Comptes Rendus
From statistical physics to social sciences / De la physique statistique aux sciences sociales
Statistical Physics Of Opinion Formation: Is it a SPOOF?
[Physique statistique de la formation d'opinion : est-ce une blague ?]
Comptes Rendus. Physique, Volume 20 (2019) no. 4, pp. 244-261.

Nous présentons une brève revue basée sur le modèle non linéaire de l'électeur portant sur les problèmes et les méthodes soulevés en physique statistique de la formation d'opinion (Statistical Physics of Opinion Formation ou « SPOOF »). Nous décrivons les relations entre les modèles de formation de l'opinion, développés par les physiciens, et les modèles théoriques de réponse sociale, connus en psychologie sociale. Nous attirons l'attention sur des questions intéressantes pour les psychologues sociaux et les physiciens. Nous montrons des exemples d'études directement inspirées de la psychologie sociale comme : « indépendance contre anticonformité » ou « personnalité contre situation ». Nous résumons les résultats déjà obtenus et indiquons ce qui peut être fait d'autre, également en ce qui concerne les autres modèles du SPOOF. Enfin, nous démontrons plusieurs méthodes analytiques utiles dans le SPOOF, telles que le concept de force et de potentiel effectifs, l'approche de Landau des transitions de phase, ou les approximations de champ moyen et de paire.

We present a short review based on the nonlinear q-voter model about problems and methods raised within statistical physics of opinion formation (SPOOF). We describe relations between models of opinion formation, developed by physicists, and theoretical models of social response, known in social psychology. We draw attention to issues that are interesting for social psychologists and physicists. We show examples of studies directly inspired by social psychology like: “independence vs. anticonformity” or “personality vs. situation”. We summarize the results that have been already obtained and point out what else can be done, also with respect to other models in SPOOF. Finally, we demonstrate several analytical methods useful in SPOOF, such as the concept of effective force and potential, Landau's approach to phase transitions, or mean-field and pair approximations.

Publié le :
DOI : 10.1016/j.crhy.2019.05.002
Keywords: Opinion dynamics, Agent-based modeling, Social influence, Voter model, Sznajd model
Mot clés : Dynamique de l'opinion, Modélisation basée sur l'agent, Influence sociale, Modèle de l'électeur, Modèle de Sznajd

Arkadiusz Jędrzejewski 1 ; Katarzyna Sznajd-Weron 1

1 Department of Theoretical Physics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wrocław, Poland
@article{CRPHYS_2019__20_4_244_0,
     author = {Arkadiusz J\k{e}drzejewski and Katarzyna Sznajd-Weron},
     title = {Statistical {Physics} {Of} {Opinion} {Formation:} {Is} it a {SPOOF?}},
     journal = {Comptes Rendus. Physique},
     pages = {244--261},
     publisher = {Elsevier},
     volume = {20},
     number = {4},
     year = {2019},
     doi = {10.1016/j.crhy.2019.05.002},
     language = {en},
}
TY  - JOUR
AU  - Arkadiusz Jędrzejewski
AU  - Katarzyna Sznajd-Weron
TI  - Statistical Physics Of Opinion Formation: Is it a SPOOF?
JO  - Comptes Rendus. Physique
PY  - 2019
SP  - 244
EP  - 261
VL  - 20
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crhy.2019.05.002
LA  - en
ID  - CRPHYS_2019__20_4_244_0
ER  - 
%0 Journal Article
%A Arkadiusz Jędrzejewski
%A Katarzyna Sznajd-Weron
%T Statistical Physics Of Opinion Formation: Is it a SPOOF?
%J Comptes Rendus. Physique
%D 2019
%P 244-261
%V 20
%N 4
%I Elsevier
%R 10.1016/j.crhy.2019.05.002
%G en
%F CRPHYS_2019__20_4_244_0
Arkadiusz Jędrzejewski; Katarzyna Sznajd-Weron. Statistical Physics Of Opinion Formation: Is it a SPOOF?. Comptes Rendus. Physique, Volume 20 (2019) no. 4, pp. 244-261. doi : 10.1016/j.crhy.2019.05.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2019.05.002/

[1] A. Nowak; J. Szamrej; B. Latané From private attitude to public opinion: a dynamic theory of social impact, Psychol. Rev., Volume 97 (1990) no. 3, pp. 362-376 | DOI

[2] E. Smith; F. Conrey Agent-based modeling: a new approach for theory building in social psychology, Personal. Soc. Psychol. Rev., Volume 11 (2007) no. 1, pp. 87-104 | DOI

