Comptes Rendus
URSI-France 2018 Workshop: Geolocation and navigation / Journées URSI-France 2018 : géolocalisation et navigation
A new test of gravitational redshift using Galileo satellites: The GREAT experiment
[Un nouveau test de décalage gravitationnel vers le rouge à l'aide des satellites Galileo : l'expérience GREAT]
Comptes Rendus. Physique, Volume 20 (2019) no. 3, pp. 176-182.

Nous présentons les résultats de l'analyse de l'expérience GREAT (Galileo gravitational Redshift test with Eccentric sATellites). Une orbite elliptique induit une modulation périodique de la différence de fréquence relative entre une horloge au sol et l'horloge du satellite, due en partie au décalage gravitationnel vers le rouge, tandis que la bonne stabilité des horloges Galileo permet de tester cette modulation périodique à un niveau élevé de précision. Les satellites GSAT0201 et GSAT0202, avec leur grande excentricité et leurs horloges H-maser embarquées, sont des candidats parfaits pour mener à bien ce test. De plus, des données de télémétrie laser sur satellites nous permettent de décorréler partiellement les perturbations de l'orbite et les erreurs d'horloge. En analysant plusieurs années de données de suivi Galileo, nous avons été en mesure d'améliorer le test de Gravity Probe A (1976) du décalage gravitationnel vers le rouge d'un facteur 5.6, fournissant, à notre connaissance, la première amélioration signalée depuis plus de 40 ans.

We present the result of the analysis of the GREAT (Galileo gravitational Redshift test with Eccentric sATellites) experiment. An elliptic orbit induces a periodic modulation of the fractional frequency difference between a ground clock and the satellite clock, partly due to the gravitational redshift, while the good stability of Galileo clocks allows one to test this periodic modulation to a high level of accuracy. GSAT0201 and GSAT0202, with their large eccentricity and on-board H-maser clocks, are perfect candidates to perform this test. Satellite laser ranging data allows us to partly decorrelate the orbit perturbations from the clock errors. By analyzing several years of Galileo tracking data, we have been able to improve the Gravity probe A test (1976) of the gravitational redshift by a factor of 5.6, providing, to our knowledge, the first reported improvement since more than 40 years.

Publié le :
DOI : 10.1016/j.crhy.2019.04.002
Keywords: GNSS, Galileo, General Relativity, Gravitational Redshift, Equivalence Principle
Mot clés : GNSS, Galileo, Relativité Générale, Décalage Gravitationnel vers le rouge, Principe d'Équivalence
Pacôme Delva 1 ; Neus Puchades 1, 2 ; Erik Schönemann 3 ; Florian Dilssner 3 ; Clément Courde 4 ; Stefano Bertone 5 ; Francisco Gonzalez 6 ; Aurélien Hees 1 ; Christophe Le Poncin-Lafitte 1 ; Frédéric Meynadier 1 ; Roberto Prieto-Cerdeira 6 ; Benoît Sohet 1 ; Javier Ventura-Traveset 7 ; Peter Wolf 1

