The goal of these review papers is to summarize the recent advances in the metallurgy of aluminium alloys and from this analysis, to try to outline future developments in this field. Part I deals with the transformation of aluminium alloys from the liquid to the solid state, while Part II will focus on solid-state transformations. These papers are by no means exhaustive since the literature is very abundant, but the authors wish to give a personal view of what they think are the most relevant scientific contributions that can impact future technological developments.
L'objet de ces articles de synthèse est de résumer les progrès récents de la métallurgie des alliages d'aluminium et, en partant de cette analyse, d'essayer de définir les développements futurs dans ce domaine. La partie I traite de la transformation des alliages d'aluminium de l'état liquide à l'état solide, tandis que la partie II se concentre sur les transformations à l'état solide. Ces articles ne sont en aucun cas exhaustifs, car la littérature est très abondante, mais les auteurs souhaitent donner un point de vue personnel sur ce qu'ils pensent être les contributions scientifiques les plus pertinentes pouvant influer sur les développements technologiques futurs.
Mot clés : Aluminium, Solidification, Coulée
Philippe Jarry 1; Michel Rappaz 2
@article{CRPHYS_2018__19_8_672_0, author = {Philippe Jarry and Michel Rappaz}, title = {Recent advances in the metallurgy of aluminium alloys. {Part} {I:} {Solidification} and casting}, journal = {Comptes Rendus. Physique}, pages = {672--687}, publisher = {Elsevier}, volume = {19}, number = {8}, year = {2018}, doi = {10.1016/j.crhy.2018.09.003}, language = {en}, }
TY - JOUR AU - Philippe Jarry AU - Michel Rappaz TI - Recent advances in the metallurgy of aluminium alloys. Part I: Solidification and casting JO - Comptes Rendus. Physique PY - 2018 SP - 672 EP - 687 VL - 19 IS - 8 PB - Elsevier DO - 10.1016/j.crhy.2018.09.003 LA - en ID - CRPHYS_2018__19_8_672_0 ER -
Philippe Jarry; Michel Rappaz. Recent advances in the metallurgy of aluminium alloys. Part I: Solidification and casting. Comptes Rendus. Physique, Volume 19 (2018) no. 8, pp. 672-687. doi : 10.1016/j.crhy.2018.09.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.09.003/
[1] Langages de l'ingénieur, langages de la science, présenté à Langages scientifiques, Grenoble, Maison des sciences humaines, Université Stendhal, Grenoble, France, 1998
[2] Atomistic to continuum modeling of solidification microstructures, Curr. Opin. Solid State Mater. Sci., Volume 20 (2016), pp. 25-36
[3] Modeling and characterization of grain structures and defects in solidification, Curr. Opin. Solid State Mater. Sci., Volume 20 (2016), pp. 37-45
[4] The coupling of macrosegregation with grain nucleation, growth and motion in DC cast aluminum alloy ingots (J.F. Grandfield; D.G. Eskin, eds.), Essential Readings in Light Metals, Springer International Publishing, Cham, Switzerland, 2016, pp. 848-853
[5] A model study of the impact of the transport of inoculant particles on microstructure formation during solidification, Comput. Mater. Sci., Volume 102 (2015), pp. 95-109
[6] Solute diffusion model for equiaxed dendritic growth — analytical solution, Acta Metall., Volume 35 (1987), pp. 2929-2933
[7] A volume-averaged two-phase model for transport phenomena during solidification, Metall. Mater. Trans. B, Volume 22 (1991), pp. 349-361
[8] Equiaxed dendritic solidification with convection: Part I. Multiscale/multiphase modeling, Metall. Mater. Trans. A, Volume 27 (1996), p. 2754
[9] Three-dimensional mesoscopic modeling of equiaxed dendritic solidification of a binary alloy, Comput. Mater. Sci., Volume 112 (2016), pp. 304-317