[3] M. Henkel; H. Hinrichsen; S. Lübeck Non-Equilibrium Phase Transitions: vol. 1: Absorbing Phase Transitions, Springer, Netherlands, 2008

[4] T.M. Liggett Interacting Particle Systems, Springer, 1985

[5] S. Redner Reality inspired voter models: a mini-review, 2018 | arXiv

[6] C. Castellano; M.A. Muñoz; R. Pastor-Satorras Nonlinear q-voter model, Phys. Rev. E, Volume 80 (2009) no. 4 | DOI

[7] D.J. Watts A simple model of global cascades on random networks, Proc. Natl. Acad. Sci. USA, Volume 99 (2002) no. 9, pp. 5766-5771 | DOI

[8] M. Macy; R. Willer From factors to actors: computational sociology and agent-based modeling, Annu. Rev. Sociol., Volume 28 (2002), pp. 143-166 | DOI

[9] J. Jackson; D. Rand; K. Lewis; M. Norton; K. Gray Agent-based modeling: a guide for social psychologists, Soc. Psychol. Pers. Sci., Volume 8 (2017) no. 4, pp. 387-395 | DOI

[10] A. Nowak; R.R. Vallacher Dynamical Social Psychology, Guilford Press, 1998

[11] P. Nyczka; K. Sznajd-Weron; J. Cisło Phase transitions in the q-voter model with two types of stochastic driving, Phys. Rev. E, Volume 86 (2012) no. 1 | DOI

[12] A. Jędrzejewski Pair approximation for the q-voter model with independence on complex networks, Phys. Rev. E, Volume 95 (2017) no. 1 | DOI

[13] A.R. Vieira; C. Anteneodo Threshold q-voter model, Phys. Rev. E, Volume 97 (2018) no. 5 | DOI

[14] A. Peralta; A. Carro; M. San Miguel; R. Toral Analytical and numerical study of the non-linear noisy voter model on complex networks, Chaos, Volume 28 (2018) | DOI

[15] O. Artime; A. Carro; A.F. Peralta; J.J. Ramasco; M. San Miguel; R. Toral Herding and idiosyncratic choices: nonlinearity and aging-induced transitions in the noisy voter model, 2018 | arXiv

[16] A. Jędrzejewski; K. Sznajd-Weron Person–situation debate revisited: phase transitions with quenched and annealed disorders, Entropy, Volume 19 (2017) no. 8, p. 415 | DOI

[17] P.R. Nail; K. Sznajd-Weron The diamond model of social response within an agent-based approach, Acta Phys. Pol. A, Volume 129 (2016) no. 5, pp. 1050-1054 | DOI

[18] P.R. Nail; K. Sznajd-Weron Rethinking the diamond model: theory and research support self-anticonformity as a basic response and influence process (D.J. Howard, ed.), Psychology Research Progress. the Psychology of Consumer and Social Influence: Theory and Research, Nova Science Publishers, 2016, pp. 99-136

[19] K. Byrka; A. Jędrzejewski; K. Sznajd-Weron; R. Weron Difficulty is critical: the importance of social factors in modeling diffusion of green products and practices, Renew. Sustain. Energy Rev., Volume 62 (2016), pp. 723-735 | DOI

[20] A. Jędrzejewski; G. Marcjasz; P.R. Nail; K. Sznajd-Weron Think then act or act then think?, PLoS ONE, Volume 13 (2018) no. 11, pp. 1-19 | DOI

[21] P. Nyczka; K. Byrka; P.R. Nail; K. Sznajd-Weron Conformity in numbers–does criticality in social responses exist?, PLoS ONE, Volume 13 (2018) no. 12, pp. 1-18 | DOI

[22] T. Krueger; J. Szwabiński; T. Weron Conformity, anticonformity and polarization of opinions: insights from a mathematical model of opinion dynamics, Entropy, Volume 19 (2017) no. 7, p. 371 | DOI

[23] P. Siedlecki; J. Szwabiński; T. Weron The interplay between conformity and anticonformity and its polarizing effect on society, J. Artif. Soc. Soc. Simul., Volume 19 (2016) no. 4, p. 9 | DOI

[24] K. Sznajd-Weron; J. Szwabiński; R. Weron; T. Weron Rewiring the network. what helps an innovation to diffuse?, J. Stat. Mech. Theory Exp., Volume 2014 (2014) no. 3 | DOI

[25] T. Weron; A. Kowalska-Pyzalska; R. Weron The role of educational trainings in the diffusion of smart metering platforms: an agent-based modeling approach, Physica A, Volume 505 (2018), pp. 591-600 | DOI

