We describe the evolution of lighting technologies used throughout the ages, and how the need for improvements was such that any new technology giving better and cheaper lighting was immediately implemented. Thus, every revolution in energy sources – gas, petrol electricity – was first put to large-scale use in lighting. We describe in some detail several “ancient” techniques of scientific interest, along with their physical limitations. Electroluminescence – the phenomenon by which LEDs directly convert electricity into light – was long thought to only be of use for indicators or flat panel displays supposed to replace the bulky cathode-ray tubes. The more recent uses of LEDs were mainly for street traffic lights, car indicators, small phone displays, followed by backlighting of TV screens. LED lamps for general lighting only emerged recently as the dominant application of LEDs thanks to dramatic decrease in cost, and continuous improvements of color quality and energy conversion efficiency.
Nous décrivons l'évolution des technologies d'éclairage utilisées à travers les âges, et comment le besoin d'améliorations était tel que toute nouvelle technologie donnant un éclairage meilleur et moins cher a été immédiatement mise en œuvre. Ainsi, chaque révolution en matière de sources d'énergie – gaz, pétrole, électricité – a été dans un premier temps utilisée à grande échelle dans l'éclairage. Nous décrivons en détail plusieurs techniques anciennes présentant un intérêt scientifique, ainsi que leurs limites physiques. L'électroluminescence – le phénomène par lequel les LED convertissent directement l'électricité en lumière – a longtemps été considérée comme étant uniquement utile pour les indicateurs ou les écrans plats censés remplacer les tubes cathodiques volumineux. Les utilisations les plus récentes des LED concernaient principalement les feux de signalisation, les indicateurs pour voitures, les écrans de téléphone, suivies par le rétroéclairage des écrans de télévision. Les lampes LED pour l'éclairage général ne sont apparues que récemment, comme leur application dominante grâce à une réduction spectaculaire des coûts et à des améliorations continues de la qualité des couleurs et de l'efficacité de la conversion d'énergie.
Mots-clés : Éclairage, Diodes électroluminescentes, Manchon à gaz, Lampes, Sources lumineuses
Claude Weisbuch 1, 2
@article{CRPHYS_2018__19_3_89_0, author = {Claude Weisbuch}, title = {Historical perspective on the physics of artificial lighting}, journal = {Comptes Rendus. Physique}, pages = {89--112}, publisher = {Elsevier}, volume = {19}, number = {3}, year = {2018}, doi = {10.1016/j.crhy.2018.03.001}, language = {en}, }
Claude Weisbuch. Historical perspective on the physics of artificial lighting. Comptes Rendus. Physique, LEDs: The new revolution in lighting / Les LED : la nouvelle révolution de l’éclairage, Volume 19 (2018) no. 3, pp. 89-112. doi : 10.1016/j.crhy.2018.03.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.03.001/
[1] Lengthening the Day: a History of Lighting Technology, Oxford University Press, UK, 1998
[2] A brief history of lighting, Opt. Photonics News ( September 2008 ), p. 23
[3] Seven centuries of energy services: the price and use of light in the United Kingdom (1300–2000), Energy J., Volume 27 (2006), p. 139
[4] History of street lighting http://www.historyoflighting.net/electric-lighting-history/history-of-street-lighting/ (available at)
[5] From Holonyak to today, Proc. IEEE, Volume 101 (2013), p. 2170
[6] Ultra-efficient solid-state lighting: likely characteristics, economic benefits, technological approaches (T.-Y. Seong et al., eds.), III – Nitride Based Light Emitting Diodes and Applications, Top. Appl. Phys., vol. 133, Springer, Dordrecht, The Netherlands, 2017, p. 11
[7] Solid-state lighting: an energy-economics perspective, J. Phys. D, Appl. Phys., Volume 43 (2010)
[8] The History of Stage and Theatre Lighting, The Edison Electric Illuminating Company of Boston, 1929
[9] The Welsbach Light, Science (N.S.), Volume 12 (1900) no. 312, p. 951
[10] Carl Auer von Welsbach: a pioneer in the industrial application of rare earths (C.H. Evans, ed.), Episodes from the History of the Rare Earth Elements, Kluwer, 1996, p. 113
[11] More light: a short historical sketch of Carl Auer von Welsbach, J. Chem. Educ., Volume 47 (1970), p. 209
[12] Comparisons between radioactive and non-radioactive gas lantern mantles, J. Radiol. Prot., Volume 20 (2000), p. 423
[13] Candoluminescence and radical-excited luminescence, J. Lumin., Volume 8 (1974), p. 271
[14] LED advances accelerate universal access to electric lighting, C. R. Physique, Volume 19 (2018), pp. 146-158 ( in this issue )
[15] Thermophotovoltaics: Basic Principles and Critical Aspects of System Design, Springer, Berlin, Heidelberg, 2011
[16] P. Aigrain, Thermophotovoltaic conversion of radiant energy (unpublished lecture series at MIT), 1956.
