Comptes Rendus
Recent advances in the metallurgy of aluminium alloys. Part I: Solidification and casting
Comptes Rendus. Physique, Volume 19 (2018) no. 8, pp. 672-687.

The goal of these review papers is to summarize the recent advances in the metallurgy of aluminium alloys and from this analysis, to try to outline future developments in this field. Part I deals with the transformation of aluminium alloys from the liquid to the solid state, while Part II will focus on solid-state transformations. These papers are by no means exhaustive since the literature is very abundant, but the authors wish to give a personal view of what they think are the most relevant scientific contributions that can impact future technological developments.

L'objet de ces articles de synthèse est de résumer les progrès récents de la métallurgie des alliages d'aluminium et, en partant de cette analyse, d'essayer de définir les développements futurs dans ce domaine. La partie I traite de la transformation des alliages d'aluminium de l'état liquide à l'état solide, tandis que la partie II se concentre sur les transformations à l'état solide. Ces articles ne sont en aucun cas exhaustifs, car la littérature est très abondante, mais les auteurs souhaitent donner un point de vue personnel sur ce qu'ils pensent être les contributions scientifiques les plus pertinentes pouvant influer sur les développements technologiques futurs.

Published online:
DOI: 10.1016/j.crhy.2018.09.003
Keywords: Aluminium, Solidification, Casting
Mot clés : Aluminium, Solidification, Coulée

Philippe Jarry 1; Michel Rappaz 2

1 Constellium Technology Center, Parc économique Centr'Alp, 725, rue Aristide-Bergès, CS 10027, 38341 Voreppe cedex, France
2 École polytechnique fédérale de Lausanne, Institute of Materials, Station 12, 1015 Lausanne, Switzerland
@article{CRPHYS_2018__19_8_672_0,
     author = {Philippe Jarry and Michel Rappaz},
     title = {Recent advances in the metallurgy of aluminium alloys. {Part} {I:} {Solidification} and casting},
     journal = {Comptes Rendus. Physique},
     pages = {672--687},
     publisher = {Elsevier},
     volume = {19},
     number = {8},
     year = {2018},
     doi = {10.1016/j.crhy.2018.09.003},
     language = {en},
}
TY  - JOUR
AU  - Philippe Jarry
AU  - Michel Rappaz
TI  - Recent advances in the metallurgy of aluminium alloys. Part I: Solidification and casting
JO  - Comptes Rendus. Physique
PY  - 2018
SP  - 672
EP  - 687
VL  - 19
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crhy.2018.09.003
LA  - en
ID  - CRPHYS_2018__19_8_672_0
ER  - 
%0 Journal Article
%A Philippe Jarry
%A Michel Rappaz
%T Recent advances in the metallurgy of aluminium alloys. Part I: Solidification and casting
%J Comptes Rendus. Physique
%D 2018
%P 672-687
%V 19
%N 8
%I Elsevier
%R 10.1016/j.crhy.2018.09.003
%G en
%F CRPHYS_2018__19_8_672_0
Philippe Jarry; Michel Rappaz. Recent advances in the metallurgy of aluminium alloys. Part I: Solidification and casting. Comptes Rendus. Physique, Volume 19 (2018) no. 8, pp. 672-687. doi : 10.1016/j.crhy.2018.09.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.09.003/

[1] P. Jarry Langages de l'ingénieur, langages de la science, présenté à Langages scientifiques, Grenoble, Maison des sciences humaines, Université Stendhal, Grenoble, France, 1998

[2] A. Karma; D. Tourret Atomistic to continuum modeling of solidification microstructures, Curr. Opin. Solid State Mater. Sci., Volume 20 (2016), pp. 25-36

[3] M. Rappaz Modeling and characterization of grain structures and defects in solidification, Curr. Opin. Solid State Mater. Sci., Volume 20 (2016), pp. 37-45

[4] M. Založnik; A. Kumar; H. Combeau; M. Bedel; P. Jarry; E. Waz The coupling of macrosegregation with grain nucleation, growth and motion in DC cast aluminum alloy ingots (J.F. Grandfield; D.G. Eskin, eds.), Essential Readings in Light Metals, Springer International Publishing, Cham, Switzerland, 2016, pp. 848-853

