Comptes Rendus
Spatial networks/Réseaux spatiaux
Transitions in spatial networks
Comptes Rendus. Physique, Volume 19 (2018) no. 4, pp. 205-232.

Networks embedded in space can display all sorts of transitions when their structure is modified. The nature of these transitions (and in some cases crossovers) can differ from the usual appearance of a giant component as observed for the Erdös–Rényi graph, and spatial networks display a large variety of behaviors. We will discuss here some (mostly recent) results about topological transitions, ‘localization’ transitions seen in the shortest paths pattern, and also about the effect of congestion and fluctuations on the structure of optimal networks. The importance of spatial networks in real-world applications makes these transitions very relevant, and this review is meant as a step towards a deeper understanding of the effect of space on network structures.

Les réseaux spatiaux peuvent presenter toutes sortes de transitions lorsque leur structure est modifiée. La nature de ces transitions peut différer de l'apparition d'une composante géante, comme c'est le cas pour le graphe d'Erdös–Rényi, et afficher une grande variété de comportements. Nous discuterons ici quelques résultats (la plupart du temps récents) sur les transitions topologiques, les transitions de « localisation » observées dans l'organisation des chemins les plus courts, ainsi que l'effet de la congestion et des fluctuations sur la structure des réseaux optimaux. L'importance des réseaux spatiaux pour les applications pratiques rend ces transitions très pertinentes, et cette revue se veut un pas vers une compréhension plus profonde de l'effet de l'espace sur la structure des réseaux.

Published online:
DOI: 10.1016/j.crhy.2018.10.006
Keywords: Statistical physics, Transitions, Spatial networks
Mot clés : Physique statistique, Transitions, Réseaux spatiaux

Marc Barthelemy 1, 2

1 Institut de physique théorique, CEA, CNRS URA 2306, 91191 Gif-sur-Yvette, France
2 CAMS (CNRS/EHESS), 54, boulevard Raspail, 75006 Paris, France
@article{CRPHYS_2018__19_4_205_0,
     author = {Marc Barthelemy},
     title = {Transitions in spatial networks},
     journal = {Comptes Rendus. Physique},
     pages = {205--232},
     publisher = {Elsevier},
     volume = {19},
     number = {4},
     year = {2018},
     doi = {10.1016/j.crhy.2018.10.006},
     language = {en},
}
TY  - JOUR
AU  - Marc Barthelemy
TI  - Transitions in spatial networks
JO  - Comptes Rendus. Physique
PY  - 2018
SP  - 205
EP  - 232
VL  - 19
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crhy.2018.10.006
LA  - en
ID  - CRPHYS_2018__19_4_205_0
ER  - 
%0 Journal Article
%A Marc Barthelemy
%T Transitions in spatial networks
%J Comptes Rendus. Physique
%D 2018
%P 205-232
%V 19
%N 4
%I Elsevier
%R 10.1016/j.crhy.2018.10.006
%G en
%F CRPHYS_2018__19_4_205_0
Marc Barthelemy. Transitions in spatial networks. Comptes Rendus. Physique, Volume 19 (2018) no. 4, pp. 205-232. doi : 10.1016/j.crhy.2018.10.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.10.006/

[1] P. Erdös; P. Rényi Publ. Math. Inst. Hung. Acad. Sci., 5 (1960), p. 17

[2] P. Erdös; A. Rényi Publ. Math., 6 (1959), p. 290

[3] E. Gilbert Ann. Math. Stat., 30 (1959), p. 1141

[4] E.N. Gilbert J. Soc. Ind. Appl. Math., 9 (1961), p. 533

[5] B. Bollobás Random Graphs, Academic Press, London, 1985

[6] M. Penrose Random Geometric Graphs, Oxford Studies in Probability, vol. 5, Oxford University Press, 2003

[7] G. Grimmett Percolation, Springer, 1999, pp. 1-31

[8] D. Stauffer; A. Aharony Introduction to Percolation Theory, CRC Press, 2014

[9] I. Balberg Phys. Rev. B, 31 (1985), p. 4053

[10] J. Quantanilla; S. Torquato; R. Ziff Phys. A, 33 (2000), p. L399

[11] E.T. Gawlinski; H.E. Stanley J. Phys. A, Math. Gen., 14 (1981), p. L291

[12] R. Meester; R. Roy Continuum Percolation, vol. 119, Cambridge University Press, 1996

[13] C.P. Dettmann; O. Georgiou Phys. Rev. E, 93 (2016)

[14] G. Nemeth; G. Vattay Phys. Rev. E, 67 (2003)

[15] J. Dall; M. Christensen Phys. Rev. E, 66 (2002)

[16] P. Balister; B. Bollobás; M. Walters Random Struct. Algorithms, 26 (2005), p. 392

[17] A. Stoneham Environ. Plan. A, 9 (1977), p. 185

[18] D.J. Watts; D.H. Strogatz Nature, 393 (1998), p. 440

[19] A. Barrat; M. Weigt Eur. Phys. J. B, 13 (2000), p. 547

[20] M. Barthelemy; L.A.N. Amaral Phys. Rev. Lett., 82 (1999), p. 3180

[21] M. Barthelemy; L.A.N. Amaral Phys. Rev. Lett., 82 (1999), p. 5180

[22] S. Jespersen; A. Blumen Phys. Rev. E, 62 (2000), p. 6270

[23] J.M. Kleinberg Nature, 406 (2000), p. 845

[24] P. Sen; B. Chakrabarti J. Phys. A, 34 (2001), p. 7749

[25] P. Sen; K. Banerjee; T. Biswas Phys. Rev. E, 66 (2002)