[17] A review of progress in thermophotovoltaic generation of electricity, Renew. Sustain. Energy Rev., Volume 3 (1999), p. 77
[18] Thermophotovoltaic emitter development, AIP Conf. Proc., Volume 321 (1995), p. 80
[19] Tailoring high-temperature radiation and the resurrection of the incandescent source, Nat. Nanotechnol., Volume 11 (2016), p. 320
[20] Tailoring thermal radiation through light recycling http://www.its.caltech.edu/~ilic/recycling-light/ (retrieved at)
[21] Handbook of Advanced Lighting Technology (R. Karlicek et al., eds.), Springer International Publishing, Switzerland, 2017, p. 3 (For an excellent review of electrical lighting, see History of light sources)
[22] DOE, Energy savings forecast of solid-state lighting in general illumination applications, 2016, available at: https://energy.gov/sites/prod/files/2016/09/f33/energysavingsforecast16_2.pdf.
[23] Handbook of Advanced Lighting Technology (R. Karlicek et al., eds.), Springer International Publishing, Switzerland, 2017, p. 1013 (For an excellent review of incandescent lamps, see Incandescent lamps)
[24] G. Lister, Electrodeless lamps and UV sources, ibid., 1141.
[25] A note on carborundum, Electron. World, Volume 47 (1907), p. 308
[26] The Coherer, and the Branly effect, IEEE Commun. Mag. ( September 2009 ), p. 20
[27] Electroluminescence seen in 1907, Science, Volume 164 (1969), p. 1342
[28] O.V. Losev, Detector–generator. Detector–amplifier, TiTbp, June 1922, pp. 374–386 (in Russian).
[29] Oscillating crystals, Wireless World Radio Rev. ( 22 October 1924 ), p. 93
[30] Luminous carborundum detector and detection effect and oscillations with crystals, Philos. Mag., Volume 7 (1928), p. 1024
[31] Light from semiconductors, New Sci., Volume 20 (1963) no. 12, p. 666
[32] Anwendung der Quantentheorie zur Leuchtenerscheinung, Phys. Z., Volume 30 (1929), p. 920
[33] The theory of electronic semi-conductors, Proc. R. Soc. Lond. Ser. A, Volume 133 (1931), p. 458
[34] Uber den Lichtelektrischen Effekt in besonderen activen Schicht der Karborundum Krystalle, Phys. Z., Volume 34 (1933), p. 397
[35] Spectral distribution of the rectifying effect in single crystals of carborundum, Dokl. Akad. Nauk SSSR, Volume 29 (1940), p. 363
[36] Subhistories of the light emitting diode, IEEE Trans. Electron Devices, Volume ED-23 (1976), p. 675
[37] Oleg Vladimirovich Losev: pioneer of semiconductor electronics (celebrating one hundred years since his birth), Phys. Solid State, Volume 1 (2004), p. 46
[38] The life and times of the LED — a 100-year history, Nat. Photonics, Volume 1 (2007), p. 189
[39] On the origin of light emitted from reverse biased p–n junctions, Exeter, UK, Inst. Phys., London (1962), p. 863
[40] et al. Mechanism of hot electron electroluminescence in GaN-based transistors, J. Phys. D, Appl. Phys., Volume 49 (2016)
[41] Hot carrier light emission from GaAs HEMT devices, Semicond. Sci. Technol., Volume 7 (1992), p. B564
[42] Recherches sur les scintillations des sulfures de zinc aux rayons α, J. Chim. Phys., Volume 33 (1936), p. 620
[43] Electroluminescent thin film phosphors (B.K. Moorthy, ed.), Thin Film Structures in Energy Applications, Springer International Publishing, Switzerland, 2015, p. 243
[44] Electroluminescent displays: history and lessons learned, Displays, Volume 24 (2003), p. 73
[45] Materials for powder-based AC-electroluminescence, Materials, Volume 3 (2010), p. 1353