[10] Influence of transport mechanisms on nucleation and grain structure formation in DC cast aluminium alloy ingots, IOP Conf. Ser., Mater. Sci. Eng., Volume 27 (2012)
[11] Modeling of the coupling of microstructure and macrosegregation in a direct chill cast Al–Cu billet, Metall. Mater. Trans. A, Volume 48 (2017), pp. 4713-4734
[12] Macrosegregation: Part II, Trans. Metall. Soc. AIME, Volume 242 (1968), p. 41
[13] Étude et modélisation de la macroségrégation dans la coulée semi-continue des alliages d'aluminium, EPFL, Lausanne, Switzerland, 2000
[14] Simulations of sedimentation in globulitic alloy solidification, Int. Commun. Heat Mass Transf., Volume 23 (1996), pp. 315-324
[15] DEM simulation of dendritic grain random packing: application to metal alloy solidification, EPJ Web Conf., Volume 140 (2017)
[16] Globular–dendritic transition in equiaxed alloy solidification, Solidification Processes and Microstructures – A Symposium in Honor of Wilfried Kurz, 2004, p. 369
[17] Recovery vs structure driven DC casting process optimisation, Proc. Light Met. Conf. TMS, 2009
[18] Modelling of columnar-to-equiaxed and equiaxed-to-columnar transitions in ingots using a multiphase model, IOP Conf. Ser., Mater. Sci. Eng., Volume 84 (2015)
[19] A three-dimensional cellular automaton–finite element model for the prediction of solidification grain structures, Metall. Mater. Trans. A, Volume 30 (1999), p. 3153
[20] A mesoscale granular model for the mechanical behavior of alloys during solidification, Acta Mater., Volume 57 (2009), pp. 1554-1569
[21] A 3-D coupled hydromechanical granular model for simulating the constitutive behavior of metallic alloys during solidification, Acta Mater., Volume 60 (2012), pp. 6793-6803
[22] 3-D granular modeling and in situ X-ray tomographic imaging: a comparative study of hot tearing formation and semi-solid deformation in Al–Cu alloys, Acta Mater., Volume 61 (2013), pp. 3831-3841
[23] Prediction of hot tear formation in vertical DC casting of aluminum billets using a granular approach, JOM, Volume 65 (2013), pp. 1131-1137
[24] Last-stage solidification of alloys: theoretical model of dendrite-arm and grain coalescence, Metall. Mater. Trans. A, Volume 34 (1999), p. 449
[25] A new hot tearing criterion, Metall. Mater. Trans. A, Volume 30 (1999), p. 449
[26] AFS Int. Cast Met. J., 6 (1981) no. 2, pp. 16-22
[27] Hot tear criterion accounting for last stage precipitation in the solidification path: walking in Michel Rappaz' footsteps, Nashville (2016), p. 243
[28] Numerical simulation of dendrite alloy solidification using a phase field method, SP97, 1997, p. 422
[29] Why solidification? Why phase field?, JOM, Volume 65 (2013), pp. 1096-1102
[30] Solidification, EPFL-Press, Lausanne, Switzerland, 2008
[31] Study of the twinned dendrite tip shape I: phase-field modeling, Acta Mater., Volume 59 (2011), pp. 5074-5084
[32] Characterization and Modelling of Twinned Dendrite Growth, EPFL, Lausanne, Switzerland, 2009
[33] Dendritic growth morphologies in Al–Zn alloys—Part II: phase-field computations, Metall. Mater. Trans. A, Volume 44 (2013), pp. 5532-5543
[34] Orientation selection in dendritic evolution, Nat. Mater., Volume 5 (2006), pp. 660-664
[35] Ab initio molecular-dynamics simulations of short-range order in liquid Al80Mn20 and Al80Ni20 alloys, Phys. Rev. Lett., Volume 93 (2004)
[36] Local order of liquid and undercooled transition metal based systems: ab initio molecular dynamics study, Mod. Phys. Lett. B, Volume 20 (2006), pp. 655-674
[37] Competition between fcc and icosahedral short-range orders in pure and samarium-doped liquid aluminum from first principles, Phys. Rev. B, Volume 83 (2011)
[38] Structural modeling of liquid and amorphous Al91Tb9 by Monte Carlo simulations, J. Non-Cryst. Solids, Volume 405 (2014), pp. 27-32
