Disaster relief requires many resources. Depending on the circumstances of each event, it is important to rapidly choose the suitable means to respond to the emergency intervention. A brief review of the conditions and means demonstrated the usefulness of an autonomous stand-alone machine for these missions. If many techniques and technologies exist, their relevant combination to achieve such a system presents several challenges. This communication tries to outline the possible achievement of an autonomous vehicle under these particular circumstances. This paper focuses on the specific working conditions and welcomes future contributions from robotics and artificial intelligence.
In the necessarily limited scope of this article, the authors focus on a particularly critical aspect: location. Indeed, this machine is intended to evolve in heterogeneous and dangerous environment and without any outside contacts that could last up to several days. This blackout, due to the propagation difficulties of electromagnetic waves in the ground, induces an independence of the localisation process and makes the use of any radio navigation support system (GNSS), most of the time, impossible. The knowledge of the position of the system, both for navigation of the autonomous system (Rover) and location of targets (victims buried under debris) must be able to be estimated without contributions from external systems. Inertial classical techniques, odometer, etc., have to be adapted to these conditions during a long period without external support. These techniques also have to take into account that energy optimisation requests the use of low-power processors. Consequently, only poor computing capacity is available on-board.
The article starts with a presentation of the context of a post-disaster situation as well as the main missions of Search and Rescue (SaR). It is followed by the analysis of autonomous navigation located in a post-earthquake situation. We will then discuss means to determine the attitude of the autonomous system and its position. The interest of hybridisation with external systems – whenever possible –, will be evaluated with a view to correcting deviations suffered by the system during its mission. Finally, prospects and future work are presented.
De nombreux moyens sont mis en œuvre par les secours lors d'une catastrophe. En fonction des conditions propres à chaque événement, il faut rapidement faire un choix adapté des moyens disponibles capables de faciliter la mise en œuvre des secours. Une brève revue des conditions et des moyens fait apparaître tout l'intérêt de l'utilisation d'un engin autonome pour ces missions. Si de nombreuses techniques et technologies existent, leur combinaison pertinente en vue de réaliser un tel système présente plusieurs difficultés. C'est l'objet de notre communication, dans laquelle nous essayons d'esquisser ce que pourrait être un engin autonome aux performances souhaitées en mettant l'accent sur les conditions particulières de mise en œuvre sans préjuger des apports bienvenus de la robotique et de l'intelligence artificielle.
Dans le cadre forcément limité de cet article, parmi la longue liste de difficultés à surmonter, nous nous focaliserons sur un point particulier qui se révèle critique : la localisation. En effet, cet engin est destiné à évoluer en milieu hétérogène et dangereux et sans contacts durant des périodes assez longues, de l'ordre de plusieurs jours. Ce black-out radio, dû aux difficultés de propagation des ondes électromagnétiques dans le sol, induit une indépendance du processus de localisation et interdit, du moins la majorité du temps, tout recours à des aides de radionavigation telles que, par exemple, le GNSS. La connaissance de la position du système autonome (Rover), nécessaire à la fois à la navigation et à la localisation des cibles (victimes enfouies sous les décombres), doit donc pouvoir être estimée sans contributions de systèmes externes. Les techniques classiques inertielles, d'odométrie, etc., devront donc être adaptées à ces conditions particulières afin de fonctionner de manière précise durant une longue période sans aide. Elles devront aussi être adaptées pour tenir compte du fait que le bilan énergétique nous restreint à une utilisation de processeur de faible puissance et donc de faible vitesse et capacité de calcul.
Nous commencerons notre texte par présenter le contexte particulier d'une station post-catastrophe ainsi que les principales missions de Search and Rescue (SaR). Suivra ensuite la problématique de navigation autonome contextualisée à une situation post-séisme. Nous aborderons ensuite la détermination de l'attitude de l'engin et sa position, puis nous discuterons l'intérêt d'une hybridation avec des systèmes externes, lorsque cela est possible, afin corriger les dérives subies par l'engin au fil de sa mission. Nous conclurons sur des perspectives et sur les travaux futurs.
Mot clés : Capteurs embarqués, Système autonome, Temps réel
Tullio Joseph Tanzi 1; Jean Isnard 2
@article{CRPHYS_2019__20_3_204_0, author = {Tullio Joseph Tanzi and Jean Isnard}, title = {Autonomous system for data collection: {Location} and mapping issues in post-disaster environment}, journal = {Comptes Rendus. Physique}, pages = {204--217}, publisher = {Elsevier}, volume = {20}, number = {3}, year = {2019}, doi = {10.1016/j.crhy.2019.03.001}, language = {en}, }
TY - JOUR AU - Tullio Joseph Tanzi AU - Jean Isnard TI - Autonomous system for data collection: Location and mapping issues in post-disaster environment JO - Comptes Rendus. Physique PY - 2019 SP - 204 EP - 217 VL - 20 IS - 3 PB - Elsevier DO - 10.1016/j.crhy.2019.03.001 LA - en ID - CRPHYS_2019__20_3_204_0 ER -
Tullio Joseph Tanzi; Jean Isnard. Autonomous system for data collection: Location and mapping issues in post-disaster environment. Comptes Rendus. Physique, Volume 20 (2019) no. 3, pp. 204-217. doi : 10.1016/j.crhy.2019.03.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2019.03.001/
[1] Annual Disaster Statistical Review 2012: The Number and Trends, CRED, Brussels, 2013
[2] Télécoms pour l'ingénierie du risque, Collection technique et scientifique des Télécoms, Hermès, Paris, France, 2009 (in French)
[3] Radio sciences and disaster management, C. R. Physique, Volume 11 (2010), pp. 114-224
[4] Introduction to Public safety networks (D. Câmara; N. Nikaein, eds.), Wireless Public Safety Networks Vol. 1, Overview and Challenges, John Wiley & Sons, Ltd, 2015
[5] F. Lefeuvre, T. Tanzi, International Union of Radio Science, International Council for Science (ICSU), Joint Board of Geospatial Information Societies (JBGIS), in United Nations Office for Outer Space Affairs (OOSA), 2013.