[5] M. Bedel; K.O. Tveito; M. Založnik; H. Combeau; M. M'Hamdi A model study of the impact of the transport of inoculant particles on microstructure formation during solidification, Comput. Mater. Sci., Volume 102 (2015), pp. 95-109

[6] M. Rappaz; P. Thévoz Solute diffusion model for equiaxed dendritic growth — analytical solution, Acta Metall., Volume 35 (1987), pp. 2929-2933

[7] J. Ni; C. Beckermann A volume-averaged two-phase model for transport phenomena during solidification, Metall. Mater. Trans. B, Volume 22 (1991), pp. 349-361

[8] C.Y. Wang; C. Beckermann Equiaxed dendritic solidification with convection: Part I. Multiscale/multiphase modeling, Metall. Mater. Trans. A, Volume 27 (1996), p. 2754

[9] Y. Souhar; V.F. De Felice; C. Beckermann; H. Combeau; M. Založnik Three-dimensional mesoscopic modeling of equiaxed dendritic solidification of a binary alloy, Comput. Mater. Sci., Volume 112 (2016), pp. 304-317

[10] M. Bedel; M. Založnik; A. Kumar; H. Combeau; P. Jarry; E. Waz Influence of transport mechanisms on nucleation and grain structure formation in DC cast aluminium alloy ingots, IOP Conf. Ser., Mater. Sci. Eng., Volume 27 (2012)

[11] L. Heyvaert; M. Bedel; M. Založnik; H. Combeau Modeling of the coupling of microstructure and macrosegregation in a direct chill cast Al–Cu billet, Metall. Mater. Trans. A, Volume 48 (2017), pp. 4713-4734

[12] M.C. Flemings; R. Mehrabian; G.E. Nereo Macrosegregation: Part II, Trans. Metall. Soc. AIME, Volume 242 (1968), p. 41

[13] T. Jalanti Étude et modélisation de la macroségrégation dans la coulée semi-continue des alliages d'aluminium, EPFL, Lausanne, Switzerland, 2000

[14] C. Beckermann; J. Ni Simulations of sedimentation in globulitic alloy solidification, Int. Commun. Heat Mass Transf., Volume 23 (1996), pp. 315-324

[15] A. Olmedilla; M. Založnik; H. Combeau DEM simulation of dendritic grain random packing: application to metal alloy solidification, EPJ Web Conf., Volume 140 (2017)

[16] H.-J. Diepers; A. Karma Globular–dendritic transition in equiaxed alloy solidification, Solidification Processes and Microstructures – A Symposium in Honor of Wilfried Kurz, 2004, p. 369

[17] P. Jarry Recovery vs structure driven DC casting process optimisation, Proc. Light Met. Conf. TMS, 2009

[18] N. Leriche; H. Combeau; C.-A. Gandin; M. Založnik Modelling of columnar-to-equiaxed and equiaxed-to-columnar transitions in ingots using a multiphase model, IOP Conf. Ser., Mater. Sci. Eng., Volume 84 (2015)

[19] C.-A. Gandin; J.-L. Desbiolles; M. Rappaz; P. Thévoz A three-dimensional cellular automaton–finite element model for the prediction of solidification grain structures, Metall. Mater. Trans. A, Volume 30 (1999), p. 3153

[20] S. Vernède; J.A. Dantzig; M. Rappaz A mesoscale granular model for the mechanical behavior of alloys during solidification, Acta Mater., Volume 57 (2009), pp. 1554-1569

[21] M. Sistaninia; A.B. Phillion; J.-M. Drezet; M. Rappaz A 3-D coupled hydromechanical granular model for simulating the constitutive behavior of metallic alloys during solidification, Acta Mater., Volume 60 (2012), pp. 6793-6803

[22] M. Sistaninia; S. Terzi; A. Phillion; J.-M. Drezet; M. Rappaz 3-D granular modeling and in situ X-ray tomographic imaging: a comparative study of hot tearing formation and semi-solid deformation in Al–Cu alloys, Acta Mater., Volume 61 (2013), pp. 3831-3841