[26] B. Min; M. San Miguel Fragmentation transitions in a coevolving nonlinear voter model, Sci. Rep., Volume 7 (2017) no. 1 | DOI

[27] T. Raducha; B. Min; M. San Miguel Coevolving nonlinear voter model with triadic closure, Europhys. Lett., Volume 124 (2018) | DOI

[28] B. Min; M. San Miguel Multilayer coevolution dynamics of the nonlinear voter model, New J. Phys., Volume 21 (2019) no. 3 | DOI

[29] D.G. Myers Social Psychology, McGraw-Hill, New York, 2010

[30] R. Bond Group size and conformity, Group Process. Intergroup Relat., Volume 8 (2005) no. 4, pp. 331-354 | DOI

[31] P. Nail; S. Di Domenico; G. MacDonald Proposal of a double diamond model of social response, Rev. Gen. Psychol., Volume 17 (2013) no. 1, pp. 1-19 | DOI

[32] P. Nail; G. MacDonald; D. Levy Proposal of a four-dimensional model of social response, Psychol. Bull., Volume 126 (2000) no. 3, pp. 454-470 | DOI

[33] S.E. Asch Opinions and social pressure, Sci. Am., Volume 193 (1955) no. 5, pp. 31-35 | DOI

[34] S.E. Asch Studies of independence and conformity: I. A minority of one against a unanimous majority, Psychol. Monographs: General Appl., Volume 70 (1956) no. 9, pp. 1-70 | DOI

[35] R. Nisbett The trait construct in lay and professional psychology (L. Festinger, ed.), Retrospectives on Social Psychology, Oxford University Press, 1980, pp. 109-130

[36] M.B. Donnellan; R.E. Lucas; W. Fleeson Introduction to personality and assessment at age 40: reflections on the legacy of the person-situation debate and the future of person–situation integration, J. Res. Pers., Volume 43 (2009) no. 2, pp. 117-119 | DOI

[37] R. Willis Conformity, independence, and anticonformity, Hum. Relat., Volume 18 (1965) no. 4, pp. 373-388 | DOI

[38] P. Nyczka; K. Sznajd-Weron Anticonformity or independence?–Insights from statistical physics, J. Stat. Phys., Volume 151 (2013) no. 1–2, pp. 174-202 | DOI

[39] G. Li; H. Chen; F. Huang; C. Shen Discontinuous phase transition in an annealed multi-state majority-vote model, J. Stat. Mech. Theory Exp., Volume 2016 (2016) no. 7 | DOI

[40] M. de Oliveira Isotropic majority-vote model on a square lattice, J. Stat. Phys., Volume 66 (1992) no. 1–2, pp. 273-281 | DOI

[41] A. Vieira; N. Crokidakis Phase transitions in the majority-vote model with two types of noises, Physica A, Volume 450 (2016), pp. 30-36 | DOI

[42] J. Encinas; H. Chen; M. de Oliveira; C. Fiore Majority vote model with ancillary noise in complex networks, Physica A, Volume 516 (2019), pp. 563-570 | DOI

[43] B. Krahé Personality and Social Psychology: Towards a Synthesis, SAGE Publications, Inc, 1992

[44] W. Fleeson Moving personality beyond the person-situation debate: the challenge and the opportunity of within-person variability, Curr. Dir. Psychol. Sci., Volume 13 (2004) no. 2, pp. 83-87 | DOI

[45] M. Mobilia Nonlinear q-voter model with inflexible zealots, Phys. Rev. E, Volume 92 (2015) no. 1 | DOI

[46] A. Mellor; M. Mobilia; R. Zia Characterization of the nonequilibrium steady state of a heterogeneous nonlinear q-voter model with zealotry, Europhys. Lett., Volume 113 (2016) no. 4 | DOI

[47] A. Mellor; M. Mobilia; R. Zia Heterogeneous out-of-equilibrium nonlinear q-voter model with zealotry, Phys. Rev. E, Volume 95 (2017) no. 1 | DOI

[48] W. Radosz; A. Mielnik-Pyszczorski; M. Brzezińska; K. Sznajd-Weron q-voter model with nonconformity in freely forming groups: does the size distribution matter?, Phys. Rev. E, Volume 95 (2017) no. 6 | DOI

[49] K. Sznajd-Weron; J. Szwabiński; R. Weron Is the person-situation debate important for agent-based modeling and vice-versa?, PLoS ONE, Volume 9 (2014) no. 11 | DOI

[50] M.A. Javarone; T. Squartini Conformism-driven phases of opinion formation on heterogeneous networks: the q-voter model case, J. Stat. Mech. Theory Exp., Volume 2015 (2015) no. 10 | DOI

