[Un nouveau test de décalage gravitationnel vers le rouge à l'aide des satellites Galileo : l'expérience GREAT]
Nous présentons les résultats de l'analyse de l'expérience GREAT (Galileo gravitational Redshift test with Eccentric sATellites). Une orbite elliptique induit une modulation périodique de la différence de fréquence relative entre une horloge au sol et l'horloge du satellite, due en partie au décalage gravitationnel vers le rouge, tandis que la bonne stabilité des horloges Galileo permet de tester cette modulation périodique à un niveau élevé de précision. Les satellites GSAT0201 et GSAT0202, avec leur grande excentricité et leurs horloges H-maser embarquées, sont des candidats parfaits pour mener à bien ce test. De plus, des données de télémétrie laser sur satellites nous permettent de décorréler partiellement les perturbations de l'orbite et les erreurs d'horloge. En analysant plusieurs années de données de suivi Galileo, nous avons été en mesure d'améliorer le test de Gravity Probe A (1976) du décalage gravitationnel vers le rouge d'un facteur 5.6, fournissant, à notre connaissance, la première amélioration signalée depuis plus de 40 ans.
We present the result of the analysis of the GREAT (Galileo gravitational Redshift test with Eccentric sATellites) experiment. An elliptic orbit induces a periodic modulation of the fractional frequency difference between a ground clock and the satellite clock, partly due to the gravitational redshift, while the good stability of Galileo clocks allows one to test this periodic modulation to a high level of accuracy. GSAT0201 and GSAT0202, with their large eccentricity and on-board H-maser clocks, are perfect candidates to perform this test. Satellite laser ranging data allows us to partly decorrelate the orbit perturbations from the clock errors. By analyzing several years of Galileo tracking data, we have been able to improve the Gravity probe A test (1976) of the gravitational redshift by a factor of 5.6, providing, to our knowledge, the first reported improvement since more than 40 years.
Mot clés : GNSS, Galileo, Relativité Générale, Décalage Gravitationnel vers le rouge, Principe d'Équivalence
Pacôme Delva 1 ; Neus Puchades 1, 2 ; Erik Schönemann 3 ; Florian Dilssner 3 ; Clément Courde 4 ; Stefano Bertone 5 ; Francisco Gonzalez 6 ; Aurélien Hees 1 ; Christophe Le Poncin-Lafitte 1 ; Frédéric Meynadier 1 ; Roberto Prieto-Cerdeira 6 ; Benoît Sohet 1 ; Javier Ventura-Traveset 7 ; Peter Wolf 1
@article{CRPHYS_2019__20_3_176_0, author = {Pac\^ome Delva and Neus Puchades and Erik Sch\"onemann and Florian Dilssner and Cl\'ement Courde and Stefano Bertone and Francisco Gonzalez and Aur\'elien Hees and Christophe Le Poncin-Lafitte and Fr\'ed\'eric Meynadier and Roberto Prieto-Cerdeira and Beno{\^\i}t Sohet and Javier Ventura-Traveset and Peter Wolf}, title = {A new test of gravitational redshift using {Galileo} satellites: {The} {GREAT} experiment}, journal = {Comptes Rendus. Physique}, pages = {176--182}, publisher = {Elsevier}, volume = {20}, number = {3}, year = {2019}, doi = {10.1016/j.crhy.2019.04.002}, language = {en}, }
TY - JOUR AU - Pacôme Delva AU - Neus Puchades AU - Erik Schönemann AU - Florian Dilssner AU - Clément Courde AU - Stefano Bertone AU - Francisco Gonzalez AU - Aurélien Hees AU - Christophe Le Poncin-Lafitte AU - Frédéric Meynadier AU - Roberto Prieto-Cerdeira AU - Benoît Sohet AU - Javier Ventura-Traveset AU - Peter Wolf TI - A new test of gravitational redshift using Galileo satellites: The GREAT experiment JO - Comptes Rendus. Physique PY - 2019 SP - 176 EP - 182 VL - 20 IS - 3 PB - Elsevier DO - 10.1016/j.crhy.2019.04.002 LA - en ID - CRPHYS_2019__20_3_176_0 ER -
%0 Journal Article %A Pacôme Delva %A Neus Puchades %A Erik Schönemann %A Florian Dilssner %A Clément Courde %A Stefano Bertone %A Francisco Gonzalez %A Aurélien Hees %A Christophe Le Poncin-Lafitte %A Frédéric Meynadier %A Roberto Prieto-Cerdeira %A Benoît Sohet %A Javier Ventura-Traveset %A Peter Wolf %T A new test of gravitational redshift using Galileo satellites: The GREAT experiment %J Comptes Rendus. Physique %D 2019 %P 176-182 %V 20 %N 3 %I Elsevier %R 10.1016/j.crhy.2019.04.002 %G en %F CRPHYS_2019__20_3_176_0
Pacôme Delva; Neus Puchades; Erik Schönemann; Florian Dilssner; Clément Courde; Stefano Bertone; Francisco Gonzalez; Aurélien Hees; Christophe Le Poncin-Lafitte; Frédéric Meynadier; Roberto Prieto-Cerdeira; Benoît Sohet; Javier Ventura-Traveset; Peter Wolf. A new test of gravitational redshift using Galileo satellites: The GREAT experiment. Comptes Rendus. Physique, Volume 20 (2019) no. 3, pp. 176-182. doi : 10.1016/j.crhy.2019.04.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2019.04.002/
[1] Über das Relativitäts Prinzip und die aus denselben gezogenen Folgerungen, Jahrb. d. Rad. u. El., Volume 4 (1907), pp. 411-462