[23] M. Sistaninia; J.-M. Drezet; A.B. Phillion; M. Rappaz Prediction of hot tear formation in vertical DC casting of aluminum billets using a granular approach, JOM, Volume 65 (2013), pp. 1131-1137

[24] M. Rappaz; A. Jacot; W. Boettinger Last-stage solidification of alloys: theoretical model of dendrite-arm and grain coalescence, Metall. Mater. Trans. A, Volume 34 (1999), p. 449

[25] M. Rappaz; J.-M. Drezet; M. Gremaud A new hot tearing criterion, Metall. Mater. Trans. A, Volume 30 (1999), p. 449

[26] E. Niyama; T. Uchida; M. Morikawa; S. Saito AFS Int. Cast Met. J., 6 (1981) no. 2, pp. 16-22

[27] P. Jarry Hot tear criterion accounting for last stage precipitation in the solidification path: walking in Michel Rappaz' footsteps, Nashville (2016), p. 243

[28] J.A. Warren; W.J. Boettinger Numerical simulation of dendrite alloy solidification using a phase field method, SP97, 1997, p. 422

[29] I. Steinbach Why solidification? Why phase field?, JOM, Volume 65 (2013), pp. 1096-1102

[30] J.A. Dantzig; M. Rappaz Solidification, EPFL-Press, Lausanne, Switzerland, 2008

[31] M.A. Salgado-Ordorica; J.-L. Desbiolles; M. Rappaz Study of the twinned dendrite tip shape I: phase-field modeling, Acta Mater., Volume 59 (2011), pp. 5074-5084

[32] M. Salgado Characterization and Modelling of Twinned Dendrite Growth, EPFL, Lausanne, Switzerland, 2009

[33] J.A. Dantzig; P. Di Napoli; J. Friedli; M. Rappaz Dendritic growth morphologies in Al–Zn alloys—Part II: phase-field computations, Metall. Mater. Trans. A, Volume 44 (2013), pp. 5532-5543

[34] T. Haxhimali; A. Karma; F. Gonzales; M. Rappaz Orientation selection in dendritic evolution, Nat. Mater., Volume 5 (2006), pp. 660-664

[35] N. Jakse; O. Lebacq; A. Pasturel Ab initio molecular-dynamics simulations of short-range order in liquid Al80Mn20 and Al80Ni20 alloys, Phys. Rev. Lett., Volume 93 (2004)

[36] N. Jakse; A. Pasturel Local order of liquid and undercooled transition metal based systems: ab initio molecular dynamics study, Mod. Phys. Lett. B, Volume 20 (2006), pp. 655-674

[37] X.W. Fang; C.Z. Wang; Y.X. Yao; Z.J. Ding; K.M. Ho Competition between fcc and icosahedral short-range orders in pure and samarium-doped liquid aluminum from first principles, Phys. Rev. B, Volume 83 (2011)

[38] M. Ovun; M.J. Kramer; Y.E. Kalay Structural modeling of liquid and amorphous Al91Tb9 by Monte Carlo simulations, J. Non-Cryst. Solids, Volume 405 (2014), pp. 27-32

[39] N. Jakse; A. Pasturel Hydrogen diffusion in liquid aluminum from ab initio molecular dynamics, Phys. Rev. B, Volume 89 (2014) no. 17

[40] H. Nguyen-Thi et al. On the interest of synchrotron X-ray imaging for the study of solidification in metallic alloys, C. R. Phys., Volume 13 (2012), pp. 237-245

[41] R.H. Mathiesen; L. Arnberg; K. Ramsøskar; T. Weitkamp; C. Rau; A. Snigirev Time-resolved X-ray imaging of aluminum alloy solidification processes, Metall. Mater. Trans. B, Volume 33 (2002), p. 613

[42] H. Nguyen Thi et al. Preliminary in situ and real-time study of directional solidification of metallic alloys by X-ray imaging techniques, J. Phys. D, Appl. Phys., Volume 36 (2003), p. A83