[39] Hydrogen diffusion in liquid aluminum from ab initio molecular dynamics, Phys. Rev. B, Volume 89 (2014) no. 17
[40] et al. On the interest of synchrotron X-ray imaging for the study of solidification in metallic alloys, C. R. Phys., Volume 13 (2012), pp. 237-245
[41] Time-resolved X-ray imaging of aluminum alloy solidification processes, Metall. Mater. Trans. B, Volume 33 (2002), p. 613
[42] et al. Preliminary in situ and real-time study of directional solidification of metallic alloys by X-ray imaging techniques, J. Phys. D, Appl. Phys., Volume 36 (2003), p. A83
[43] Growth and interaction of dendritic equiaxed grains: in situ characterization by synchrotron X-ray radiography, Acta Mater., Volume 61 (2013), pp. 1303-1315
[44] et al. Mapping of multi-elements during melting and solidification using synchrotron X-rays and pixel-based spectroscopy, Sci. Rep., Volume 5 (2015)
[45] et al. Real-time synchrotron x-ray observations of equiaxed solidification of aluminium alloys and implications for modelling, IOP Conf. Ser., Mater. Sci. Eng., Volume 84 (2015)
[46] Columnar to equiaxed transition during directional solidification in refined Al-based alloys, J. Alloys Compd., Volume 484 (2009), pp. 739-746
[47] On the coupling mechanism of equiaxed crystal generation with the liquid flow driven by natural convection during solidification, Metall. Mater. Trans. A, Volume 49 (2018) no. 5, pp. 1708-1724
[48] Some consequences of thermosolutal convection: the grain structure of castings, Metall. Mater. Trans. A, Phys. Metall. Mater. Sci., Volume 27 (1996), pp. 569-581
[49] et al. Tailoring of dendritic microstructure in solidification processing by crucible vibration, J. Cryst. Growth, Volume 275 (2005) no. 1–2, p. e1579-e1584
[50] et al. A synchrotron X-ray radiography investigation of induced dendrite fragmentation in Al-15wt%Cu, Mater. Sci. Forum, Volume 765 ( juill. 2013 ), pp. 210-214
[51] et al. In situ and real-time analysis of TEM forces induced by a permanent magnetic field during solidification of Al-4wt%Cu, Mater. Sci. Forum, Volume 790–791 (2014), pp. 420-425
[52] et al. Particle-induced morphological modification of Al alloy equiaxed dendrites revealed by sub-second in situ microtomography, Acta Mater., Volume 125 (2017), pp. 303-310
[53] et al. X-ray videomicroscopy studies of eutectic Al–Si solidification in Al–Si–Cu, Metall. Mater. Trans. A, Phys. Metall. Mater. Sci., Volume 42 (2011), pp. 170-180
[54] Situ investigation of dendrite deformation during upward solidification of Al-7wt.%Si, JOM, Volume 66 (2014), pp. 1408-1414
[55] The morphological evolution of equiaxed dendritic microstructures during coarsening, Acta Mater., Volume 57 (2009), pp. 2418-2428
[56] Development of a laser-based heating system for in situ synchrotron-based X-ray tomographic microscopy, J. Synchrotron Radiat., Volume 19 (2012), pp. 352-358
[57] Twinned dendrite growth in binary aluminum alloys, Acta Mater., Volume 56 (2008), pp. 5708-5718
[58] Direct observation of in-plane ordering in the liquid at a liquid Al/α-Al2O3 interface, Acta Mater., Volume 59 (2011), pp. 1383-1388
[59] Influence of Cr on the nucleation of primary Al and formation of twinned dendrites in Al–Zn–Cr alloys: can icosahedral solid clusters play a role?, Acta Mater., Volume 61 (2013), pp. 7098-7108
[60] Thermodynamic aspects of homogeneous nucleation enhanced by icosahedral short-range order in liquid Fcc-type alloys, JOM, Volume 67 (2015), pp. 1812-1820
[61] The structure of the intermetallic phase θ(Cr–Al), Acta Crystallogr., Volume 13 (1960), pp. 257-263
[62] Bond orientational order in liquids: towards a unified description of water-like anomalies, liquid–liquid transition, glass transition, and crystallization: bond orientational order in liquids, Eur. Phys. J. E, Volume 35 (2012)
