Comptes Rendus
Comparative study of the alpha decay of Hg isotopes using different forms of nuclear potentials
[La désintégration alpha des isotopes du mercure, à travers différents modèles de potentiel nucléaire]
Comptes Rendus. Physique, Volume 19 (2018) no. 5, pp. 347-355.

La période radioactive alpha des isotopes du mercure de nombre de masse A compris entre 171 et 212 a été évaluée à partir de 25 modèles différents de potentiel nucléaire adapté à la radioactivité alpha. Le calcul des écarts types suggère que le potentiel pertinent est BW 91, avec un écart de 0,133. La deuxième place revient à Proximity 1966, suivi de Proximity 1984 et de Proximity 2003-I, II, avec des écarts types inférieurs à 0,2. Les autres potentiels ont presque tous un écart type inférieur à 1. La courbe universelle caractéristique du rayonnement alpha est une droite, quel que soit le potentiel utilisé. Comme les périodes calculées sont en bon accord avec les valeurs expérimentales, on a calculé aussi, par la même méthode, les périodes de quelques émetteurs alpha nouveaux.

The alpha decay half-lives of Hg isotopes within the range A=171212 have been studied using 25 different versions of nuclear potentials to select the suitable form of nuclear potential for alpha decay studies. The computed standard deviations suggested that the apt potential is BW 91 with a deviation 0.133. The next low deviation is shown by Proximity 1966, Proximity 1984, and Proximity 2003-I, II with deviations less than 0.2. Concerning other potentials, the fact we observed is that almost all the potentials possess a standard deviation less than one. The universal curve studied for alpha decay is observed to show straight line behavior irrespective of the nuclear potential used. Since the predicted alpha half-lives match well the experimental values, the half-lives of certain new Hg alpha emitters have been predicted by the present method.

Publié le :
DOI : 10.1016/j.crhy.2018.08.003
Keywords: Heavy particle decay, Alpha decay, Proximity potential, Half-life
Mot clés : Décroissance des particules lourdes, Décroissance alpha, Potentiel de proximité, Demi-vie
K.P. Santhosh 1 ; Indu Sukumaran 1

1 School of Pure and Applied Physics, Kannur University, Swami Anandatheertha Campus, Payyanur 670327, Kerala, India
@article{CRPHYS_2018__19_5_347_0,
     author = {K.P. Santhosh and Indu Sukumaran},
     title = {Comparative study of the alpha decay of {Hg} isotopes using different forms of nuclear potentials},
     journal = {Comptes Rendus. Physique},
     pages = {347--355},
     publisher = {Elsevier},
     volume = {19},
     number = {5},
     year = {2018},
     doi = {10.1016/j.crhy.2018.08.003},
     language = {en},
}
TY  - JOUR
AU  - K.P. Santhosh
AU  - Indu Sukumaran
TI  - Comparative study of the alpha decay of Hg isotopes using different forms of nuclear potentials
JO  - Comptes Rendus. Physique
PY  - 2018
SP  - 347
EP  - 355
VL  - 19
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crhy.2018.08.003
LA  - en
ID  - CRPHYS_2018__19_5_347_0
ER  - 
%0 Journal Article
%A K.P. Santhosh
%A Indu Sukumaran
%T Comparative study of the alpha decay of Hg isotopes using different forms of nuclear potentials
%J Comptes Rendus. Physique
%D 2018
%P 347-355
%V 19
%N 5
%I Elsevier
%R 10.1016/j.crhy.2018.08.003
%G en
%F CRPHYS_2018__19_5_347_0
K.P. Santhosh; Indu Sukumaran. Comparative study of the alpha decay of Hg isotopes using different forms of nuclear potentials. Comptes Rendus. Physique, Volume 19 (2018) no. 5, pp. 347-355. doi : 10.1016/j.crhy.2018.08.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.08.003/

[1] E. Rutherford; H. Geiger Proc. R. Soc., 81 (1909), p. 141

[2] G. Gamow Z. Phys., 51 (1928), p. 204

[3] R.W. Gurney; E.U. Condon Nature, 122 (1928), p. 439

[4] T.L. Stewart; M.W. Kermode; D.J. Beachey; N. Rowley; I.S. Grant; A.T. Kruppa Nucl. Phys. A, 611 (1996), p. 332