[43] A. Bogno; H. Nguyen-Thi; G. Reinhart; B. Billia; J. Baruchel Growth and interaction of dendritic equiaxed grains: in situ characterization by synchrotron X-ray radiography, Acta Mater., Volume 61 (2013), pp. 1303-1315

[44] E. Liotti et al. Mapping of multi-elements during melting and solidification using synchrotron X-rays and pixel-based spectroscopy, Sci. Rep., Volume 5 (2015)

[45] A. Prasad et al. Real-time synchrotron x-ray observations of equiaxed solidification of aluminium alloys and implications for modelling, IOP Conf. Ser., Mater. Sci. Eng., Volume 84 (2015)

[46] H. Jung; N. Mangelinck-Noël; H. Nguyen-Thi; B. Billia Columnar to equiaxed transition during directional solidification in refined Al-based alloys, J. Alloys Compd., Volume 484 (2009), pp. 739-746

[47] M. Stefan-Kharicha; A. Kharicha; M. Wu; A. Ludwig On the coupling mechanism of equiaxed crystal generation with the liquid flow driven by natural convection during solidification, Metall. Mater. Trans. A, Volume 49 (2018) no. 5, pp. 1708-1724

[48] G. Hansen; A. Hellawell; S. Lu; R. Steube Some consequences of thermosolutal convection: the grain structure of castings, Metall. Mater. Trans. A, Phys. Metall. Mater. Sci., Volume 27 (1996), pp. 569-581

[49] H. Nguyen-Thi et al. Tailoring of dendritic microstructure in solidification processing by crucible vibration, J. Cryst. Growth, Volume 275 (2005) no. 1–2, p. e1579-e1584

[50] E. Liotti et al. A synchrotron X-ray radiography investigation of induced dendrite fragmentation in Al-15wt%Cu, Mater. Sci. Forum, Volume 765 ( juill. 2013 ), pp. 210-214

[51] H. Nguyen-Thi et al. In situ and real-time analysis of TEM forces induced by a permanent magnetic field during solidification of Al-4wt%Cu, Mater. Sci. Forum, Volume 790–791 (2014), pp. 420-425

[52] R. Daudin et al. Particle-induced morphological modification of Al alloy equiaxed dendrites revealed by sub-second in situ microtomography, Acta Mater., Volume 125 (2017), pp. 303-310

[53] R.H. Mathiesen et al. X-ray videomicroscopy studies of eutectic Al–Si solidification in Al–Si–Cu, Metall. Mater. Trans. A, Phys. Metall. Mater. Sci., Volume 42 (2011), pp. 170-180

[54] G. Reinhart; H. Nguyen-Thi; N. Mangelinck-Noel; J. Baruchel; B. Billia Situ investigation of dendrite deformation during upward solidification of Al-7wt.%Si, JOM, Volume 66 (2014), pp. 1408-1414

[55] J.L. Fife; P.W. Voorhees The morphological evolution of equiaxed dendritic microstructures during coarsening, Acta Mater., Volume 57 (2009), pp. 2418-2428

[56] J.L. Fife; M. Rappaz; M. Pistone; T. Celcer; G. Mikuljan; M. Stampanoni Development of a laser-based heating system for in situ synchrotron-based X-ray tomographic microscopy, J. Synchrotron Radiat., Volume 19 (2012), pp. 352-358

[57] M.A. Salgado-Ordorica; M. Rappaz Twinned dendrite growth in binary aluminum alloys, Acta Mater., Volume 56 (2008), pp. 5708-5718

[58] S.B. Lee; Y.-M. Kim Direct observation of in-plane ordering in the liquid at a liquid Al/α-Al2O3 interface, Acta Mater., Volume 59 (2011), pp. 1383-1388

[59] G. Kurtuldu; P. Jarry; M. Rappaz Influence of Cr on the nucleation of primary Al and formation of twinned dendrites in Al–Zn–Cr alloys: can icosahedral solid clusters play a role?, Acta Mater., Volume 61 (2013), pp. 7098-7108