[46] Luminescence in sulfides: a rich history and a bright future, Materials, Volume 3 (2010), p. 2834
[47] Electroluminescence and related topics, Proc. Inst. Radio Eng., Volume 43 (1955), p. 1911
[48] Injection electroluminescence, Solid-State Electron., Volume 2 (1961), p. 232
[49] Comparisons and contrasts between light emitting diodes and high field electroluminescent devices, J. Lumin., Volume 23 (1981), p. 17
[50] Junction electroluminescence (R. Wolfe, ed.), Applied Solid State Science, vol. 1, Academic Press, New York, London, 1969, p. 2
[51] The new phenomenon of electrophotoluminescence and its possibilities for the investigation of crystal lattice, Philos. Mag. Ser. 7, Volume 38 (1947), p. 700
[52] The theory of electronic semi-conductors II, Proc. R. Soc. Lond. Ser. A, Volume 134 (1931), p. 277
[53] The origins of the pn junction, IEEE Spectr., Volume 34 (1997), p. 46
[54] Injected light emission of silicon carbide crystals, Phys. Rev., Volume 83 (1951), p. 603
[55] The ‘French’ transistor, Proceedings of the 2004 IEEE Conference on the History of Electronics, Bletchley Park, England, June 2004 http://www.cdvandt.org/VanDormael.pdf (available at)
[56] How Europe missed the transistor, IEEE Spectr. ( November 2005 ), p. 47
[57] History of Semiconductor Engineering, Springer, Berlin, 2007
[58] Light emission produced by current injected into a green silicon-carbide crystal, Phys. Rev., Volume 89 (1953), p. 20
[59] Radiation produced in germanium and silicon by electron–hole recombination, Phys. Rev., Volume 86 (1952), p. 647
[60] History, development, and applications of high-brightness visible light-emitting diodes, J. Lightwave Technol., Volume 26 (2008), p. 1154
[61] Radiative transitions in semiconductors, Phys. Rev., Volume 99 (1955), p. 1892
[62] Recombination radiation emitted by gallium arsenide, Proc. IRE, Volume 50 (1962), p. 1822
[63] et al. Status and future of high-power light-emitting diodes for solid-state lighting, J. Disp. Technol., Volume 3 (2007), p. 160
[64] Ray tracing for light extraction efficiency (LEE) modeling in nitride LEDs (T.-Y. Seong et al., eds.), III-Nitride Based Light Emitting Diodes and Applications, Springer Netherlands, Dordrecht, The Netherlands, 2013, p. 231
[65] (Festkörperprobleme/Advances in Solid State Physics), Volume vol. 7, Springer, Berlin, Heidelberg (1967), p. 217
[66] The GaAs scene in 1962: the battle with Si, Semicond. Sci. Technol., Volume 28 (2013)
[67] An introduction to the development of the semiconductor laser, IEEE J. Quantum Electron., Volume 23 (1987), p. 651
[68] Light emitting diodes – how it started, J. Non-Cryst. Solids, Volume 352 (2006), p. 871
[69] Visible light-emitting diodes – the formative years, Mater. Sci. Forum, Volume 590 (2008), p. 1
[70] Electroluminescence from p–n junctions in semiconductors (P. Goldberg, ed.), Luminescence of Inorganic Solids, Academic Press, New York, 1966, p. 603
[71] Light Emitting Diodes, Cambridge University Press, 2006
[72] Gallium phosphide diodes for the production of fast light pulses, Nucl. Instrum. Methods, Volume 14 (1961), p. 355
[73] Firsts for LEDs, Phys. World ( September 2005 ), p. 20
[74]