[26] C. Moukarzel; M.A. de Menezes Phys. Rev. E, 65 (2002)

[27] T. Petermann; P.D.L. Rios, 2005 | arXiv

[28] T. Petermann; P. De Los Rios Phys. Rev. E, 73 (2006)

[29] M. Newman; D. Watts Phys. Rev. E, 60 (1999), p. 7332

[30] K. Kosmidis; S. Havlin; A. Bunde Europhys. Lett., 82 (2008)

[31] M.R. Roberson; D. Ben-Avraham Phys. Rev. E, 74 (2006)

[32] H.A. Simon Biometrika, 42 (1955), p. 425

[33] R. Albert; H. Jeong; A.-L. Barabasi Nature, 401 (1999), p. 130

[34] M. Barthelemy Europhys. Lett., 63 (2003), p. 915

[35] S.S. Manna; P. Sen Phys. Rev. E, 66 (2002)

[36] R. Xulvi-Brunet; I.M. Sokolov Phys. Rev. E, 66 (2002)

[37] S.-H. Yook; H. Jeong; A.-L. Barabasi Proc. Natl. Acad. Sci. USA, 99 (2002)

[38] P. Balister; C. Song; O. Riordan; B. Bollobas; A.-L. Barabasi, 2018 (preprint) | arXiv

[39] P. Sen; S. Manna Phys. Rev. E, 68 (2003)

[40] W.R. Black (1971), pp. 283-288

[41] A. Fabrikant; E. Koutsoupias; C.H. Papadimitriou Proceeding of the 29th International Colloquium on Automata, Languages, and Programming (ICALP), Lect. Notes Comput. Sci., vol. 2380, Springer, 2002, pp. 110-122

[42] R. Pastor-Satorras; A. Vespignani Evolution and Structure of the Internet: A Statistical Physics Approach, Cambridge University Press, Cambridge, UK, 2003

[43] R. Louf; P. Jensen; M. Barthelemy Proc. Natl. Acad. Sci. USA, 110 (2013) no. 22, pp. 8824-8829

[44] S. Erlander; N. Stewart The Gravity Model in Transportation Analysis, VSP, Utrecht, The Netherlands, 1990

[45] R.C. Prim Bell Labs Tech. J., 36 (1957), p. 1389

[46] M.E. O'Kelly; D. Bryan; D. Skorin-Kapov; J. Skorin-Kapov Location Sci., 4 (1996), p. 125

[47] M.E. O'Kelly J. Transp. Geogr., 6 (1998), p. 171

[48] M. Sales-Pardo; R. Guimera; A.A. Moreira; L.A.N. Amaral Proc. Natl. Acad. Sci. USA, 104 (2007)

[49] D. Ashton; T. Jarrett; N. Johnson Phys. Rev. Lett., 94 (2005)

[50] T. Jarrett; D. Ashton; M. Fricker; N. Johnson Phys. Rev. E, 74 (2006)

[51] S.N. Dorogovtsev; J.F.F. Mendes Europhys. Lett., 50 (2000), p. 1

[52] M. Barthelemy Phys. Rep., 499 (2011), p. 1

[53] L.C. Freeman Sociometry, 40 (1977), p. 35

[54] M. Newman Phys. Rev. E, 64 (2001)

[55] K.-I. Goh; B. Kahng; D. Kim Phys. Rev. Lett., 87 (2001)

[56] M. Barthelemy Phys. Rev. Lett., 91 (2003)

[57] M. Barthelemy Eur. Phys. J. B, 38 (2004), p. 163

[58] B. Lion; M. Barthelemy Phys. Rev. E, 95 (2017)

[59] A. Kirkley; H. Barbosa; M. Barthelemy; G. Ghoshal Nat. Commun., 9 (2018), p. 2501

[60] D.-T. Lee; B.J. Schachter Int. J. Comput. Inf. Sci., 9 (1980), p. 219

[61] A.P. Giles; O. Georgiou; C.P. Dettmann 2015 IEEE International Conference on Communications (ICC), IEEE, 2015, pp. 6450-6455

[62] M. Barthelemy; A. Flammini J. Stat. Mech. (2006)

[63] M. Barthelemy Morphogenesis of Spatial Networks, Springer, 2018

[64] S. Khuller; B. Raghavachari; N. Young Algorithmica, 14 (1995), p. 305

[65] R. Guimerà; A. Diaz-Guilera; F. Vega-Redondo; A. Cabrales; A. Arenas Phys. Rev. Lett., 89 (2002)

[66] B. of Public Roads Traffic Assignment Manuel, US Dept. of Commerce, Urban Planning Division, Washington, DC, 1964

[67] D. Branston Transp. Res., 10 (1976), p. 223

[68] J.R. Banavar; F. Colaiori; A. Flammini; A. Maritan; A. Rinaldo Phys. Rev. Lett., 84 (2000), p. 4745

[69] S. Bohn; M.O. Magnasco Phys. Rev. Lett., 98 (2007)

[70] F. Corson Phys. Rev. Lett., 104 (2010)

[71] E. Katifori; G.J. Szöllősi; M.O. Magnasco Phys. Rev. Lett., 104 (2010)

Cited by Sources:

Comments - Policy