[60] M. Rappaz; G. Kurtuldu Thermodynamic aspects of homogeneous nucleation enhanced by icosahedral short-range order in liquid Fcc-type alloys, JOM, Volume 67 (2015), pp. 1812-1820

[61] M.J. Cooper The structure of the intermetallic phase θ(Cr–Al), Acta Crystallogr., Volume 13 (1960), pp. 257-263

[62] H. Tanaka Bond orientational order in liquids: towards a unified description of water-like anomalies, liquid–liquid transition, glass transition, and crystallization: bond orientational order in liquids, Eur. Phys. J. E, Volume 35 (2012)

[63] A. Pasturel; N. Jakse Influence of Cr on local order and dynamic properties of liquid and undercooled Al–Zn alloys, J. Chem. Phys., Volume 146 (2017)

[64] A. Pasturel; N. Jakse Chemically induced structural heterogeneities and their relationship with component dynamics in a binary metallic liquid, Appl. Phys. Lett., Volume 110 (2017)

[65] D. Turnbull The 1980 Campbell memorial lecture, Metall. Trans. A, Volume 12 (1981)

[66] J. Russo; H. Tanaka Selection mechanism of polymorphs in the crystal nucleation of the Gaussian core model, Soft Matter, Volume 8 (2012), p. 4206

[67] M. Asta et al. Solidification microstructures and solid–state parallels: recent developments, future directions, Acta Mater., Volume 57 (2009), pp. 941-971

[68] F. Gonzales; M. Rappaz Dendrite growth directions in aluminum–zinc alloys, Metall. Mater. Trans. A, Volume 37 (2006)

[69] S. Henry Etude de la germination et de la croissance maclées dans les alliages d'aluminium, EPFL, Lausanne, Switzerland, 1999

[70] M. Bedel; G. Reinhart; C.-A. Gandin; A.-A. Bogno; H. Nguyen-Thi; H. Henein Evolution of the dendritic morphology with the solidification velocity in rapidly solidified Al-4.5wt.%Cu droplets, IOP Conf. Ser., Mater. Sci. Eng., Volume 84 (2015)

[71] A. Sémoroz Experimental Study and Modelling of Nucleation and Growth During Solidification of Al and Zn Coatings, EPFL, Lausanne, Switzerland, 2001

[72] M.W. Meredith; A.L. Greer; P.V. Evans The effect of grain refining additions in intermetallic phase selection in dilute Al–Fe alloys, SP97, 1997, p. 541

[73] R.G. Hamerton; H. Cama; M.W. Meredith Development of the coarse intermetallic particle population in wrought aluminium alloys during ingot casting and thermo-mechanical processing, Mater. Sci. Forum, Volume 331 (2000) no. 337, pp. 143-154

[74] A. Verma; S. Kumar; P.S. Grant; K.A.Q. O'Reilly Influence of cooling rate on the Fe intermetallic formation in an AA6063 Al alloy, J. Alloys Compd., Volume 555 (2013), pp. 274-282

[75] S. Zajac Effect of Grain Size on AlFeSi Particle Structure and Hot Workability of AA6063 Aluminium Alloy, 1993 (vol. IM2999)

[76] S. Zajac; L.O. Gullmann; A. Johansson; B. Bengtsson Hot ductility of some AlMgSi alloys, Mater. Sci. Forum (1996), pp. 1193-1198

[77] S. Lu; A. Hellawell J. Cryst. Growth, 73 (1985), p. 316

[78] J. Li et al. The roles of Eu during the growth of eutectic Si in Al–Si alloys, Sci. Rep., Volume 5 (2015) no. 1

[79] E. Sarrazin; P. Jarry Method for Making High Tenacity and High Fatigue Strength Aluminium Alloy Products, 2005 EP1766102 (A1)

[80] S.M. Liang; R. Schmid-Fetzer Validated thermodynamic prediction of AlP and eutectic (Si) solidification sequence in Al–Si cast alloys, IOP Conf. Ser., Mater. Sci. Eng., Volume 117 (2016)

