Two outstanding aerospace-oriented high-temperature materials, the single-crystal nickel-based superalloys for high-pressure turbine blades and the γ-TiAl-based alloys for low pressure turbine blades, are being presented here. In both cases, the optimisation of their mechanical properties is based on a high knowledge of metallurgy, mixing together different aspects such as processes, alloy design, deformation mechanisms, impact of oxidative environment or interaction between protective layers and protected alloy. Historical evolutions are recalled and put into perspective with more recent research activities.
Deux familles de matériaux haute température à finalités aéronautiques, les superalliages monocristallins à base de nickel pour aubes de turbine haute pression et les alliages à base de TiAl pour aubes de turbine basse pression, sont présentées ici. Dans les deux cas, l'optimisation de leurs propriétés mécaniques repose sur une connaissance approfondie de la métallurgie, associant différents aspects tels que les procédés, le développement d'alliages, les mécanismes de déformation, l'impact du milieu oxydant ou l'interaction entre le revêtement protecteur et l'alliage protégé. Les évolutions historiques sont rappelées et mises en perspective avec des activités de recherche plus récentes.
Mot clés : Superalliages monocristallins, Alliages TiAl, Microstructure, Fluage, Aubes de turbine, Fabrication rapide
Mikael Perrut 1; Pierre Caron 1; Marc Thomas 1; Alain Couret 2
@article{CRPHYS_2018__19_8_657_0, author = {Mikael Perrut and Pierre Caron and Marc Thomas and Alain Couret}, title = {High temperature materials for aerospace applications: {Ni-based} superalloys and {\protect\emph{\ensuremath{\gamma}}-TiAl} alloys}, journal = {Comptes Rendus. Physique}, pages = {657--671}, publisher = {Elsevier}, volume = {19}, number = {8}, year = {2018}, doi = {10.1016/j.crhy.2018.10.002}, language = {en}, }
TY - JOUR AU - Mikael Perrut AU - Pierre Caron AU - Marc Thomas AU - Alain Couret TI - High temperature materials for aerospace applications: Ni-based superalloys and γ-TiAl alloys JO - Comptes Rendus. Physique PY - 2018 SP - 657 EP - 671 VL - 19 IS - 8 PB - Elsevier DO - 10.1016/j.crhy.2018.10.002 LA - en ID - CRPHYS_2018__19_8_657_0 ER -
%0 Journal Article %A Mikael Perrut %A Pierre Caron %A Marc Thomas %A Alain Couret %T High temperature materials for aerospace applications: Ni-based superalloys and γ-TiAl alloys %J Comptes Rendus. Physique %D 2018 %P 657-671 %V 19 %N 8 %I Elsevier %R 10.1016/j.crhy.2018.10.002 %G en %F CRPHYS_2018__19_8_657_0
Mikael Perrut; Pierre Caron; Marc Thomas; Alain Couret. High temperature materials for aerospace applications: Ni-based superalloys and γ-TiAl alloys. Comptes Rendus. Physique, Volume 19 (2018) no. 8, pp. 657-671. doi : 10.1016/j.crhy.2018.10.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.10.002/
[1] The development of columnar grain and single crystal high temperature materials through directional solidification, Mater. Sci. Eng., Volume 6 (1970), pp. 213-247
[2] The effect of volume percent of fine on creep in DS Mar-M200 + Hf, Metall. Trans. A, Volume 8 (1977), pp. 1616-1620
[3] Development of exothermically cast single-crystal Mar-M247 and derivative alloys (J.K. Tien et al., eds.), Superalloys 1980, ASM, Metals Park, OH, USA, 1980, pp. 215-224
[4] Mar M 247 derivations – CM 247 LC DS alloy, CMSX single crystal alloys, properties and performance (M. Gell et al., eds.), Superalloys 1984, The Metallurgical Society of AIME, Warrendale, PA, USA, 1984, pp. 221-230
[5] J.H. Davidson, A. Fredholm, T. Khan, J.-M. Théret, French Patent No. 2 557 598, 1983.
[6] Process and alloy optimization for CMSX-4 superalloy single crystal airfoils (E. Bachelet et al., eds.), High Temperature Materials for Power Engineering 1990, Part II, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1990, pp. 1281-1300
[7] Second-generation nickel-base single crystal superalloy (D.N. Duhl et al., eds.), Superalloys 1988, The Metallurgical Society, Inc., Warrendale, PA, USA, 1988, pp. 235-244
[8] C.S. Wukusick, L. Buchakjian Jr., Patent application #GB 2 235 697 A, March 1991.