1 SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, LNE, 61, avenue de l'Observatoire, 75014 Paris, France
2 Departamento de Astronomía y Astrofísica, Edificio de Investigación Jerónimo Muñoz, C/Dr. Moliner, 50, 46100 Burjassot (Valencia), Spain
3 European Space Operations Center, ESA/ESOC, Darmstadt, Germany
4 UMR Geoazur, Université de Nice, Observatoire de la Côte d'Azur, 250, rue Albert-Einstein, 06560 Valbonne, France
5 Astronomical Institute, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
6 European Space and Technology Centre, ESA/ESTEC, Noordwijk, The Netherlands
7 European Space and Astronomy Center, ESA/ESAC, Villanueva de la Cañada, Spain
@article{CRPHYS_2019__20_3_176_0,
     author = {Pac\^ome Delva and Neus Puchades and Erik Sch\"onemann and Florian Dilssner and Cl\'ement Courde and Stefano Bertone and Francisco Gonzalez and Aur\'elien Hees and Christophe Le Poncin-Lafitte and Fr\'ed\'eric Meynadier and Roberto Prieto-Cerdeira and Beno{\^\i}t Sohet and Javier Ventura-Traveset and Peter Wolf},
     title = {A new test of gravitational redshift using {Galileo} satellites: {The} {GREAT} experiment},
     journal = {Comptes Rendus. Physique},
     pages = {176--182},
     publisher = {Elsevier},
     volume = {20},
     number = {3},
     year = {2019},
     doi = {10.1016/j.crhy.2019.04.002},
     language = {en},
}
TY  - JOUR
AU  - Pacôme Delva
AU  - Neus Puchades
AU  - Erik Schönemann
AU  - Florian Dilssner
AU  - Clément Courde
AU  - Stefano Bertone
AU  - Francisco Gonzalez
AU  - Aurélien Hees
AU  - Christophe Le Poncin-Lafitte
AU  - Frédéric Meynadier
AU  - Roberto Prieto-Cerdeira
AU  - Benoît Sohet
AU  - Javier Ventura-Traveset
AU  - Peter Wolf
TI  - A new test of gravitational redshift using Galileo satellites: The GREAT experiment
JO  - Comptes Rendus. Physique
PY  - 2019
SP  - 176
EP  - 182
VL  - 20
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crhy.2019.04.002
LA  - en
ID  - CRPHYS_2019__20_3_176_0
ER  - 
%0 Journal Article
%A Pacôme Delva
%A Neus Puchades
%A Erik Schönemann
%A Florian Dilssner
%A Clément Courde
%A Stefano Bertone
%A Francisco Gonzalez
%A Aurélien Hees
%A Christophe Le Poncin-Lafitte
%A Frédéric Meynadier
%A Roberto Prieto-Cerdeira
%A Benoît Sohet
%A Javier Ventura-Traveset
%A Peter Wolf
%T A new test of gravitational redshift using Galileo satellites: The GREAT experiment
%J Comptes Rendus. Physique
%D 2019
%P 176-182
%V 20
%N 3
%I Elsevier
%R 10.1016/j.crhy.2019.04.002
%G en
%F CRPHYS_2019__20_3_176_0
Pacôme Delva; Neus Puchades; Erik Schönemann; Florian Dilssner; Clément Courde; Stefano Bertone; Francisco Gonzalez; Aurélien Hees; Christophe Le Poncin-Lafitte; Frédéric Meynadier; Roberto Prieto-Cerdeira; Benoît Sohet; Javier Ventura-Traveset; Peter Wolf. A new test of gravitational redshift using Galileo satellites: The GREAT experiment. Comptes Rendus. Physique, Volume 20 (2019) no. 3, pp. 176-182. doi : 10.1016/j.crhy.2019.04.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2019.04.002/

[1] A. Einstein Über das Relativitäts Prinzip und die aus denselben gezogenen Folgerungen, Jahrb. d. Rad. u. El., Volume 4 (1907), pp. 411-462

[2] K.S. Thorne; D.L. Lee; A.P. Lightman Foundations for a theory of gravitation theories, Phys. Rev. D, Volume 7 (1973) no. 12, pp. 3563-3578 | DOI

[3] C.M. Will The confrontation between general relativity and experiment, Living Rev. Relativ., Volume 17 (2014), p. 4 | DOI

[4] C.M. Will Theory and Experiment in Gravitational Physics, Cambridge University Press, 1993

[5] P. Delva; A. Hees; S. Bertone; E. Richard; P. Wolf Test of the gravitational redshift with stable clocks in eccentric orbits: application to Galileo satellites 5 and 6, Class. Quantum Gravity, Volume 32 (2015) no. 23 | DOI

[6] T. Damour Theoretical aspects of the equivalence principle, Class. Quantum Gravity, Volume 29 (2012) no. 18 | DOI

[7] J.-P. Uzan Varying constants, gravitation and cosmology, Living Rev. Relativ., Volume 14 (2011) no. 2 | DOI

[8] J. Guéna; M. Abgrall; D. Rovera; P. Rosenbusch; M.E. Tobar; P. Laurent; A. Clairon; S. Bize Improved tests of local position invariance using Rb87 and Cs133 fountains, Phys. Rev. Lett., Volume 109 (2012) no. 8 | DOI

[9] T. Rosenband; D.B. Hume; P.O. Schmidt; C.W. Chou; A. Brusch; L. Lorini; W.H. Oskay; R.E. Drullinger; T.M. Fortier; J.E. Stalnaker; S.A. Diddams; W.C. Swann; N.R. Newbury; W.M. Itano; D.J. Wineland; J.C. Bergquist Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place, Science, Volume 319 (2008) no. 5871, pp. 1808-1812 | DOI

[10] N. Leefer; C.T.M. Weber; A. Cingöz; J.R. Torgerson; D. Budker New limits on variation of the fine-structure constant using atomic dysprosium, Phys. Rev. Lett., Volume 111 (2013) no. 6 | DOI

