Flows of granular media in air or in a liquid have been a research field for physicists for several decades. Sometimes solid, sometimes liquid, these particulate materials exhibit peculiar behaviors, which have motivated many studies at the frontiers between nonlinear physics, soft matter physics and fluid mechanics. This paper presents a summary of the recent advances in the field, with a focus on the development of continuous approaches, which make it possible to treat granular media as a complex fluid and to develop a granular hydrodynamics. We also discuss how the better understanding of granular flows we have today may help to address more complex materials, such as colloidal suspensions or some biological systems.
Les écoulements de milieux formés de grains dans l'air ou dans un liquide intéressent les physiciens depuis plusieurs décennies. Tantôt solides, tantôt liquides, ces matériaux divisés ont des comportements singuliers qui sont au cœur de nombreuses études à la frontière entre la physique non linéaire, la physique de la matière molle et la mécanique des fluides. Cet article se propose de faire un point sur les avancées récentes dans le domaine, en se concentrant sur le développement d'approches continues qui permettent de traiter le milieu comme un fluide complexe et de développer une hydrodynamique granulaire. Nous discutons également en quoi la compréhension plus fine des écoulements granulaires que nous avons aujourd'hui permet de mieux appréhender les matériaux plus complexes comme les suspensions colloïdales, voire certains milieux biologiques.
Mot clés : Écoulements granulaires, Suspensions, Colloïdes, Rhéologie, Matière active, Fluides complexes
Yoël Forterre 1; Olivier Pouliquen 1
@article{CRPHYS_2018__19_5_271_0, author = {Yo\"el Forterre and Olivier Pouliquen}, title = {Physics of particulate flows: {From} sand avalanche to active suspensions in plants}, journal = {Comptes Rendus. Physique}, pages = {271--284}, publisher = {Elsevier}, volume = {19}, number = {5}, year = {2018}, doi = {10.1016/j.crhy.2018.10.003}, language = {en}, }
Yoël Forterre; Olivier Pouliquen. Physics of particulate flows: From sand avalanche to active suspensions in plants. Comptes Rendus. Physique, Volume 19 (2018) no. 5, pp. 271-284. doi : 10.1016/j.crhy.2018.10.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.10.003/
[1] An Introduction to Granular Flow, Vol. 10, Cambridge University Press, New York, 2008
[2] A Physical Introduction to Suspension Dynamics, Cambridge University Press, Cambridge, UK, 2012
[3] Granular Media: Between Fluid and Solid, Cambridge University Press, Cambridge, UK, 2013
[4] Discrete-Element Modeling of Granular Materials, Wiley-Iste, 2011
[5] Rheophysics of dense granular materials: discrete simulation of plane shear flows, Phys. Rev. E, Volume 72 (2005)
[6] Unifying suspension and granular rheology, Phys. Rev. Lett., Volume 107 (2011)
[7] Flows of dense granular media, Annu. Rev. Fluid Mech., Volume 40 (2008), pp. 1-24
[8] On dense granular flows, Eur. Phys. J. E, Volume 14 (2004), pp. 341-365
[9] Rheology of dense suspensions of non-colloidal spheres in yield-stress fluids, J. Fluid Mech., Volume 776 (2015), p. R2
[10] Frictionless bead packs have macroscopic friction, but no dilatancy, Phys. Rev. E, Volume 78 (2008)
[11] Revealing the frictional transition in shear-thickening suspensions, Proc. Natl. Acad. Sci. USA, Volume 114 (2017), pp. 5147-5152
[12] Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear, Proc. R. Soc. Lond. A, Volume 225 (1954), pp. 49-63
[13] Local determination of the constitutive law of a dense suspension of noncolloidal particles through magnetic resonance imaging, J. Rheol., Volume 50 (2006), pp. 259-292