[63] Influence of Cr on local order and dynamic properties of liquid and undercooled Al–Zn alloys, J. Chem. Phys., Volume 146 (2017)
[64] Chemically induced structural heterogeneities and their relationship with component dynamics in a binary metallic liquid, Appl. Phys. Lett., Volume 110 (2017)
[65] The 1980 Campbell memorial lecture, Metall. Trans. A, Volume 12 (1981)
[66] Selection mechanism of polymorphs in the crystal nucleation of the Gaussian core model, Soft Matter, Volume 8 (2012), p. 4206
[67] et al. Solidification microstructures and solid–state parallels: recent developments, future directions, Acta Mater., Volume 57 (2009), pp. 941-971
[68] Dendrite growth directions in aluminum–zinc alloys, Metall. Mater. Trans. A, Volume 37 (2006)
[69] Etude de la germination et de la croissance maclées dans les alliages d'aluminium, EPFL, Lausanne, Switzerland, 1999
[70] Evolution of the dendritic morphology with the solidification velocity in rapidly solidified Al-4.5wt.%Cu droplets, IOP Conf. Ser., Mater. Sci. Eng., Volume 84 (2015)
[71] Experimental Study and Modelling of Nucleation and Growth During Solidification of Al and Zn Coatings, EPFL, Lausanne, Switzerland, 2001
[72] The effect of grain refining additions in intermetallic phase selection in dilute Al–Fe alloys, SP97, 1997, p. 541
[73] Development of the coarse intermetallic particle population in wrought aluminium alloys during ingot casting and thermo-mechanical processing, Mater. Sci. Forum, Volume 331 (2000) no. 337, pp. 143-154
[74] Influence of cooling rate on the Fe intermetallic formation in an AA6063 Al alloy, J. Alloys Compd., Volume 555 (2013), pp. 274-282
[75] Effect of Grain Size on AlFeSi Particle Structure and Hot Workability of AA6063 Aluminium Alloy, 1993 (vol. IM2999)
[76] Hot ductility of some AlMgSi alloys, Mater. Sci. Forum (1996), pp. 1193-1198
[77] J. Cryst. Growth, 73 (1985), p. 316
[78] et al. The roles of Eu during the growth of eutectic Si in Al–Si alloys, Sci. Rep., Volume 5 (2015) no. 1
[79] Method for Making High Tenacity and High Fatigue Strength Aluminium Alloy Products, 2005 EP1766102 (A1)
[80] Validated thermodynamic prediction of AlP and eutectic (Si) solidification sequence in Al–Si cast alloys, IOP Conf. Ser., Mater. Sci. Eng., Volume 117 (2016)
[81] Refinement of eutectic Si in high purity Al–5Si alloys with combined Ca and P additions, Metall. Mater. Trans. A, Volume 46 (2015), pp. 362-376
[82] Study of heterogeneous nucleation of eutectic Si in high-purity Al–Si alloys with Sr addition, Metall. Mater. Trans. A, Volume 42 (2011), pp. 1684-1691
[83] Effect of Y addition and cooling rate on refinement of eutectic Si in Al-5 wt-%Si alloys, Int. J. Cast Met. Res., Volume 25 (2012), pp. 347-357
[84] Refinement of eutectic Si phase in Al-5Si alloys with Yb additions, Metall. Mater. Trans. A, Volume 44 (2013), pp. 669-681
[85] Effect of strontium on liquid structure of Al–Si hypoeutectic alloys using high-energy X-ray diffraction, Acta Mater., Volume 59 (2011) no. 2, pp. 503-513
[86] Microstructure control in ingots of aluminium alloys with an emphasis on grain refinement, Light Metals 1998, 1998
[87] The effect of vanadium and grain refiner additions on the nucleation of secondary phases in 1xxx Al alloys, Acta Mater., Volume 47 (1999), pp. 4387-4403
[88] A new iron-rich intermetallic-Al m Fe phase in Al–4.6Cu–0.5Fe cast alloy, Metall. Mater. Trans. A, Volume 43 (2012), pp. 1097-1101
[89] Influence of minor elements on the crystallization manner of intermetallic phases in unidirectionally solidified AlFe alloys, ICAA3, 1992
[90] Intermetallic phase selection in AA1xxx aluminium alloys, Solidification Processing SP97, 1997, p. 531
[91] Model for solute redistribution during rapid solidification, J. Appl. Phys., Volume 53 (1982), pp. 1158-1168