[11] R.M. Godun; P.B.R. Nisbet-Jones; J.M. Jones; S.A. King; L.A.M. Johnson; H.S. Margolis; K. Szymaniec; S.N. Lea; K. Bongs; P. Gill Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants, Phys. Rev. Lett., Volume 113 (2014) no. 21 | DOI

[12] N. Huntemann; B. Lipphardt; C. Tamm; V. Gerginov; S. Weyers; E. Peik Improved limit on a temporal variation of mp/me from comparisons of Yb+ and Cs atomic clocks, Phys. Rev. Lett., Volume 113 (2014) no. 21 | DOI

[13] K. Van Tilburg; N. Leefer; L. Bougas; D. Budker Search for ultralight scalar dark matter with atomic spectroscopy, Phys. Rev. Lett., Volume 115 (2015) no. 1 | DOI

[14] A. Hees; J. Guéna; M. Abgrall; S. Bize; P. Wolf Searching for an oscillating massive scalar field as a dark matter candidate using atomic hyperfine frequency comparisons, Phys. Rev. Lett., Volume 117 (2016) no. 6 | DOI

[15] J.K. Webb; M.T. Murphy; V.V. Flambaum; V.A. Dzuba; J.D. Barrow; C.W. Churchill; J.X. Prochaska; A.M. Wolfe Further evidence for cosmological evolution of the fine structure constant, Phys. Rev. Lett., Volume 87 (2001) no. 9 | DOI

[16] J.K. Webb; J.A. King; M.T. Murphy; V.V. Flambaum; R.F. Carswell; M.B. Bainbridge Indications of a spatial variation of the fine structure constant, Phys. Rev. Lett., Volume 107 (2011) no. 19 | DOI

[17] R. Srianand; H. Chand; P. Petitjean; B. Aracil Limits on the time variation of the electromagnetic fine-structure constant in the low energy limit from absorption lines in the spectra of distant quasars, Phys. Rev. Lett., Volume 92 (2004) no. 12 | DOI

