Many complex networks have recently been recognized to involve significant interdependence between different systems. Motivation comes primarily from infrastructures like power grids and communications networks, but also includes areas such as the human brain and finance. Interdependence implies that when components in one system fail, they lead to failures in the same system or other systems. This can then lead to additional failures finally resulting in a long cascade that can cripple the entire system. Furthermore, many of these networks, in particular infrastructure networks, are embedded in space and thus have unique spatial properties that significantly decrease their resilience to failures. Here we present a review of novel results on interdependent spatial networks and how cascading processes are affected by spatial embedding. We include various aspects of spatial embedding such as cases where dependencies are spatially restricted and localized attacks on nodes contained in some spatial region of the network. In general, we find that spatial networks are more vulnerable when they are interdependent and that they are more likely to undergo abrupt failure transitions than interdependent non-embedded networks. We also present results on recovery in spatial networks, the nature of cascades due to overload failures in these networks, and some examples of percolation features found in real-world traffic networks. Finally, we conclude with an outlook on future possible research directions in this area.
Récemment, il a été montré que de nombreux réseaux complexes font intervenir une interdépendence fondamentale entre différents systèmes. La motivation provient principalement des infrastructures telles que les réseaux électriques et les réseaux de communication, mais comprend également des domaines tels que le cerveau humain et la finance. L'interdépendance implique que, lorsque des composants d'un système tombent en panne, ils entraînent des défaillances dans le même système ou dans d'autres. Cela peut conduire à des défaillances supplémentaires, aboutissant finalement à une longue cascade susceptible de paralyser l'ensemble du système. En outre, nombre de ces réseaux, en particulier certaines infrastructures, sont intégrés dans l'espace et possèdent des propriétés spatiales uniques qui ont pour effet de réduire considérablement leur résilience aux pannes. Nous présentons également des résultats sur la guérison des réseaux spatiaux, la nature des cascades dues à des défaillances de surcharge dans ces réseaux, ainsi que quelques exemples choisis dans les réseaux de trafic réel et qui présentent des caractéristiques similaires à celles de la percolation. Enfin, nous concluons sur une discussion des futures directions de recherche possibles dans ce domaine.
Mots-clés : Réseaux spatiaux, Réseaux de réseaux, Réseaux couplés, Résilience des infrastructures
Louis M. Shekhtman 1; Michael M. Danziger 2; Dana Vaknin 1; Shlomo Havlin 1, 3
@article{CRPHYS_2018__19_4_233_0, author = {Louis M. Shekhtman and Michael M. Danziger and Dana Vaknin and Shlomo Havlin}, title = {Robustness of spatial networks and networks of networks}, journal = {Comptes Rendus. Physique}, pages = {233--243}, publisher = {Elsevier}, volume = {19}, number = {4}, year = {2018}, doi = {10.1016/j.crhy.2018.09.005}, language = {en}, }
TY - JOUR AU - Louis M. Shekhtman AU - Michael M. Danziger AU - Dana Vaknin AU - Shlomo Havlin TI - Robustness of spatial networks and networks of networks JO - Comptes Rendus. Physique PY - 2018 SP - 233 EP - 243 VL - 19 IS - 4 PB - Elsevier DO - 10.1016/j.crhy.2018.09.005 LA - en ID - CRPHYS_2018__19_4_233_0 ER -
Louis M. Shekhtman; Michael M. Danziger; Dana Vaknin; Shlomo Havlin. Robustness of spatial networks and networks of networks. Comptes Rendus. Physique, Spatial networks / Réseaux spatiaux, Volume 19 (2018) no. 4, pp. 233-243. doi : 10.1016/j.crhy.2018.09.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.09.005/
[1] Internet: diameter of the world-wide web, Nature, Volume 401 (1999) no. 6749, pp. 130-131
[2] Collective dynamics of ‘small-world’ networks, Nature, Volume 393 ( Jun 1998 ) no. 6684, pp. 440-442
[3] Emergence of scaling in random networks, Science, Volume 286 (1999) no. 5439, pp. 509-512
[4] et al. Life in the network: the coming age of computational social science, Science (N. Y.), Volume 323 (2009) no. 5915, p. 721