[14] Rheology of sheared suspensions of rough frictional particles, J. Fluid Mech., Volume 757 (2014), pp. 514-549
[15] Effect of particle collisions in dense suspension flows, Phys. Rev. E, Volume 94 (2016)
[16] A semi-implicit material point method for the continuum simulation of granular materials, ACM Trans. Graph., Volume 35 (2016), p. 102
[17] Nonsmooth simulation of dense granular flows with pressure-dependent yield stress, J. Non-Newton. Fluid Mech., Volume 234 (2016), pp. 15-35
[18] Experiments on, and discrete and continuum simulations of, the discharge of granular media from silos with a lateral orifice, J. Fluid Mech., Volume 829 (2017), pp. 459-485
[19] Particle segregation in dense granular flows, Annu. Rev. Fluid Mech., Volume 50 (2018), pp. 407-433
[20] The shear-induced migration of particles in concentrated suspensions, J. Fluid Mech., Volume 181 (1987), pp. 415-439
[21] A constitutive law for dense granular flows, Nature, Volume 441 (2006), p. 727
[22] Nonlinear elasto-plastic model for dense granular flow, Int. J. Plast., Volume 26 (2010), pp. 167-188
[23] The granular column collapse as a continuum: validity of a two-dimensional Navier–Stokes model with a μ (i)-rheology, J. Fluid Mech., Volume 686 (2011), pp. 378-408
[24] Viscoplastic modeling of granular column collapse with pressure-dependent rheology, J. Non-Newton. Fluid Mech., Volume 219 (2015), pp. 1-18
[25] Kapiza waves as a test for three-dimensional granular flow rheology, J. Fluid Mech., Volume 563 (2006), pp. 123-132
[26] Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane, J. Fluid Mech., Volume 453 (2002), pp. 133-151
[27] On the use of Saint Venant equations to simulate the spreading of a granular mass, J. Geophys. Res., Solid Earth, Volume 110 (2005)
[28] A depth-averaged [mu](i)-rheology for shallow granular free-surface flows, J. Fluid Mech., Volume 755 (2014), p. 503
[29] Well-posed and ill-posed behaviour of the mu of i rheology for granular flow, J. Fluid Mech., Volume 779 (2015), pp. 794-818
[30] Locally averaged equations of motion for a mixture of identical spherical particles and a Newtonian fluid, Chem. Eng. Sci., Volume 52 (1997), pp. 2457-2469
[31] Migration of rigid particles in non-Brownian viscous suspensions, Phys. Fluids, Volume 21 (2009)
[32] The suspension balance model revisited, Phys. Fluids, Volume 23 (2011)
[33] Curvilinear flows of noncolloidal suspensions: the role of normal stresses, J. Rheol., Volume 43 (1999), pp. 1213-1237
[34] Pressure-driven flow of suspensions: simulation and theory, J. Fluid Mech., Volume 275 (1994), pp. 157-199
[35] Dynamics of shear-induced migration of spherical particles in oscillatory pipe flow, J. Fluid Mech., Volume 786 (2016), pp. 128-153
[36] Rhéologie des matériaux granulaires cohésifs. Application aux avalanches de neige dense, École des ponts ParisTech, 2006 (Ph.D. thesis)
[37] Phase diagram for inertial granular flows, Phys. Rev. E, Volume 94 (2016)
[38] Rapid granular flows, Annu. Rev. Fluid Mech., Volume 35 (2003), pp. 267-293
[39] A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles, J. Fluid Mech., Volume 130 (1983), pp. 187-202
[40] Transport properties for driven granular fluids in situations close to homogeneous steady states, Phys. Rev. E, Volume 87 (2013)
[41] Dense inclined flows of inelastic spheres: tests of an extension of kinetic theory, Granul. Matter, Volume 12 (2010), pp. 151-158
[42] Unified theory of inertial granular flows and non-Brownian suspensions, Phys. Rev. E, Volume 91 (2015)
[43] Effect of friction on dense suspension flows of hard particles, Phys. Rev. E, Volume 95 (2017)