[5] D.S. Delion; A. Insolia; R.J. Liotta Phys. Rev. C, 67 (2003)

[6] I. Silisteanu; A. Neacsu; A.O. Silisteanu; M. Rizea Rom. Rep. Phys., 59 (2007), p. 1173

[7] D.S. Delion; A. Sandulescu J. Phys. G, Nucl. Phys., 28 (2002), p. 617

[8] R.G. Lovas; R.J. Liotta; K. Varga; D.S. Delion Phys. Rep., 294 (1998), p. 265

[9] B. Buck; A.C. Merchant; S.M. Perez Phys. Rev. C, 45 (1992), p. 2247

[10] G. Royer J. Phys. G, Nucl. Part. Phys., 26 (2000), p. 1149

[11] H.F. Zhang; J.Q. Li; W. Zuo; B.Q. Chen; Z.Y. Ma; S. Im; G. Royer Chin. Phys. Lett., 23 (2006), p. 1734

[12] J. Dong; H. Zhang; Y. Wang; W. Zuo; J. Li Nucl. Phys. A, 832 (2010), p. 198

[13] D. Ni; Z. Ren J. Phys. G, Nucl. Part. Phys., 37 (2010)

[14] V.Yu. Denisov; A.A. Khudenko Phys. Rev. C, 80 (2009)

[15] S. Peltonen; D.S. Delion; J. Suhonen Phys. Rev. C, 78 (2008)

[16] H. Geiger; J.M. Nuttall Philos. Mag., 22 (1911), p. 613

[17] R.H. Lemmer; A.E. Green Phys. Rev., 119 (1960), p. 1043

[18] A. Faessler; R. Sheline Phys. Rev., 148 (1966), p. 1003

[19] E. Rost Phys. Rev., 154 (1967), p. 994

[20] D.S. Delion; A. Insolia; R.J. Liotta Phys. Rev. C, 54 (1996), p. 292

[21] K. Varga; R.J. Liotta Phys. Rev. C, 50 (1994) 1292(R)

[22] S.S. Malik; R.K. Gupta Phys. Rev. C, 39 (1989), p. 1992

[23] S. Peltonen; D.S. Delion; J. Suhonen Phys. Rev. C, 78 (2008)

[24] K.P. Santhosh; S. Sahadevan; J.G. Joseph Nucl. Phys. A, 850 (2011), p. 34

[25] K.P. Santhosh; A. Joseph Pramana J. Phys., 58 (2002), p. 611

[26] J. Dong; H. Zhang; Y. Wang; W. Zuo; J. Li Nucl. Phys. A, 832 (2010), p. 198

[27] G. Royer Nucl. Phys. A, 848 (2010), p. 279

[28] W. Reisdorf J. Phys. G, Nucl. Part. Phys., 20 (1994), p. 1297

[29] Y.J. Shi; W.J. Swiatecki Nucl. Phys. A, 438 (1985), p. 450

[30] Y.J. Yao; G.L. Zhang; W.W. Qu; J.Q. Qian Eur. Phys. J. A, 51 (2015), p. 122

[31] K.P. Santhosh; B. Priyanka Phys. Rev. C, 90 (2014)

[32] K.P. Santhosh; S. Sahadevan; B. Priyanka; M.S. Unnikrishnan Nucl. Phys. A, 882 (2012), p. 49

[33] K.P. Santhosh; I. Sukumaran; B. Priyanka Nucl. Phys. A, 935 (2015), p. 28

[34] K.P. Santhosh; J.G. Joseph Phys. Rev. C, 86 (2012)

[35] K.P. Santhosh Pramana, 85 (2015), p. 447

[36] K.P. Santhosh; C. Nithya Int. J. Mod. Phys. E, 25 (2016)

[37] K.P. Santhosh; J.G. Joseph; B. Priyanka Nucl. Phys. A, 877 (2012), p. 1

[38] Y.Z. Wang; S.J. Wang; Z.Y. Hou; J.Z. Gu Phys. Rev. C, 92 (2015)

[39] O.N. Ghodsi; A.D. Ataollah Phys. Rev. C, 93 (2016)