[5] Network biology: understanding the cell's functional organization, Nat. Rev. Genet., Volume 5 (2004) no. 2, pp. 101-113
[6] Integrating networks and comparative genomics reveals retroelement proliferation dynamics in hominid genomes, Sci. Adv., Volume 3 (2017) no. 10
[7] Traffic and related self-driven many-particle systems, Rev. Mod. Phys., Volume 73 (2001) no. 4, p. 1067
[8] Percolation transition in dynamical traffic network with evolving critical bottlenecks, Proc. Natl. Acad. Sci. USA, Volume 112 (2015) no. 3, pp. 669-672
[9] Introduction to Econophysics: Correlations and Complexity in Finance, Cambridge University Press, 1999
[10] Ranking the economic importance of countries and industries, J. Netw. Theory Financ., Volume 3 (2017) no. 3, pp. 1-17
[11] Network analysis reveals strongly localized impacts of El Niño, Proc. Natl. Acad. Sci. USA, Volume 114 (2017) no. 29, pp. 7543-7548
[12] Complex networks in climate dynamics, Eur. Phys. J. Spec. Top., Volume 174 (2009) no. 1, pp. 157-179
[13] Error and attack tolerance of complex networks, Nature, Volume 406 (2000) no. 6794, pp. 378-382
[14] Resilience of the Internet to random breakdowns, Phys. Rev. Lett., Volume 85 (2000), pp. 4626-4628
[15] Network robustness and fragility: percolation on random graphs, Phys. Rev. Lett., Volume 85 (2000), pp. 5468-5471
[16] Breakdown of the Internet under intentional attack, Phys. Rev. Lett., Volume 86 ( Apr. 2001 ), pp. 3682-3685
[17] Percolation and conduction, Rev. Mod. Phys., Volume 45 (1973), pp. 574-588
[18] Introduction to Percolation Theory, Taylor & Francis, 1994
[19] Fractals and Disordered Systems, Springer Science & Business Media, 2012
[20] The topological and electrical structure of power grids, HICSS, IEEE (2010), pp. 1-10
[21] Spatial networks, Phys. Rep., Volume 499 (2011) no. 1–3, pp. 1-101
[22] Catastrophic cascade of failures in interdependent networks, Nature, Volume 464 (2010) no. 7291, pp. 1025-1028
[23] Networks formed from interdependent networks, Nat. Phys., Volume 8 (2012) no. 1, pp. 40-48
[24] E.A. Leicht, R.M. D'Souza, Percolation on interacting networks. ArXiv e-prints, July 2009.
[25] Mathematical formulation of multilayer networks, Phys. Rev. X, Volume 3 (2013)
[26] Multilayer networks, J. Complex Netw., Volume 2 (2014) no. 3, pp. 203-271
[27] Identifying, understanding, and analyzing critical infrastructure interdependencies, IEEE Control Syst., Volume 21 (2001) no. 6, pp. 11-25
[28] Dynamic reconfiguration of human brain networks during learning, Proc. Natl. Acad. Sci. USA, Volume 108 (2011) no. 18, pp. 7641-7646
[29] The robustness and restoration of a network of ecological networks, Science, Volume 335 (2012) no. 6071, pp. 973-977
[30] Network science: a useful tool in economics and finance, Mind Soc. (2015), pp. 1-13
[31] Avalanche collapse of interdependent networks, Phys. Rev. Lett., Volume 109 (2012)
[32] Abrupt transition in the structural formation of interconnected networks, Nat. Phys., Volume 9 (2013) no. 11, pp. 717-720
[33] Simultaneous first- and second-order percolation transitions in interdependent networks, Phys. Rev. E, Volume 90 ( Jul 2014 )
[34] From a single network to a network of networks, Nat. Sci. Rev., Volume 1 (2014) no. 3, pp. 346-356
[35] Critical effect of dependency groups on the function of networks, Proc. Natl. Acad. Sci. USA, Volume 108 (2011) no. 3, pp. 1007-1010
[36] Percolation of a general network of networks, Phys. Rev. E, Volume 88 (2013)
[37] Interdependent networks: reducing the coupling strength leads to a change from a first to second order percolation transition, Phys. Rev. Lett., Volume 105 (2010)
[38] Robustness of a network formed by n interdependent networks with a one-to-one correspondence of dependent nodes, Phys. Rev. E, Volume 85 (2012)
[39] Robustness of a network of networks, Phys. Rev. Lett., Volume 107 (2011)
[40] Networks formed from interdependent networks, Nat. Phys., Volume 8 (2012) no. 1, pp. 40-48
[41] On the strength of connectedness of a random graph, Acta Math. Acad. Sci. Hung., Volume 12 (1964) no. 1–2, pp. 261-267
[42] Percolation of interdependent networks with intersimilarity, Phys. Rev. E, Volume 88 (2013)
[43] Coevolution and correlated multiplexity in multiplex networks, Phys. Rev. Lett., Volume 111 (2013)
[44] Avoiding catastrophic failure in correlated networks of networks, Nat. Phys., Volume 10 (2014) no. 10, pp. 762-767
[45] Mutually connected component of networks of networks with replica nodes, Phys. Rev. E, Volume 91 (2015) no. 1