[9] The development and application of CMSX-10 (R.D. Kissinger et al., eds.), Superalloys 1996, The Minerals, Metals & Materials Society, Warrendale, PA, USA, 1996, pp. 35-44
[10] René N6: third generation single crystal superalloy (R.D. Kissinger et al., eds.), Superalloys 1996, The Minerals, Metals & Materials Society, Warrendale, PA, USA, 1996, pp. 27-34
[11] High solvus new generation nickel-based superalloys for single crystal turbine blade applications (T.M. Pollock et al., eds.), Superalloys 2000, TMS, Warrendale, PA, USA, 2000, pp. 737-746
[12] Joint development of a fourth generation single crystal superalloy (K.A. Green et al., eds.), Superalloys 2004, TMS, Warrendale, PA, USA, 2004, pp. 15-24
[13] Interfacial dislocation networks strengthening a fourth-generation single-crystal TMS-138 superalloy, Metall. Mater. Trans. A, Volume 33 (2002), pp. 3741-3746
[14] A 5th generation SC superalloy with balanced high temperature properties and processability (R.C. Reed et al., eds.), Superalloys 2008, TMS, Warrendale, PA, USA, 2008, pp. 131-138
[15] Development of an oxidation-resistant high-strength sixth-generation single-crystal superalloy TMS-238 (E.S. Huron et al., eds.), Superalloys 2012, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2012, pp. 189-195
[16] New single crystal superalloys, CMSX®-7 and CMSX®-8 (E.S. Huron et al., eds.), Superalloys 2012, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2012, pp. 179-188
[17] CMSX-4® plus single crystal alloy development, characterization and application development (M. Hardy et al., eds.), Superalloys 2016, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2016, pp. 25-33
[18] Creep deformation anisotropy in single crystal superalloys (D.N. Duhl et al., eds.), Superalloys 1988, The Metallurgical Society, Inc., Warrendale, PA, USA, 1988, pp. 215-224
[19] Effect of the lattice mismatch on the creep behaviour at 760 °C of new generation single crystal superalloys, TMS 2008 Annual Meeting Supplemental Proceedings, vol. 3: General Paper Selections, TMS, Warrendale, USA, 2008, pp. 171-176
[20] High temperature creep mechanisms in single crystals of some high performance nickel base superalloys (J.B. Mariott et al., eds.), High Temperature Alloys, their Exploitable Potential, Proceedings of the Petten International Conference, Elsevier Applied Science, London, UK, 1987, pp. 9-18
[21] Influence of the fraction on the topological inversion during high temperature creep of single crystal superalloys (R.C. Reed et al., eds.), Superalloys 2008, TMS, Warrendale, PA, USA, 2008, pp. 159-167
[22] Effect of a long-term prior aging on the tensile behaviour of a high performance single crystal superalloy, J. Phys. IV, Volume 3 ( November 1993 ), pp. 347-350 (Colloque C7, supplement to the J. Phys. III)
[23] Relationships between microstructural instabilities and mechanical behaviour in new generation nickel-based single crystal superalloys (K.A. Green et al., eds.), Superalloys 2004, TMS, Warrendale, PA, USA, 2004, pp. 667-675
[24] P. Caron, O. Lavigne, C. Ramusat, J. Benoist, C. Rio, Secondary reaction zones in coated single crystal superalloy, in: Superalloys and Coatings for High Temperature Applications, TMS Annual Meeting 2005, San Francisco, CA, USA, 13–17 February 2005.
[25] Recent developments and potential of single crystal superalloys for advanced turbine blades (W. Betz et al., eds.), High Temperature Alloys for Gas Turbines and Other Applications 1986, D. Reidel Publishing Company, Dordrecht, Holland, 1986, pp. 21-50
[26] Development of a new nickel based single crystal turbine blade alloy for very high temperatures (H.E. Exner; V. Schumacher, eds.), Advanced Materials and Processes, vol. 1, DGM Informationsgesellschaft mbH, Oberursel, Germany, 1990, pp. 333-338
[27] Development of a hydrogen resistant superalloy for single crystal blade application in rocket engine turbopump (R.D. Kissinger et al., eds.), Superalloys 1996, The Minerals, Metals & Materials Society, Warrendale, PA, USA, 1996, pp. 53-60
[28] Development of new high strength corrosion resistant single crystal superalloys for industrial gas turbine applications, PARSONS 2000 (A. Strang et al., eds.), IOM Communications Ltd., London, UK (2000), pp. 847-864
[29] Actes du Colloque National Superalliages Monocristallins, Villard-de-Lans, France, 26–28 February 1986.