[92] Diffuse-interface modeling of solute trapping in rapid solidification: predictions of the hyperbolic phase-field model and parabolic model with finite interface dissipation, Acta Mater., Volume 61 (2013), pp. 4155-4168
[93] Dendritic growth, Int. Mater. Rev., Volume 39 (1994), pp. 49-74
[94] New metastable phases in rapidly solidified Al Zr and Al Ti alloys with high solute contents, Mater. Sci. Eng. A, Volume 181–182 (1994), pp. 1397-1404
[95] Phase stability and electronic structure in ZrAl3 compound, J. Alloys Compd., Volume 319 (2001), pp. 154-161
[96] Icosahedral clusters, icosaheral order and stability of quasicrystals—a view of metallurgy⁎, Sci. Technol. Adv. Mater., Volume 9 (2008)
[97] Liquid aluminum: atomic diffusion and viscosity from ab initio molecular dynamics, Sci. Rep., Volume 3 (2013)
[98] Calculation of alloy solid–liquid interfacial free energies from atomic-scale simulations, Phys. Rev. B, Volume 66 (2002)
[99] Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones, Acta Mater., Volume 108 (2016), pp. 36-45
[100] On the limitations of volumetric energy density as a design parameter for selective laser melting, Mater. Des., Volume 113 (2017), pp. 331-340
[101] Modeling the interaction of laser radiation with powder bed at selective laser melting, Phys. Proc., Volume 5 (2010), pp. 381-394
[102] Denudation of metal powder layers in laser powder bed fusion processes, Acta Mater., Volume 114 (2016), pp. 33-42
[103] In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing, Nat. Commun., Volume 9 (2018)
[104] Fluid and particle dynamics in laser powder bed fusion, Acta Mater., Volume 142 (2018), pp. 107-120
[105] et al. Modulating laser intensity profile ellipticity for microstructural control during metal additive manufacturing, Acta Mater., Volume 128 (2017), pp. 197-206
[106] Fine-tuned remote laser welding of aluminum to copper with local beam oscillation, Phys. Proc., Volume 83 (2016), pp. 455-462
[107] et al. Modelling of Al-7%wtSi-1wt%Fe ternary alloy: application to space experiments with a rotating magnetic field, Mater. Sci. Forum, Volume 790–791 (2014)
[108] et al. Simulation of a directional solidification of a binary Al-7wt%Si and a ternary alloy Al-7wt%Si-1wt%Fe under the action of a rotating magnetic field, IOP Conf. Ser., Mater. Sci. Eng., Volume 33 (2012)
[109] Nonlinear optimal suppression of vortex shedding from a circular cylinder, J. Fluid Mech., Volume 775 ( juill. 2015 ), pp. 241-265
[110] Self-sustained hydrodynamic oscillations in lifted jet diffusion flames: origin and control, J. Fluid Mech., Volume 775 (2015), pp. 201-222
[111] Contribution of forced centreline convection during direct chill casting of round billets to macrosegregation and structure of binary Al–Cu aluminium alloy, Mater. Sci. Technol., Volume 27 (2011) no. 5, pp. 890-896
[112] Impact of inlet flow on macrosegregation formation accounting for grain motion and morphology evolution in DC casting of aluminium (O. Martin, ed.), Light Metals 2018, Springer International Publishing, Cham, Switzerland, 2018, pp. 1089-1096
[113] Minimization of macrosegregation in DC cast ingots through jet processing, Metall. Mater. Trans. B, Volume 47 (2016), pp. 3132-3138
[114] Jet mixing in direct-chill casting of aluminum: crater effects and its consequence on centerline segregation, Metall. Mater. Trans. B, Volume 48 (2017), pp. 2114-2122
[115] Numerical modeling of macrosegregation in binary alloys solidifying in the presence of electromagnetic stirring, Metall. Mater. Trans. B, Volume 45 (2014), p. 1834
[116] Scaling laws governing the growth and interaction of equiaxed Al–Cu dendrites: a study combining experiments with phase-field simulations, Materialia, Volume 1 (2018), pp. 62-69
Cited by Sources:
Comments - Policy