, Polytechnic Institute of Brooklyn ( Sept. 1955 ), pp. 9-10 (unpublished)[75] G.A. Wolff, R.A. Hebert, J.D. Broder, Recent investigations on the electroluminescence of gallium phosphide, in: M. Schön, H. Welker (Eds.), Vorträge des Internationalen Kolloquiums 1956 “Halbleiter und Phosphore” in Garmisch-Partenkirchen, Germany, Halbleiter und Phosphore/Semiconductors and Phosphors/Semiconducteurs et Phosphores. Vieweg+Teubner Verlag, Wiesbaden, Germany, p. 547.
[76] Halogen vapor transport and growth of epitaxial layers of intermetallic compounds and compound mixtures (J.B. Schroeder, ed.), Metallurgy of Semiconductor Materials, vol. 15, Interscience, New York, 1962, pp. 49-59
[77] Coherent (visible) light emission from GaAs1−xPx junctions, Appl. Phys. Lett., Volume 1 (1962), p. 82
[78] H. Manchester, Light of hope – or terror? Readers Digest (February 1963) 97.
[79] Efficiency of recombination radiation in GaP, Phys. Lett., Volume 8 (1964), p. 233
[80] Invention, development, and status of the blue light-emitting diode, the enabler of solid-state lighting, C. R. Physique, Volume 19 (2018), pp. 113-133 ( in this issue )
[81] The potential of III-nitride laser diodes for solid-state lighting, Phys. Status Solidi C, Volume 11 (2014), p. 674
[82] Four-color laser white illuminant demonstrating high color rendering quality, Opt. Express, Volume 19 (2011), p. A982
[83] The early history of gallium nitride research http://www.compoundsemi.com/the-early-history-of-gallium-nitride-research/ (retrieved at)
[84] Light emitting diodes for the visible spectrum, Festkörperprobleme/Advances in Solid State Physics, vol. 18, Springer, Berlin, Heidelberg, 1978, p. 265
[85] Light-emitting diodes and semiconductor materials for displays, J. Vac. Sci. Technol., Volume 10 (1973), p. 772
[86] Light-emitting diodes, Proc. IEEE, Volume 6 (1972), p. 156
[87] LEDs challenge the incandescents, IEEE Circuits Devices Mag. ( 24 September 1992 )
[88] Deep-ultraviolet light-emitting diodes, IEEE Trans. Electron Devices, Volume 57 (2010), p. 121
[89] et al. Red AlGaAs light-emitting diodes, Hewlett-Packard J. ( August 1988 ), p. 84
[90] Light Emitting Diodes, Oxford University Press, 1976
[91] Materials issues in high brightness light emitting diodes (G.B. Stringfellow; M.G. Craford, eds.), High Brightness Light Emitting Diodes, Academic Press, San Diego, CA, USA, 1997, p. 1
[92] et al. Growth of quantum-well heterostructures by liquid phase epitaxy, Crit. Rev. Solid State Mater. Sci., Volume 31 (2006), p. 1
[93] Reliability and Degradation in Semiconductor Lasers and LEDs, Artech House, Boston, London, 1991
[94] Defects in epitaxial multilayers, J. Cryst. Growth, Volume 27 (1974), p. 118
[95] Spontaneous and stimulated recombination radiation in semiconductors, Phys. Rev., Volume 133 (1946), p. A553
[96] Intrinsic radiative recombination from quantum states in GaAs–AlGaAs multi-quantum well structures, Solid State Commun., Volume 37 (1981), p. 219
[97] Enhanced radiative decay of free excitons in GaAs quantum wells, Phys. Rev. Lett., Volume 67 (1991), p. 2355
[98] Overview of fundamentals and applications of electrons, excitons and photons in confined structures, J. Lumin., Volume 85 (2000), p. 271
[99] A comparison of lasing mechanisms in ZnSe and GaAs, J. Cryst. Growth, Volume 159 (1996), p. 667
[100] Microscopic theory of excitonic signatures in semiconductor photoluminescence, Phys. Rev. Lett., Volume 81 (1998), p. 3263
[101] Excitons or free carriers? That is the question, Phys. Status Solidi C, Volume 1 (2004), p. 493