[81] T.H. Ludwig; J. Li; P.L. Schaffer; P. Schumacher; L. Arnberg Refinement of eutectic Si in high purity Al–5Si alloys with combined Ca and P additions, Metall. Mater. Trans. A, Volume 46 (2015), pp. 362-376

[82] M. Zarif; B. Mckay; P. Schumacher Study of heterogeneous nucleation of eutectic Si in high-purity Al–Si alloys with Sr addition, Metall. Mater. Trans. A, Volume 42 (2011), pp. 1684-1691

[83] J.H. Li; P. Schumacher Effect of Y addition and cooling rate on refinement of eutectic Si in Al-5 wt-%Si alloys, Int. J. Cast Met. Res., Volume 25 (2012), pp. 347-357

[84] J.H. Li; S. Suetsugu; Y. Tsunekawa; P. Schumacher Refinement of eutectic Si phase in Al-5Si alloys with Yb additions, Metall. Mater. Trans. A, Volume 44 (2013), pp. 669-681

[85] P. Srirangam; M.J. Kramer; S. Shankar Effect of strontium on liquid structure of Al–Si hypoeutectic alloys using high-energy X-ray diffraction, Acta Mater., Volume 59 (2011) no. 2, pp. 503-513

[86] D. Granger Microstructure control in ingots of aluminium alloys with an emphasis on grain refinement, Light Metals 1998, 1998

[87] C.M. Allen; K.A.Q. O'Reilly; P.V. Evans; B. Cantor The effect of vanadium and grain refiner additions on the nucleation of secondary phases in 1xxx Al alloys, Acta Mater., Volume 47 (1999), pp. 4387-4403

[88] K. Liu; X. Cao; X.-G. Chen A new iron-rich intermetallic-Al m Fe phase in Al–4.6Cu–0.5Fe cast alloy, Metall. Mater. Trans. A, Volume 43 (2012), pp. 1097-1101

[89] H. Tezuka; A. Kamio Influence of minor elements on the crystallization manner of intermetallic phases in unidirectionally solidified AlFe alloys, ICAA3, 1992

[90] P.V. Evans; J. Worth; A. Bosland; S.C. Flood Intermetallic phase selection in AA1xxx aluminium alloys, Solidification Processing SP97, 1997, p. 531

[91] M.J. Aziz Model for solute redistribution during rapid solidification, J. Appl. Phys., Volume 53 (1982), pp. 1158-1168

[92] L. Zhang; E.V. Danilova; I. Steinbach; D. Medvedev; P.K. Galenko Diffuse-interface modeling of solute trapping in rapid solidification: predictions of the hyperbolic phase-field model and parabolic model with finite interface dissipation, Acta Mater., Volume 61 (2013), pp. 4155-4168

[93] R. Trivedi; W. Kurz Dendritic growth, Int. Mater. Rev., Volume 39 (1994), pp. 49-74

[94] J.Q. Guo; K. Ohtera; K. Kita; T. Shibata; A. Inoue; T. Masumoto New metastable phases in rapidly solidified Al Zr and Al Ti alloys with high solute contents, Mater. Sci. Eng. A, Volume 181–182 (1994), pp. 1397-1404

[95] C. Colinet; A. Pasturel Phase stability and electronic structure in ZrAl3 compound, J. Alloys Compd., Volume 319 (2001), pp. 154-161

[96] A.P. Tsai Icosahedral clusters, icosaheral order and stability of quasicrystals—a view of metallurgy, Sci. Technol. Adv. Mater., Volume 9 (2008)

[97] N. Jakse; A. Pasturel Liquid aluminum: atomic diffusion and viscosity from ab initio molecular dynamics, Sci. Rep., Volume 3 (2013)

[98] M. Asta; J.J. Hoyt; A. Karma Calculation of alloy solid–liquid interfacial free energies from atomic-scale simulations, Phys. Rev. B, Volume 66 (2002)

[99] S.A. Khairallah; A.T. Anderson; A. Rubenchik; W.E. King Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones, Acta Mater., Volume 108 (2016), pp. 36-45

