In this paper, we aim at improving pedestrian navigation experience based on standard narrow-band wireless technologies and simple radio metrics. The proposed solution takes benefits from body shadowing effects traditionally experienced at body-worn devices, for instance over off-body radio links with respect to fixed elements of infrastructure. The main idea is to infer relative angular information between the carrying body's heading and the received signal's direction of arrival. For this purpose, we consider differential received power measurements with judiciously placed on-body nodes. In comparison with related state-of-the-art contributions, a much lighter on-the-fly self-calibration procedure is made possible, based on the full-scale dynamics of the observed power measurements. We also describe a new algorithm that jointly estimates the body's absolute position and orientation, while benefiting from the body's movement continuity over time. The overall solution is validated by means of field experiments with IEEE 802.15.4-compliant devices operating at 2.4 GHz. Overall, the system is shown to be resilient, not only against self-shadowing effects generated by carrying bodies, but also against occasional obstructions caused by moving pedestrians in the vicinity (e.g., in crowded environments).
On vise dans cet article à améliorer l'expérience de navigation des piétons basée sur des technologies sans fil standard à bande étroite et une métrique radio simple. La solution proposée tire profit des effets d'ombrage corporel traditionnellement observés sur les dispositifs portés sur le corps, par exemple sur des liaisons radio off-body vers les éléments fixes de l'infrastructure. L'idée principale est de déduire des informations angulaires relatives entre le cap du corps porteur et la direction du signal reçu d'arrivée. Pour ce faire, nous considérons la puissance logarithmique différentielle reçue avec des nœuds judicieusement placés sur le corps. En comparaison des contributions à l'état de l'art, il est possible de mettre en place un outil beaucoup plus léger de calibrage à la volée. La procédure d'autocalibrage est rendue possible grâce à l'autocalibrage à pleine échelle dynamique des mesures de puissance observées. Nous décrivons également un nouvel algorithme qui estime conjointement la position absolue du corps et son orientation, tout en bénéficiant de la continuité du mouvement du corps dans le temps. La solution globale est validée au moyen d'expériences sur le terrain avec des appareils conformes à la norme IEEE 802.15.4 fonctionnant à 2,4 GHz. Dans l'ensemble, le système s'est avéré résilient, non seulement contre les effets d'auto-occultation générés par les corps porteurs, mais aussi contre les obstructions occasionnelles causées par les piétons qui se déplacent dans le voisinage (par exemple dans des environnements bondés).
Mot clés : Réseaux corporels mobiles, Goniométrie, Localisation et navigation du piéton, Mesure de puissance différentielle
Bernard Uguen 1; Benoît Denis 2; Raffaele D'Errico 2; Nicolas Amiot 3
@article{CRPHYS_2019__20_3_192_0, author = {Bernard Uguen and Beno{\^\i}t Denis and Raffaele D'Errico and Nicolas Amiot}, title = {Differential received power measurements over off-body links for obstruction-resilient pedestrian navigation}, journal = {Comptes Rendus. Physique}, pages = {192--203}, publisher = {Elsevier}, volume = {20}, number = {3}, year = {2019}, doi = {10.1016/j.crhy.2019.03.003}, language = {en}, }
TY - JOUR AU - Bernard Uguen AU - Benoît Denis AU - Raffaele D'Errico AU - Nicolas Amiot TI - Differential received power measurements over off-body links for obstruction-resilient pedestrian navigation JO - Comptes Rendus. Physique PY - 2019 SP - 192 EP - 203 VL - 20 IS - 3 PB - Elsevier DO - 10.1016/j.crhy.2019.03.003 LA - en ID - CRPHYS_2019__20_3_192_0 ER -
%0 Journal Article %A Bernard Uguen %A Benoît Denis %A Raffaele D'Errico %A Nicolas Amiot %T Differential received power measurements over off-body links for obstruction-resilient pedestrian navigation %J Comptes Rendus. Physique %D 2019 %P 192-203 %V 20 %N 3 %I Elsevier %R 10.1016/j.crhy.2019.03.003 %G en %F CRPHYS_2019__20_3_192_0
Bernard Uguen; Benoît Denis; Raffaele D'Errico; Nicolas Amiot. Differential received power measurements over off-body links for obstruction-resilient pedestrian navigation. Comptes Rendus. Physique, Volume 20 (2019) no. 3, pp. 192-203. doi : 10.1016/j.crhy.2019.03.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2019.03.003/
[1] Wireless body area networks: a survey, IEEE Commun. Surv. Tutor., Volume 16 (2014) no. 3, pp. 1658-1686
[2] Research trends in wireless body area networks: from on-body to body-to-body cooperation, Proc. ISMICT'14, April 2014
[3] Body sensor networks: in the era of big data and beyond, IEEE Rev. Biomed. Eng., Volume 8 (2015), pp. 4-16
[4] Wearable sensors for human activity monitoring: a review, IEEE Sens. J., Volume 15 ( March 2015 ) no. 3, pp. 1321-1330
[5] B. Denis, N. Amiot, B. Uguen, A. Guizar, C. Goursaud, A. Ouni, C. Chaudet, Qualitative analysis of RSSI behavior in cooperative wireless body area networks for mobility detection and navigation applications, in: Proc. IEEE ICECS'14, Bordeaux, France, 9–12 December 2014, pp. 834–837.
[6] R. Rosini, R. D'Errico, Off-body channel modelling at 2.45 GHz for two different antennas, in: Proc. EUCAP'12, Prague, 26–30 March 2012, pp. 3378–3382.
[7] Body-to-body indoor channel modeling at 2.45 GHz, IEEE Trans. Antennas Propag., Volume 62 (2014) no. 11, pp. 5807-5819
[8] A spatially aware channel model for body-to-body communications, IEEE Trans. Antennas Propag., Volume 64 (2016) no. 8, pp. 3611-3618
[9] Coexistence evaluation of multiple wearable networks based on realistic on-body and body-to-body channel models, Proc. ISMICT'16, 2016
[10] F. Seco, A.R. Jiménez, F. Zampella, Joint estimation of indoor position and orientation from rf signal strength measurements, in: International Conference on Indoor Positioning and Indoor Navigation, Montbéliard–Belfort, France, 28–31 October 2013, pp. 1–8.
[11] J. Trogh, D. Plets, L. Martens, W. Joseph, Improved tracking by mitigating the influence of the human body, in: 2015 IEEE Globecom Workshops (GC Wkshps), 6–10 December 2015, San Diego, CA, USA, pp. 1–6.
[12] B. Denis, B. Uguen, F. Mani, R. D'Errico, N. Amiot, Joint orientation and position estimation from differential RSS measurements at on-body nodes, in: 27th IEEE International Symposium on Personal Indooor Mobile radio Communications 2016 (IEEE PIMRC'16), Valencia, Spain, 4–7 September 2016.
[13] M. Lauzier, P. Ferrand, A. Fraboulet, H. Parvery, J.M. Gorce, Full mesh channel measurements on body area networks under walking scenarios, in: Proc. EuCAP'13, Gothenburg, Sweden, 8–12 April 2013, pp. 3508–3512.
[14] Using virtual reality to analyze sports performance, IEEE Comput. Graph. Appl., Volume 30 (2010) no. 2, pp. 14-21
Cited by Sources:
Comments - Policy