[2] Foundations for a theory of gravitation theories, Phys. Rev. D, Volume 7 (1973) no. 12, pp. 3563-3578 | DOI
[3] The confrontation between general relativity and experiment, Living Rev. Relativ., Volume 17 (2014), p. 4 | DOI
[4] Theory and Experiment in Gravitational Physics, Cambridge University Press, 1993
[5] Test of the gravitational redshift with stable clocks in eccentric orbits: application to Galileo satellites 5 and 6, Class. Quantum Gravity, Volume 32 (2015) no. 23 | DOI
[6] Theoretical aspects of the equivalence principle, Class. Quantum Gravity, Volume 29 (2012) no. 18 | DOI
[7] Varying constants, gravitation and cosmology, Living Rev. Relativ., Volume 14 (2011) no. 2 | DOI
[8] Improved tests of local position invariance using and fountains, Phys. Rev. Lett., Volume 109 (2012) no. 8 | DOI
[9] Frequency ratio of and single-ion optical clocks; metrology at the 17th decimal place, Science, Volume 319 (2008) no. 5871, pp. 1808-1812 | DOI
[10] New limits on variation of the fine-structure constant using atomic dysprosium, Phys. Rev. Lett., Volume 111 (2013) no. 6 | DOI
[11] Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants, Phys. Rev. Lett., Volume 113 (2014) no. 21 | DOI
[12] Improved limit on a temporal variation of from comparisons of and Cs atomic clocks, Phys. Rev. Lett., Volume 113 (2014) no. 21 | DOI
[13] Search for ultralight scalar dark matter with atomic spectroscopy, Phys. Rev. Lett., Volume 115 (2015) no. 1 | DOI
[14] Searching for an oscillating massive scalar field as a dark matter candidate using atomic hyperfine frequency comparisons, Phys. Rev. Lett., Volume 117 (2016) no. 6 | DOI
[15] Further evidence for cosmological evolution of the fine structure constant, Phys. Rev. Lett., Volume 87 (2001) no. 9 | DOI
[16] Indications of a spatial variation of the fine structure constant, Phys. Rev. Lett., Volume 107 (2011) no. 19 | DOI
[17] Limits on the time variation of the electromagnetic fine-structure constant in the low energy limit from absorption lines in the spectra of distant quasars, Phys. Rev. Lett., Volume 92 (2004) no. 12 | DOI
[18] Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys., Volume 571 (2014), p. A16 | DOI
[19] Early-universe constraints on a time-varying fine structure constant, Phys. Rev. D, Volume 64 (2001) no. 10 | DOI
[20] Chameleon fields: awaiting surprises for tests of gravity in space, Phys. Rev. Lett., Volume 93 (2004) no. 17 | DOI
[21] Chameleon cosmology, Phys. Rev. D, Volume 69 (2004) no. 4 | DOI
[22] Tests of local position invariance using continuously running atomic clocks, Phys. Rev. A, Volume 87 (2013) no. 1 | DOI
[23] Testing local position invariance with four cesium-fountain primary frequency standards and four NIST hydrogen masers, Phys. Rev. Lett., Volume 98 (2007) no. 7 | DOI
[24] Apparent weight of photons, Phys. Rev. Lett., Volume 4 (1960) no. 7, pp. 337-341 | DOI
[25] Gravitational red-shift in nuclear resonance, Phys. Rev. Lett., Volume 3 (1959) no. 9, pp. 439-441 | DOI
[26] Resonant absorption of the 14.4-keV γ ray from 0.10-μsec , Phys. Rev. Lett., Volume 3 (1959) no. 12, pp. 554-556 | DOI
[27] Effect of gravity on gamma radiation, Phys. Rev., Volume 140 (1965) no. 3B, p. B788-B803 | DOI
[28] Test of relativistic gravitation with a space-borne hydrogen maser, Phys. Rev. Lett., Volume 45 (1980) no. 26, pp. 2081-2084 | DOI
[29] A test of the equivalence principle using a space-borne clock, Gen. Relativ. Gravit., Volume 10 (1979) no. 3, pp. 181-204 | DOI
[30] Clocks and spaceborne tests of relativistic gravitation, Adv. Space Res., Volume 9 (1989) no. 9, pp. 21-28 | DOI
[31] Gravitational redshift test using eccentric Galileo satellites, Phys. Rev. Lett., Volume 121 (2018) https://link.aps.org/doi/10.1103/PhysRevLett.121.231101 | DOI
[32] Space clocks and fundamental tests: the ACES experiment, Eur. Phys. J. Spec. Top., Volume 172 (2009) no. 1, pp. 57-68 | DOI
[33] Atomic clock ensemble in space (ACES) data analysis, Class. Quantum Gravity, Volume 35 (2018) no. 3 | DOI
[34] others, quantum tests of the Einstein equivalence principle with the STE–QUEST space mission, Adv. Space Res., Volume 55 (2015) no. 1, pp. 501-524 | DOI
[35] et al. Probing the gravitational redshift with an Earth-orbiting satellite, Phys. Lett. A (2018) | DOI
[36] et al. An SLR campaign on Galileo satellites 5 and 6 for a test of the gravitational redshift – the GREAT experiment, Matera, Italy, October, 2015 (2016), pp. 26-30
[37] http://www.iausofa.org (IAU SOFA Software Collection, issue 2016-05-03)
[38] Relativistic theory for clock syntonization and the realization of geocentric coordinate times, Astron. Astrophys., Volume 304 (1995), p. 653
[39] Test of the gravitational redshift with Galileo satellites in an eccentric orbit, Phys. Rev. Lett., Volume 121 (2018) | DOI
Cité par Sources :
Commentaires - Politique