[102] AlAs-GaAs heterojunction injection lasers with a low room-temperature threshold, Fiz. Tekh. Poluprov., Volume 3 (1969), p. 1328
[103] Junction lasers which operate continuously at room temperature, Appl. Phys. Lett., Volume 17 (1970), p. 109
[104] The development of the semiconductor laser diode after the first demonstration in 1962, Semicond. Sci. Technol., Volume 27 (2012)
[105] The III–V Nitride Semiconductors for blue light emission: recent progress and a critical evaluation of their potential in comparison to the ZnSe based II–VI semiconductors, Festkörperprobleme/Advances in Solid State Physics, vol. 34, Springer, Berlin, 1994, p. 79
[106] Uber die Kantenemission und Andere Emissionen des GaN, Z. Naturforsch. A, Volume 14 (1959), p. 264
[107] Lumineszenz- und Photoleitungseigenschaften von dotiertem GaN, Z. Naturforsch. A, Volume 15 (1960), p. 799
[108] The preparation and properties of vapor-deposited single-crystalline GaN, Appl. Phys. Lett., Volume 15 (1969), p. 327
[109] A modern perspective on the history of semiconductor nitride blue light sources, Solid-State Electron., Volume 111 (2015), p. 32
[110] Absorption, reflectance, and luminescence of GaN epitaxial layers, Phys. Rev. B, Volume 4 (1971), p. 1211
[111] Stimulated emission and laser action in gallium nitride, Appl. Phys. Lett., Volume 19 (1971), p. 5
[112] Electrical properties of n-type vapor-grown gallium nitride, J. Phys. Chem. Solids, Volume 34 (1973), p. 885
[113] History of gallium–nitride-based light-emitting diodes for illumination, Proc. IEEE, Volume 101 (2012), p. 2211
[114] Progress and prospect of growth of wide-band-gap group III nitrides (T.-Y. Seong et al., eds.), III-Nitride Based Light Emitting Diodes and Applications, Springer Netherlands, Dordrecht, The Netherlands, 2013, p. 1
[115] Hydrogen passivation in semiconductors, Acta Phys. Pol. A, Volume 82 (1992), p. 585
[116] Influence of polarization fields on carrier lifetime and recombination rates in InGaN-based light-emitting diodes, Appl. Phys. Lett., Volume 97 (2010)
[117] Basal plane misfit dislocations and stress relaxation in III-nitride semipolar heteroepitaxy, J. Appl. Phys., Volume 109 (2011)
[118] C. R. Physique, 19 (2018), pp. 134-145 ( in this issue )
[119] Optical Science and Engineering for the 21st Century, National Academies Press, 1998
[120] Solid-state lighting: ‘the case’ 10 years after and future prospects, Phys. Status Solidi A, Volume 208 (2011), p. 17
[121] Electroluminescence in organic crystals, J. Chem. Phys., Volume 38 (1963), p. 2042
[122] Recombination radiation in anthracene crystals, Phys. Rev. Lett., Volume 14 (1965), p. 229
[123] Organic electroluminescent diodes, Appl. Phys. Lett., Volume 51 (1987), p. 913
[124] Light-emitting diodes based on conjugated polymers, Nature (London), Volume 347 (1990), p. 539
[125] White organic light-emitting diodes: status and perspective, Rev. Mod. Phys., Volume 85 (2013), p. 1245
[126] Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment, J. Appl. Phys., Volume 91 (2002), p. 595
[127] Device efficiency of organic light-emitting diodes: progress by improved light outcoupling, Phys. Status Solidi A, Volume 210 (2013), p. 44
[128] DOE Solid-State Lighting 2017 Suggested Research Topics Supplement: Technology and Market Context, edited by James Brodrick, Ph.D; available at: https://energy.gov/sites/prod/files/2017/09/f37/ssl_supplement_suggested-topics_sep2017_0.pdf.