[51] S. Tanabe; N. Masuda Complex dynamics of a nonlinear voter model with contrarian agents, Chaos, Volume 23 (2013) no. 4 | DOI

[52] A. Jędrzejewski; K. Sznajd-Weron Impact of memory on opinion dynamics, Physica A, Volume 505 (2018), pp. 306-315 | DOI

[53] A. Sîrbu; V. Loreto; V.D.P. Servedio; F. Tria Opinion dynamics: models, extensions and external effects, Participatory Sensing, Opinions and Collective Awareness, Springer, Cham, 2017, pp. 363-401 | DOI

[54] A.C.R. Martins Continuous opinions and discrete actions in opinion dynamics problems, J. Mod. Phys. C, Volume 19 (2008) no. 4, pp. 617-624 | DOI

[55] A.C.R. Martins; S. Galam Building up of individual inflexibility in opinion dynamics, Phys. Rev. E, Volume 87 (2013) no. 4 | DOI

[56] S. Galam Social paradoxes of majority rule voting and renormalization group, J. Stat. Phys., Volume 61 (1990) no. 3–4, pp. 943-951 | DOI

[57] T. Tome; M. De Oliveira; M. Santos Non-equilibrium Ising model with competing Glauber dynamics, J. Phys. A, Volume 24 (1991) no. 15, pp. 3677-3686 | DOI

[58] S. Galam; S. Moscovici Towards a theory of collective phenomena: consensus and attitude changes in groups, Eur. J. Soc. Psychol., Volume 21 (1991) no. 1, pp. 49-74 | DOI

[59] S. Galam Rational group decision making: a random field Ising model at t=0, Physica A, Volume 238 (1997) no. 1, pp. 66-80 | DOI

[60] J. Lorenz Continuous opinion dynamics under bounded confidence: a survey, Int. J. Mod. Phys. C, Volume 18 (2007) no. 12, pp. 1819-1838 | DOI

[61] G. Deffuant; D. Neau; F. Amblard; G. Weisbuch Mixing beliefs among interacting agents, Adv. Complex Syst., Volume 3 (2000) no. 1, pp. 87-98 | DOI

[62] R. Hegselmann; U. Krause Opinion dynamics and bounded confidence, models, analysis and simulation, J. Artif. Soc. Soc. Simul., Volume 5 (2002) no. 3, pp. 1-33 http://jasss.soc.surrey.ac.uk/5/3/2.html

[63] K. Sznajd-Weron; J. Sznajd Opinion evolution in closed community, Int. J. Mod. Phys. C, Volume 11 (2000) no. 6, pp. 1157-1165 | DOI

[64] S. Galam The drastic outcomes from voting alliances in three-party bottom-up democratic voting (19902013), J. Stat. Phys., Volume 151 (2013) no. 1, pp. 46-68 | DOI

[65] K. Sznajd-Weron; R. Weron; M. Włoszczowska Outflow dynamics in modeling oligopoly markets: the case of the mobile telecommunications market in Poland, J. Stat. Mech. Theory Exp., Volume 2008 (2008) no. 11 | DOI

[66] H. Chen; G. Li Phase transitions in a multistate majority-vote model on complex networks, Phys. Rev. E, Volume 97 (2018) no. 6 | DOI

[67] R. Axelrod The dissemination of culture: a model with local convergence and global polarization, J. Confl. Resolut., Volume 41 (1997) no. 2, pp. 203-226 | DOI

[68] K. Sznajd-Weron; J. Sznajd Who is left, who is right?, Physica A, Volume 351 (2005) no. 2–4, pp. 593-604 | DOI

[69] M.T. Gastner; B. Oborny; M. Gulyás Consensus time in a voter model with concealed and publicly expressed opinions, J. Stat. Mech. Theory Exp., Volume 2018 (2018) no. 6 | DOI

[70] S. Fortunato; V. Latora; A. Pluchino; A. Rapisarda Vector opinion dynamics in a bounded confidence consensus model, Int. J. Mod. Phys. C, Volume 16 (2005) no. 10, pp. 1535-1551 | DOI

[71] P. Nyczka; J. Cisło; K. Sznajd-Weron Opinion dynamics as a movement in a bistable potential, Physica A, Volume 391 (2012) no. 1–2, pp. 317-327 | DOI

[72] A. Jędrzejewski; K. Sznajd-Weron; J. Szwabiński Mapping the q-voter model: from a single chain to complex networks, Physica A, Volume 446 (2016), pp. 110-119 | DOI