[6] Using centimetric visible imagery obtained from an UAV quadrotor for classification of ERS images, Bergen, Norway (2010)
[7] Cavalry to the rescue: drones fleet to help rescuers operations over disasters scenarios, CAMA, Antibes, France (2014)
[8] The role of the radio sciences in the disaster management, Radio Sci. Bull., Volume 3358 (2010), pp. 45-51
[9] The contribution of radio sciences to disaster management, Gi4DM 2011, Antalya, Turkey (2011)
[10] Drone-borne GPR design: propagation issues, JS'17 (2017)
[11] Heterogeneous sensor data exploration and sustainable declarative monitoring architecture: application to smart building, Split, Croatia, 9 September 2016 (2016), pp. 97-104 | DOI
[12] Towards a new architecture for autonomous data collection, La Grande Motte (Montpellier), France, 1–2 October 2015 (2015)
[13] L. Apvrille, T.J. Tanzi, Y. Roudier, J.-L. Dugelay, Drone humanitaire: état de l'art et réflexions, Revue française de photogrammétrie et de télédétection, No. 213-04-262017, pp. 63–71, ISSN 1768-9791.
[14] Towards drone-borne disaster management: future application scenarios, IPSR Annals III-8 (2016), pp. 181-189 | DOI
[15] Drone adventures uses UAVs to help make the world a better place, IEEE Spectr., Volume May (2013)
[16] Towards a new architecture for autonomous data collection, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., vol. XL-3/W3, 2015, pp. 363-369
[17] Using general public connected devices for disasters victims location, Beijing, China ( August 2014 )
[18] Introduction to Ground Penetrating Radar: Inverse Scattering and Data Processing, John Wiley & Sons, 2014 (ISBN: 9781118305003)
[19] Recommendation ITU-R SM.1754, Measurement techniques of ultra-wideband transmissions; Recommendation ITU-R SM.1755, Characteristics; Recommendation ITU-R SM.1756, Framework; Recommendation ITU-R SM.1757, Impact of ultra-wideband technology, 2006.
[20] A state of the art of drone (in)security, JS'17 (2017)
[21] Security and privacy for in-vehicle networks, Seoul, Korea ( 18 June 2012 )
[22] C2X communication: securing the last meter, WIVEC2011, San Francisco, USA ( September 2011 )
[23] IEEE A&E Systems Magazine, vol. 33, Number 5–6, May–June 2018.
[24] Overview of modern multi-parameter methods of radar remote sensing in context of disaster management, 17–23 August 2014, Beijing, China (2014)
[25] Recommendation ITU-R P. 527-4 Electrical characteristics of the surface of the Earth, 2011.
[26] 3D perception for autonomous navigation of a low-cost MAV using minimal landmarks, IMAV'2013, Toulouse, France ( September 2013 )
[27] Indoor autonomous navigation of low-cost MAVs using landmarks and 3D perception, Nice, France ( October 2013 )
[28] Capteurs résonants M/NEMS et phénomènes non linéaires, Acoust. Tech. (2009), pp. 10-14
[29] Nouvelles technologies de capteurs MEMS en diamant pour des applications de transduction, Université Paris-Est, 2011 (PhD thesis in French)
[30] Modélisation des phénomènes non linéaires dans un capteur MEMS résonant pour l'optimisation de ses performances et de sa fiabilité, Université Paris-Saclay, 2016 (PhD thesis)
[31] http://www.pcb.com/TechSupport/Tech_Accel.aspx (Online)
[32] Dimension engineering http://www.dimensionengineering.com/info/accelerometers (Online)
[33] Arduino MPU6050 – best IMU sensor tutorial, October 2014 http://diyhacking.com/arduino-mpu-6050-imu-sensor-tutorial/
[34] http://memscentral.com/Secondlayer/mems_motion_sensor_perspectives-5.htm
[35] Peach innovations – rowing telemetry and instrumentation http://www.peachinnovations.com/
[36] INS/GPS Technology Trends, 2004 (RTO-EN-SET-064: RTO NATO)
[37] INS/GPS Integration Architectures, 2004 (RTOEN-SET-064: RTO NATO)
[38] Managing sensor data uncertainty: a data quality approach, Int. J. Agr. Environ. Inform. Syst., Volume 4 (2013), pp. 35-54
[39] Recommendation ITU-R P. 2040-1, Effects of building materials and structures on radiowave propagation above about 100 MHz, 2014.
[40] Report ITU-R P. 2346-0, Compilation of measurement data relating to building entry loss (in support of the material in Rec. ITU-R P.2040).
[41] Direct position determination of narrowband radiofrequency transmitters, IEEE Signal Process. Lett., Volume 11 (2004) no. 5, pp. 513-516
[42] Géolocalisation de sources radio-électriques: stratégies, algorithmes et performances, ENS Cachan, France, May 2012 (PhD thesis)
[43] RR 5 Table of frequency allocations, UIT-R, 2018 edition, 1988.
[44] Impedance of a monopole antenna with a radial-wire ground system in an imperfectly conducting half space, quoted (E.C. Jordan, ed.), Reference Data for Engineers, 1988 (pp. 32–14 and following)
Cited by Sources:
Comments - Policy