[44] Homogenization approach to the behavior of suspensions of noncolloidal particles in yield stress fluids, J. Rheol., Volume 52 (2008), pp. 489-506
[45] Sensitivity of granular surface flows to preparation, Europhys. Lett., Volume 47 (1999), p. 324
[46] Granular collapse in a fluid: role of the initial volume fraction, Phys. Fluids, Volume 23 (2011)
[47] A two-phase flow description of the initiation of underwater granular avalanches, J. Fluid Mech., Volume 633 (2009), pp. 115-135
[48] Unifying impacts in granular matter from quicksand to cornstarch, Phys. Rev. Lett., Volume 117 (2016)
[49] Shear-induced structure in a concentrated suspension of solid spheres, J. Rheol., Volume 24 (1980), pp. 799-814
[50] Local transient rheological behavior of concentrated suspensions, J. Rheol., Volume 55 (2011), pp. 835-854
[51] Shear reversal in dense suspensions: the challenge to fabric evolution models from simulation data, J. Fluid Mech., Volume 847 (2018), pp. 700-734
[52] Evidence of mechanically activated processes in slow granular flows, Phys. Rev. Lett., Volume 106 (2011)
[53] Scaling laws in granular flows down rough inclined planes, Phys. Fluids, Volume 11 (1999), pp. 542-548
[54] Non-local rheology in dense granular flows, Eur. Phys. J. E, Volume 38 (2015), p. 125
[55] Nonlocal modeling of granular flows down inclines, Soft Matter, Volume 11 (2015), pp. 179-185
[56] Colloidal Suspension Rheology, Cambridge University Press, Cambridge, UK, 2011
[57] Discontinuous shear thickening of frictional hard-sphere suspensions, Phys. Rev. Lett., Volume 111 (2013)
[58] Discontinuous shear thickening without inertia in dense non-Brownian suspensions, Phys. Rev. Lett., Volume 112 (2014)
[59] Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions, J. Rheol., Volume 58 (2014), pp. 1693-1724
[60] Pairwise frictional profile between particles determines discontinuous shear thickening transition in non-colloidal suspensions, Nat. Commun., Volume 8 (2017)
[61] Phase behaviour of concentrated suspensions of nearly hard colloidal spheres, Nature, Volume 320 (1986), p. 340
[62] Disentangling glass and jamming physics in the rheology of soft materials, Soft Matter, Volume 9 (2013), pp. 7669-7683
[63] On the rigidity of a hard-sphere glass near random close packing, Europhys. Lett., Volume 76 (2006), p. 149
[64] Athermal analogue of sheared dense Brownian suspensions, Europhys. Lett., Volume 111 (2015)
[65] Discontinuous shear thickening in Brownian suspensions by dynamic simulation, Proc. Natl. Acad. Sci. USA, Volume 112 (2015), pp. 15326-15330
[66] Discontinuous shear-thickening in Brownian suspensions, 2018 (arXiv preprint) | arXiv
[67] Rev. Mod. Phys., 85 (2013), p. 1143
[68] Collective motion, Phys. Rep., Volume 517 (2012), pp. 71-140
[69] The power and control of gravitropic movements in plants: a biomechanical and systems biology view, J. Exp. Bot., Volume 60 (2009), pp. 461-486
[70] Directional gravity sensing in gravitropism, Annu. Rev. Plant Biol., Volume 61 (2010), pp. 705-720
[71] Gravisensors in plant cells behave like an active granular liquid, Proc. Natl. Acad. Sci. USA, Volume 115 (2018), pp. 5123-5128
[72] Inclination not force is sensed by plants during shoot gravitropism, Sci. Rep., Volume 6 (2016)
[73] A new scenario for gravity detection in plants: the position sensor hypothesis, Phys. Biol., Volume 14 (2017)
[74] Active dry granular flows: rheology and rigidity transitions, Europhys. Lett., Volume 116 (2016)
[75] Spontaneously flowing crystal of self-propelled particles, Phys. Rev. Lett., Volume 120 (2018)
Cited by Sources:
Comments - Policy