[18] P. a; R. Ade; N. Aghanim; C. Armitage-Caplan; M. Arnaud; M. Ashdown; F. Atrio-Barandela; J. Aumont; C. Baccigalupi; A.J. Banday; R.B. Barreiro; J.G. Bartlett; E. Battaner; K. Benabed; A. Benoît; A. Benoit-Lévy; J.-P. Bernard; M. Bersanelli; P. Bielewicz; J. Bobin; J.J. Bock; A. Bonaldi; J.R. Bond; J. Borrill; F.R. Bouchet; M. Bridges; M. Bucher; C. Burigana; R.C. Butler; E. Calabrese; B. Cappellini; J.-F. Cardoso; A. Catalano; A. Challinor; A. Chamballu; R.-R. Chary; X. Chen; H.C. Chiang; L.-Y. Chiang; P.R. Christensen; S. Church; D.L. Clements; S. Colombi; L.P.L. Colombo; F. Couchot; A. Coulais; B.P. Crill; A. Curto; F. Cuttaia; L. Danese; R.D. Davies; R.J. Davis; P. de Bernardis; A. de Rosa; G. de Zotti; J. Delabrouille; J.-M. Delouis; F.-X. Désert; C. Dickinson; J.M. Diego; K. Dolag; H. Dole; S. Donzelli; O. Doré; M. Douspis; J. Dunkley; X. Dupac; G. Efstathiou; F. Elsner; T.A. Enßlin; H.K. Eriksen; F. Finelli; O. Forni; M. Frailis; A.A. Fraisse; E. Franceschi; T.C. Gaier; S. Galeotta; S. Galli; K. Ganga; M. Giard; G. Giardino; Y. Giraud-Héraud; E. Gjerløw; J. González-Nuevo; K.M. Górski; S. Gratton; A. Gregorio; A. Gruppuso; J.E. Gudmundsson; J. Haissinski; J. Hamann; F.K. Hansen; D. Hanson; D. Harrison; S. Henrot-Versillé; C. Hernández-Monteagudo; D. Herranz; S.R. Hildebrandt; E. Hivon; M. Hobson; W.A. Holmes; A. Hornstrup; Z. Hou; W. Hovest; K.M. Huffenberger; A.H. Jaffe; T.R. Jaffe; J. Jewell; W.C. Jones; M. Juvela; E. Keihänen; R. Keskitalo; T.S. Kisner; R. Kneissl; J. Knoche; L. Knox; M. Kunz; H. Kurki-Suonio; G. Lagache; A. Lähteenmäki; J.-M. Lamarre; A. Lasenby; M. Lattanzi; R.J. Laureijs; C.R. Lawrence; S. Leach; J.P. Leahy; R. Leonardi; J. León-Tavares; J. Lesgourgues; A. Lewis; M. Liguori; P.B. Lilje; M. Linden-Vørnle; M. López-Caniego; P.M. Lubin; J.F. Macías-Pérez; B. Maffei; D. Maino; N. Mandolesi; M. Maris; D.J. Marshall; P.G. Martin; E. Martínez-González; S. Masi; M. Massardi; S. Matarrese; F. Matthai; P. Mazzotta; P.R. Meinhold; A. Melchiorri; J.-B. Melin; L. Mendes; E. Menegoni; A. Mennella; M. Migliaccio; M. Millea; S. Mitra; M.-A. Miville-Deschênes; A. Moneti; L. Montier; G. Morgante; D. Mortlock; A. Moss; D. Munshi; J.A. Murphy; P. Naselsky; F. Nati; P. Natoli; C.B. Netterfield; H.U. Nørgaard-Nielsen; F. Noviello; D. Novikov; I. Novikov; I.J. O'Dwyer; S. Osborne; C.A. Oxborrow; F. Paci; L. Pagano; F. Pajot; R. Paladini; D. Paoletti; B. Partridge; F. Pasian; G. Patanchon; D. Pearson; T.J. Pearson; H.V. Peiris; O. Perdereau; L. Perotto; F. Perrotta; V. Pettorino; F. Piacentini; M. Piat; E. Pierpaoli; D. Pietrobon; S. Plaszczynski; P. Platania; E. Pointecouteau; G. Polenta; N. Ponthieu; L. Popa; T. Poutanen; G.W. Pratt; G. Prézeau; S. Prunet; J.-L. Puget; J.P. Rachen; W.T. Reach; R. Rebolo; M. Reinecke; M. Remazeilles; C. Renault; S. Ricciardi; T. Riller; I. Ristorcelli; G. Rocha; C. Rosset; G. Roudier; M. Rowan-Robinson; J.A. Rubiño-Martín; B. Rusholme; M. Sandri; D. Santos; M. Savelainen; G. Savini; D. Scott; M.D. Seiffert; E.P.S. Shellard; L.D. Spencer; J.-L. Starck; V. Stolyarov; R. Stompor; R. Sudiwala; R. Sunyaev; F. Sureau; D. Sutton; A.-S. Suur-Uski; J.-F. Sygnet; J.A. Tauber; D. Tavagnacco; L. Terenzi; L. Toffolatti; M. Tomasi; M. Tristram; M. Tucci; J. Tuovinen; M. Türler; G. Umana; L. Valenziano; J. Valiviita; B.V. Tent; P. Vielva; F. Villa; N. Vittorio; L.A. Wade; B.D. Wandelt; I.K. Wehus; M. White; S.D.M. White; A. Wilkinson; D. Yvon; A. Zacchei; A. Zonca Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys., Volume 571 (2014), p. A16 | DOI

[19] P.P. Avelino; S. Esposito; G. Mangano; C.J.A.P. Martins; A. Melchiorri; G. Miele; O. Pisanti; G. Rocha; P.T.P. Viana Early-universe constraints on a time-varying fine structure constant, Phys. Rev. D, Volume 64 (2001) no. 10 | DOI

[20] J. Khoury; A. Weltman Chameleon fields: awaiting surprises for tests of gravity in space, Phys. Rev. Lett., Volume 93 (2004) no. 17 | DOI

[21] J. Khoury; A. Weltman Chameleon cosmology, Phys. Rev. D, Volume 69 (2004) no. 4 | DOI

[22] S. Peil; S. Crane; J.L. Hanssen; T.B. Swanson; C.R. Ekstrom Tests of local position invariance using continuously running atomic clocks, Phys. Rev. A, Volume 87 (2013) no. 1 | DOI

[23] N. Ashby; T.P. Heavner; S.R. Jefferts; T.E. Parker; A.G. Radnaev; Y.O. Dudin Testing local position invariance with four cesium-fountain primary frequency standards and four NIST hydrogen masers, Phys. Rev. Lett., Volume 98 (2007) no. 7 | DOI

[24] R.V. Pound; G.A. Rebka Apparent weight of photons, Phys. Rev. Lett., Volume 4 (1960) no. 7, pp. 337-341 | DOI

[25] R.V. Pound; G.A. Rebka Gravitational red-shift in nuclear resonance, Phys. Rev. Lett., Volume 3 (1959) no. 9, pp. 439-441 | DOI