[46] Inter-similarity between coupled networks, Europhys. Lett., Volume 92 (2010) no. 6
[47] Network robustness of multiplex networks with interlayer degree correlations, Phys. Rev. E, Volume 89 (2014) no. 4
[48] Link overlap, viability, and mutual percolation in multiplex networks, Chaos Solitons Fractals, Volume 72 (2015), pp. 49-58
[49] Percolation in multiplex networks with overlap, Phys. Rev. E, Volume 88 (2013)
[50] Statistical mechanics of multiplex networks: entropy and overlap, Phys. Rev. E, Volume 87 (2013)
[51] Redundant interdependencies boost the robustness of multiplex networks, Phys. Rev. X, Volume 7 (2017) no. 1
[52] Eradicating catastrophic collapse in interdependent networks via reinforced nodes, Proc. Natl. Acad. Sci. USA, Volume 114 (2017) no. 13, pp. 3311-3315
[53] Generalized model for k-core percolation and interdependent networks, Phys. Rev. E, Volume 96 (2017)
[54] k-Core percolation on complex networks: comparing random, localized, and targeted attacks, Phys. Rev. E, Volume 93 (2016) no. 6
[55] k-Core percolation on multiplex networks, Phys. Rev. E, Volume 90 (2014) no. 3
[56] The extreme vulnerability of interdependent spatially embedded networks, Nat. Phys., Volume 9 (2013), pp. 667-672
[57] Dimension of spatially embedded networks, Nat. Phys., Volume 7 (2011) no. 6, pp. 481-484
[58] Bi-universality characterizes a realistic spatial network model, 2017 (arXiv preprint) | arXiv
[59] Cascading failures in interdependent lattice networks: the critical role of the length of dependency links, Phys. Rev. Lett., Volume 108 (2012)
[60] Robustness of a network formed of spatially embedded networks, Phys. Rev. E, Volume 90 (2014)
[61] Percolation and cascade dynamics of spatial networks with partial dependency, J. Complex Netw., Volume 2 (2014) no. 4, pp. 460-474
[62] The effect of spatiality on multiplex networks, Europhys. Lett., Volume 115 (2016) no. 3
[63] Diffusion dynamics on multiplex networks, Phys. Rev. Lett., Volume 110 (2013)
[64] Routing of multipoint connections, IEEE J. Sel. Areas Commun., Volume 6 (1988) no. 9, pp. 1617-1622
[65] Multi-universality and localized attacks in spatially embedded networks, APEC-SSS2016 (2017), p. 011002
[66] Percolation transitions are not always sharpened by making networks interdependent, Phys. Rev. Lett., Volume 107 (2011)
[67] Comment on “percolation transitions are not always sharpened by making networks interdependent”, Phys. Rev. Lett., Volume 111 (2013) no. 18
[68] Localized attacks on spatially embedded networks with dependencies, Sci. Rep., Volume 5 (2015)
[69] Percolation of localized attack on complex networks, New J. Phys., Volume 17 (2015) no. 2
[70] The fractal nature of a diffusion front and the relation to percolation, J. Phys. Lett., Volume 46 (1985) no. 4, pp. 149-156
[71] Spreading of localized attacks in spatial multiplex networks, New J. Phys., Volume 19 (2017) no. 7
[72] Spatio-temporal propagation of cascading overload failures in spatially embedded networks, Nat. Commun., Volume 7 (2016)
[73] Modeling cascading failures in the North American power grid, Eur. Phys. J. B, Condens. Matter Complex Syst., Volume 46 (2005) no. 1, pp. 101-107
[74] Packetscore: statistics-based overload control against distributed denial-of-service attacks, INFOCOM 2004. Twenty-Third Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 4, IEEE, 2004, pp. 2594-2604
[75] Cascade-based attacks on complex networks, Phys. Rev. E, Volume 66 (2002)
[76] Spontaneous recovery in dynamical networks, Nat. Phys., Volume 10 (2013) no. 1, pp. 34-38
[77] Multiple tipping points and optimal repairing in interacting networks, Nat. Commun., Volume 7 (2016)
[78] Failure and recovery in dynamical networks, Sci. Rep., Volume 7 (2017)
[79] Localized recovery of complex networks against failure, Sci. Rep., Volume 6 (2016)
[80] Recovery of infrastructure networks after localised attacks, Sci. Rep., Volume 6 (2016)
[81] Recovery of interdependent networks, Sci. Rep., Volume 6 (2016)
[82] Critical tipping point distinguishing two types of transitions in modular network structures, Phys. Rev. E, Volume 92 (2015)
[83] Resilience of networks formed of interdependent modular networks, New J. Phys., Volume 17 (2015) no. 12
[84] Percolation properties in a traffic model, Europhys. Lett., Volume 112 (2015) no. 3
[85] Switch of critical percolation modes in dynamical city traffic, 2017 (arXiv preprint) | arXiv
Cited by Sources:
Comments - Policy