[40] K.P. Santhosh; I. Sukumaran Eur. Phys. J. A, 53 (2017), p. 136

[41] K.P. Santhosh; I. Sukumaran Eur. Phys. J. Plus, 132 (2017), p. 431

[42] K.P. Santhosh; I. Sukumaran Eur. Phys. J. A, 53 (2017), p. 246

[43] D.N. Poenaru; M. Ivascu; A. Sandulescu; W. Greiner Phys. Rev. C, 32 (1985), p. 572

[44] D.N. Poenaru; I.H. Plonski; W. Greiner Phys. Rev. C, 74 (2006)

[45] J. Blocki; J. Randrup; W.J. Swiatecki; C.F. Tsang Ann. Phys., 105 (1977), p. 427

[46] W.D. Myers; W.J. Swiatecki Ark. Fys., 36 (1967), p. 343

[47] J. Blocki; W.J. Swiatecki Ann. Phys., 132 (1981), p. 53

[48] W.D. Myers; W.J. Swiatecki Nucl. Phys., 81 (1966), p. 1

[49] P. Moller; J.R. Nix Nucl. Phys. A, 272 (1976), p. 502

[50] H.J. Krappe; J.R. Nix; A.J. Sierk Phys. Rev. C, 20 (1979), p. 992

[51] P. Moller; J.R. Nix Nucl. Phys. A, 361 (1981), p. 117

[52] G. Royer; B. Remaud J. Phys. G, Nucl. Part. Phys., 10 (1984), p. 1057

[53] P. Moller; J.R. Nix At. Data Nucl. Data Tables, 39 (1988), p. 213

[54] P. Moller; J.R. Nix; W.D. Myers; W.J. Swiatecki At. Data Nucl. Data Tables, 59 (1995), p. 185

[55] K. Pomorski; J. Dudek Phys. Rev. C, 67 (2003)

[56] R. Kumar Phys. Rev. C, 84 (2011)

[57] W.D. Myers; W.J. Swiatecki Phys. Rev. C, 62 (2000)

[58] W.D. Myers; W.J. Swiatecki Nucl. Phys. A, 336 (1980), p. 267

[59] B. Nerlo-Pomorska; K. Pomorski Z. Phys. A, 348 (1994), p. 169

[60] G. Royer; R. Rousseau Eur. Phys. J. A, 42 (2009), p. 541

[61] I. Dutt; R. Bansal Chin. Phys. Lett., 27 (2010)

[62] R. Bass Phys. Lett. B, 47 (1973), p. 139

[63] R. Bass Nucl. Phys. A, 231 (1974), p. 45

[64] R. Bass Phys. Rev. Lett., 39 (1977), p. 265

[65] P.R. Christensen; A. Winther Phys. Lett. B, 65 (1976), p. 19

[66] A. Winther Nucl. Phys. A, 594 (1995), p. 203

[67] H. Ngo; C. Ngo Nucl. Phys. A, 348 (1980), p. 140

[68] V.Yu. Denisov Phys. Lett. B, 526 (2002), p. 315

[69] V.Yu. Denisov; H. Ikezoe Phys. Rev. C, 72 (2005)

[70] K.N. Huang; M. Aoyagi; M.H. Chen; B. Crasemann; H. Mark At. Data Nucl. Data Tables, 18 (1976), p. 243

[71] M. Wang; G. Audi; F.G. Kondev; W.J. Huang; S. Naimi; X. Xu Chin. Phys. C, 41 (2017)

[72] D.N. Poenaru; M. Ivascu; A. Sandulescu; W. Greiner Phys. Rev. C, 32 (1985), p. 572

[73] H. Nakada; K. Sugiura Prog. Theor. Exp. Phys., 2014 (2014)

[74] www.nndc.bnl.gov

[75] D.N. Poenaru; I.H. Plonski; R.A. Gherghescu; W. Greiner J. Phys. G, Nucl. Part. Phys., 32 (2006), p. 1223

[76] P. Möller; A.J. Sierk; T. Ichikawa; H. Sagawa At. Data Nucl. Data Tables, 109 (2016), p. 1

[77] K.P. Santhosh; J.G. Joseph; S. Sahadevan Phys. Rev. C, 82 (2010)

[78] O.N. Ghodsi; S.M. Motevalli; E. Gholami Phys. Rev. C, 91 (2015)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Studies on the cold binary fragmentation of even–even 230–250U isotopes

Kolathu Parambil Santhosh; Annu Cyriac

C. R. Phys (2019)