[30] Actes du Colloque national “Superalliages monocristallins”, Nancy, France, 22–23 November 1990.
[31] Comptes rendus du colloque “Superalliages monocristallins”, Toulouse–Seilh, France, 22–24 March 1995.
[32] JOM, 43 (1991) no. 8, pp. 40-47
[33] Structural Intermetallics 2001 (K.J. Hemker; D.M. Dimiduk; H. Clemens; R. Darolia; H. Inui; J.M. Larsen; V.K. Sikka; M. Thomas; J.D. Whittenberger, eds.), TMS, Warrendale, PA, 2001, pp. 25-34
[34] et al. Strength properties of a precipitation hardened high niobium containing titanium aluminides alloy (Y.W. Kim; H. Clemens; A.H. Rosenberger, eds.), Gamma Titanium Aluminides 2003, TMS, 2003, pp. 403-408
[35] Cast and PM processing development in gamma aluminides, Intermetallics, Volume 13 (2005), pp. 944-951
[36] Review of alloy and process development of TiAl alloys, Intermetallics, Volume 14 (2006), pp. 1114-1122
[37] Physical metallurgy of single crystal gamma titanium aluminide alloys: orientation control and thermal stability of lamellar microstructure, Intermetallics, Volume 13 (2005), pp. 965-970
[38] Influence of microstructure on tensile and creep properties of a new castable TiAl-based alloy, Metall. Mater. Trans. A, Volume 354 (2004), pp. 2087-2102
[39] et al. Design of novel beta-solidifying TiAl alloys with adjustable beta/B2-phase fraction and excellent hot-workability, Adv. Eng. Mater., Volume 10 (2008), pp. 707-713
[40] Effects of microstructure on the deformation and fracture of γ-TiAl alloys, Mater. Sci. Eng. A, Volume 192 (1995), pp. 519-533
[41] et al. Microstructures and mechanical properties of TiAl alloys consolidated by spark plasma sintering, Intermetallics, Volume 16 (2008), pp. 1134-1141
[42] et al. Consolidation/synthesis of materials by electric current activated/assisted sintering, Mater. Sci. Eng., R Rep., Volume 63 (2009), pp. 127-287
[43] Innovative manufacturing Route for Intermetallic alloys by spark plasma net Shaping (IRIS), project funded by the “Agence nationale de la recherche” (ANR), scientific coordinator O. Martin (MECACHROME), 2009–2012.
[44] A. Couret, et al., Procédé de fabrication par frittage flash d'une pièce métallique de forme complexe, Patent No. PCT/IB2012/051527, 2012.
[45] A microscopic study of the creep of a cast TiAl alloy at 750 °C under 150 MPa, Scr. Mater., Volume 65 (2011), pp. 198-201
[46] Laser metal deposition of the intermetallic TiAl alloy, Metall. Trans. A, Volume 48 (2017) no. 6, pp. 3143-3158
[47] Intermetallics, 13 (2005), pp. 1014-1019
[48] Intermetallics, 11 (2003), pp. 1015-1027
[49] Structural Intermetallics 2001 (J.K. Hemker; D.M. Dimiduk; H. Clemens; R. Darolia; H. Inui; J.M. Larsen; V.K. Sikka; M. Thomas; J.D. Whittenberger, eds.), TMS, Warrendale, PA, 2001, pp. 551-560
[50] Scr. Mater., 49 (2003), pp. 279-284
[51] High Temperature Ordered Intermetallic Alloys IV (J.O. Stiegler et al., eds.), MRS, 1991, pp. 777-794
[52] Scr. Metall., 22 (1988), p. 1725
[53] Scr. Metall., 27 (1992) no. 5, pp. 599-603
[54] Scr. Metall. Mater., 30 (1994) no. 9, pp. 1105-1110
[55] Mater. Sci. Eng. A, 272 (1999), pp. 269-278
[56] Intermetallics, 10 (2002), pp. 59-72
[57] Gamma Titanium Aluminides 2003 (Y.W. Kim; H. Clemens; A.H. Rosenberger, eds.), The Minerals, Metals and Materials Society (TMS), Warrendale, PA, USA, 2003, pp. 207-212
[58] Intermetallics, 13 (2005) no. 7, pp. 683-693
[59] Surf. Sci., 596 (2005) no. 1–2, p. 61
[60] Oxid. Met., 54 (2000) no. 3–4, pp. 317-337
[61] Oxid. Met., 50 (1998) no. 3–4, pp. 269-305
[62] Intermetallics, 14 (2006), pp. 1143-1150
Cited by Sources:
Comments - Policy