[100] U. Scipioni Bertoli; A.J. Wolfer; M.J. Matthews; J.-P.R. Delplanque; J.M. Schoenung On the limitations of volumetric energy density as a design parameter for selective laser melting, Mater. Des., Volume 113 (2017), pp. 331-340

[101] A.V. Gusarov; I. Smurov Modeling the interaction of laser radiation with powder bed at selective laser melting, Phys. Proc., Volume 5 (2010), pp. 381-394

[102] M.J. Matthews; G. Guss; S.A. Khairallah; A.M. Rubenchik; P.J. Depond; W.E. King Denudation of metal powder layers in laser powder bed fusion processes, Acta Mater., Volume 114 (2016), pp. 33-42

[103] C.L.A. Leung; S. Marussi; R.C. Atwood; M. Towrie; P.J. Withers; P.D. Lee In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing, Nat. Commun., Volume 9 (2018)

[104] P. Bidare; I. Bitharas; R.M. Ward; M.M. Attallah; A.J. Moore Fluid and particle dynamics in laser powder bed fusion, Acta Mater., Volume 142 (2018), pp. 107-120

[105] T.T. Roehling et al. Modulating laser intensity profile ellipticity for microstructural control during metal additive manufacturing, Acta Mater., Volume 128 (2017), pp. 197-206

[106] F. Fetzer; M. Jarwitz; P. Stritt; R. Weber; T. Graf Fine-tuned remote laser welding of aluminum to copper with local beam oscillation, Phys. Proc., Volume 83 (2016), pp. 455-462

[107] O. Budenkova et al. Modelling of Al-7%wtSi-1wt%Fe ternary alloy: application to space experiments with a rotating magnetic field, Mater. Sci. Forum, Volume 790–791 (2014)

[108] O. Budenkova et al. Simulation of a directional solidification of a binary Al-7wt%Si and a ternary alloy Al-7wt%Si-1wt%Fe under the action of a rotating magnetic field, IOP Conf. Ser., Mater. Sci. Eng., Volume 33 (2012)

[109] X. Mao; H.M. Blackburn; S.J. Sherwin Nonlinear optimal suppression of vortex shedding from a circular cylinder, J. Fluid Mech., Volume 775 ( juill. 2015 ), pp. 241-265

[110] U.A. Qadri; G.J. Chandler; M.P. Juniper Self-sustained hydrodynamic oscillations in lifted jet diffusion flames: origin and control, J. Fluid Mech., Volume 775 (2015), pp. 201-222

[111] D.G. Eskin; A. Jafari; L. Katgerman Contribution of forced centreline convection during direct chill casting of round billets to macrosegregation and structure of binary Al–Cu aluminium alloy, Mater. Sci. Technol., Volume 27 (2011) no. 5, pp. 890-896

[112] A. Pakanati; K.O. Tveito; M. M'Hamdi; H. Combeau; M. Založnik Impact of inlet flow on macrosegregation formation accounting for grain motion and morphology evolution in DC casting of aluminium (O. Martin, ed.), Light Metals 2018, Springer International Publishing, Cham, Switzerland, 2018, pp. 1089-1096

[113] S.R. Wagstaff; A. Allanore Minimization of macrosegregation in DC cast ingots through jet processing, Metall. Mater. Trans. B, Volume 47 (2016), pp. 3132-3138

[114] S.R. Wagstaff; A. Allanore Jet mixing in direct-chill casting of aluminum: crater effects and its consequence on centerline segregation, Metall. Mater. Trans. B, Volume 48 (2017), pp. 2114-2122

[115] G.M. Poole; M. Heyen; L. Nastac; N. El-Kaddah Numerical modeling of macrosegregation in binary alloys solidifying in the presence of electromagnetic stirring, Metall. Mater. Trans. B, Volume 45 (2014), p. 1834

[116] A.K. Boukellal; J.-M. Debierre; G. Reinhart; H. Nguyen-Thi Scaling laws governing the growth and interaction of equiaxed Al–Cu dendrites: a study combining experiments with phase-field simulations, Materialia, Volume 1 (2018), pp. 62-69

Cited by Sources:

Comments - Policy