[26] R.V. Pound; G.A. Rebka Resonant absorption of the 14.4-keV γ ray from 0.10-μsec Fe57, Phys. Rev. Lett., Volume 3 (1959) no. 12, pp. 554-556 | DOI

[27] R.V. Pound; J.L. Snider Effect of gravity on gamma radiation, Phys. Rev., Volume 140 (1965) no. 3B, p. B788-B803 | DOI

[28] R.F.C. Vessot; M.W. Levine; E.M. Mattison; E.L. Blomberg; T.E. Hoffman; G.U. Nystrom; B.F. Farrel; R. Decher; P.B. Eby; C.R. Baugher; J.W. Watts; D.L. Teuber; F.D. Wills Test of relativistic gravitation with a space-borne hydrogen maser, Phys. Rev. Lett., Volume 45 (1980) no. 26, pp. 2081-2084 | DOI

[29] R.F.C. Vessot; M.W. Levine A test of the equivalence principle using a space-borne clock, Gen. Relativ. Gravit., Volume 10 (1979) no. 3, pp. 181-204 | DOI

[30] R.F.C. Vessot Clocks and spaceborne tests of relativistic gravitation, Adv. Space Res., Volume 9 (1989) no. 9, pp. 21-28 | DOI

[31] P. Delva; N. Puchades; E. Schönemann; F. Dilssner; C. Courde; S. Bertone; F. Gonzalez; A. Hees; C. Le Poncin-Lafitte; F. Meynadier; R. Prieto-Cerdeira; B. Sohet; J. Ventura-Traveset; P. Wolf Gravitational redshift test using eccentric Galileo satellites, Phys. Rev. Lett., Volume 121 (2018) https://link.aps.org/doi/10.1103/PhysRevLett.121.231101 | DOI

[32] L. Cacciapuoti; C. Salomon Space clocks and fundamental tests: the ACES experiment, Eur. Phys. J. Spec. Top., Volume 172 (2009) no. 1, pp. 57-68 | DOI

[33] F. Meynadier; P. Delva; C. le Poncin-Lafitte; C. Guerlin; P. Wolf Atomic clock ensemble in space (ACES) data analysis, Class. Quantum Gravity, Volume 35 (2018) no. 3 | DOI

[34] B. Altschul; Q.G. Bailey; L. Blanchet; K. Bongs; P. Bouyer; L. Cacciapuoti; S. Capozziello; N. Gaaloul; D. Giulini; J. Hartwig others, quantum tests of the Einstein equivalence principle with the STE–QUEST space mission, Adv. Space Res., Volume 55 (2015) no. 1, pp. 501-524 | DOI

[35] D.A. Litvinov; V.N. Rudenko; A.V. Alakoz; U. Bach; N. Bartel; A.V. Belonenko; K.G. Belousov; M. Bietenholz; A.V. Biriukov; R. Carman et al. Probing the gravitational redshift with an Earth-orbiting satellite, Phys. Lett. A (2018) | DOI

[36] P. Delva; M. Aimar; D. Albanese; S. Bertone; C. Courde; F. Deleflie; P. Exertier; D. Feraudy; A. Hees; S. Herrmann et al. An SLR campaign on Galileo satellites 5 and 6 for a test of the gravitational redshift – the GREAT experiment, Matera, Italy, October, 2015 (2016), pp. 26-30

[37] IAU SOFA Board http://www.iausofa.org (IAU SOFA Software Collection, issue 2016-05-03)

[38] P. Wolf; G. Petit Relativistic theory for clock syntonization and the realization of geocentric coordinate times, Astron. Astrophys., Volume 304 (1995), p. 653

[39] S. Herrmann; F. Finke; M. Lülf; O. Kichakova; D. Puetzfeld; D. Knickmann; M. List; B. Rievers; G. Giorgi; C. Günther; H. Dittus; R. Prieto-Cerdeira; F. Dilssner; F. Gonzalez; E. Schönemann; J. Ventura-Traveset; C. Lämmerzahl Test of the gravitational redshift with Galileo satellites in an eccentric orbit, Phys. Rev. Lett., Volume 121 (2018) | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Time and frequency comparisons using radiofrequency signals from satellites

Andreas Bauch

C. R. Phys (2015)


Atomic fountains and optical clocks at SYRTE: Status and perspectives

Michel Abgrall; Baptiste Chupin; Luigi De Sarlo; ...

C. R. Phys (2015)


Some fundamental physics experiments using atomic clocks and sensors

Christine Guerlin; Pacôme Delva; Peter Wolf

C. R. Phys (2015)