[129] LED-based white light, C. R. Physique, Volume 19 (2018), pp. 169-181 ( in this issue )
[130] W.E. Bradley, Electronic cooling device and method for the fabrication thereof, US patent 2 898 743 (filed 23 July 23 1956).
[131] Evidence of refrigerating action by means of photon emission in semiconductor diodes, Phys. Rev., Volume 133 (1964), p. A316
[132]
, Akademische Verlag, Leipzig (1928), p. 9461[133] Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturstrahlung, Z. Phys., Volume 57 (1929), p. 739
[134] Some remarks on the Stokes law, J. Phys. (USSR), Volume 9 (1945), p. 68
[135] Some remarks concerning the difference between luminescence and temperature radiation, anti-Stokes fluorescence, J. Phys. (USSR), Volume 10 (1946), p. 495
[136] Photoluminescence and thermodynamics, J. Phys. (USSR), Volume 10 (1946), p. 499
[137] On the thermodynamics of photoluminescence, J. Phys. (USSR), Volume (Moscow)10 (1946), p. 503
[138] Aspects of polaritons, J. Phys. Soc. Jpn., Suppl., Volume 21 (1966), p. 77
[139] Overview of fundamentals and applications of electrons, excitons and photons in confined structures, J. Lumin., Volume 85 (2000), p. 271
[140] Observation of the coupled exciton–photon mode splitting in a semiconductor quantum microcavity, Phys. Rev. Lett., Volume 69 (1992), p. 3314
[141] Cavity-polariton photoluminescence in semiconductor microcavities: experimental evidence, Phys. Rev. B, Volume 53 (1996)
[142] Quelques suggestions concernant la production optique et la détection optique d'une inegalité de population des niveaux de quantification spatiale des atomes. Application à l'experience de Stern et Gerlach et à la résonance magnétique, J. Phys. Radium, Volume 11 (1950), p. 255
[143] Observation of laser-induced fluorescent cooling of a solid, Nature, Volume 377 (1995), p. 500
[144] Thermoelectrically pumped light-emitting diodes operating above unity efficiency, Phys. Rev. Lett., Volume 108 (2012)
[145] Epitaxy and Device Design for High Efficiency Blue LEDs and Laser Diodes, University of California, Santa Barbara, CA, USA, 2016 (Doctoral thesis)
[146] L.Y. Kuritzky, C. Weisbuch, J.S. Speck, Prospects for 100% wall-plug efficient III-nitride LEDs, unpublished.
[147] High wall-plug efficiency blue III-nitride LEDs designed for low current density operation, Opt. Express, Volume 25 (2017)
[148] Thermally enhanced blue light-emitting diode, Appl. Phys. Lett., Volume 107 (2015)
[149] Electrical properties of III-nitride LEDs: recombination-based injection model and theoretical limits to electrical efficiency and electroluminescent cooling, Appl. Phys. Lett., Volume 109 (2016)
Cited by Sources:
Comments - Policy