Epitaxy and Device Design for High Efficiency Blue LEDs and Laser Diodes, University of California, Santa Barbara, CA, USA, 2016 (Doctoral thesis)

[146] L.Y. Kuritzky, C. Weisbuch, J.S. Speck, Prospects for 100% wall-plug efficient III-nitride LEDs, unpublished.

[147] L.Y. Kuritzky; A.C. Espenlaub; B.P. Yonkee; C.D. Pynn; S.P. Denbaars; S. Nakamura; C. Weisbuch; J.S. Speck High wall-plug efficiency blue III-nitride LEDs designed for low current density operation, Opt. Express, Volume 25 (2017)

[148] J. Xue; Y. Zhao; S. Oh; J.S. Speck; S.P. Denbaars; S. Nakamura; R.J. Ram Thermally enhanced blue light-emitting diode, Appl. Phys. Lett., Volume 107 (2015)

[149] A. David; C.A. Hurni; N.G. Young; M.D. Craven Electrical properties of III-nitride LEDs: recombination-based injection model and theoretical limits to electrical efficiency and electroluminescent cooling, Appl. Phys. Lett., Volume 109 (2016)

Cited by Sources:

Comments - Policy