[73] H.-X. Yang; W.-X. Wang; Y.-C. Lai; B.-H. Wang Convergence to global consensus in opinion dynamics under a nonlinear voter model, Phys. Lett. A, Volume 376 (2012) no. 4, pp. 282-285 | DOI

[74] A. Timpanaro; C. Prado Connections between the Sznajd model with general confidence rules and graph theory, Phys. Rev. E, Volume 86 (2012) no. 4 | DOI

[75] A.M. Timpanaro; C.P. Prado Exit probability of the one-dimensional q-voter model: analytical results and simulations for large networks, Phys. Rev. E, Volume 89 (2014) no. 5 | DOI

[76] A.M. Timpanaro; S. Galam Analytical expression for the exit probability of the q-voter model in one dimension, Phys. Rev. E, Volume 92 (2015) no. 1 | DOI

[77] A. Chmiel; K. Sznajd-Weron Phase transitions in the q-voter model with noise on a duplex clique, Phys. Rev. E, Volume 92 (2015) no. 5 | DOI

[78] P. Przybyła; K. Sznajd-Weron; M. Tabiszewski Exit probability in a one-dimensional nonlinear q-voter model, Phys. Rev. E, Volume 84 (2011) no. 3 | DOI

[79] K. Sznajd-Weron; K.M. Suszczynski A nonlinear q-voter model with deadlocks on the Watts–Strogatz graph, J. Stat. Mech. Theory Exp., Volume 2014 (2014) no. 7 | DOI

[80] A. Carro; R. Toral; M. San Miguel The noisy voter model on complex networks, Sci. Rep., Volume 6 (2016) | DOI

[81] A. Peralta; A. Carro; M. San Miguel; R. Toral Stochastic pair approximation treatment of the noisy voter model, New J. Phys., Volume 20 (2018) no. 10 | DOI

[82] N. Khalil; M. San Miguel; R. Toral Zealots in the mean-field noisy voter model, Phys. Rev. E, Volume 97 (2018) no. 1 | DOI

[83] S. Galam Contrarian deterministic effects on opinion dynamics: “the hung elections scenario”, Physica A, Volume 333 (2004), pp. 453-460 | DOI

[84] S. Galam From 2000 Bush–Gore to 2006 Italian elections: voting at fifty–fifty and the contrarian effect, Qual. Quant., Volume 41 (2007) no. 4, pp. 579-589 | DOI

[85] P. Moretti; S. Liu; C. Castellano; R. Pastor-Satorras Mean-field analysis of the q-voter model on networks, J. Stat. Phys., Volume 151 (2013) no. 1–2, pp. 113-130 | DOI

[86] S. Galam Minority opinion spreading in random geometry, Eur. Phys. J. B, Volume 25 (2002) no. 4, pp. 403-406 | DOI

[87] S. Galam The dynamics of minority opinions in democratic debate, Physica A, Volume 336 (2004) no. 1–2, pp. 56-62 | DOI

[88] S. Galam The Trump phenomenon: An explanation from sociophysics, Int. J. Mod. Phys. B, Volume 31 (2017) no. 10 | DOI

[89] A. Bernardes; U. Costa; A. Araujo; D. Stauffer Damage spreading, coarsening dynamics and distribution of political votes in Sznajd model on square lattice, Int. J. Mod. Phys. A, Volume 12 (2001) no. 2, pp. 159-167 | DOI

[90] J. Fernández-Gracia; K. Suchecki; J.J. Ramasco; M. San Miguel; V.M. Eguíluz Is the voter model a model for voters?, Phys. Rev. Lett., Volume 112 (2014) no. 15 | DOI

[91] J. Michaud; A. Szilva Social influence with recurrent mobility and multiple options, Phys. Rev. E, Volume 97 (2018) no. 6 | DOI

[92] K. Kułakowski; M. Nawojczyk The Galam model of minority opinion spreading and the marriage gap, Int. J. Mod. Phys. A, Volume 19 (2008) no. 04, pp. 611-615 | DOI

[93] M. Moussaïd; J.E. Kämmer; P.P. Analytis; H. Neth Social influence and the collective dynamics of opinion formation, PLoS ONE, Volume 8 (2013) no. 11, pp. 1-8 | DOI

[94] D. Centola; J. Becker; D. Brackbill; A. Baronchelli Experimental evidence for tipping points in social convention, Science, Volume 360 (2018) no. 6393, pp. 1116-1119 | DOI

[95] K. Berlemont; J.-P. Nadal Perceptual decision-making: biases in post-error reaction times explained by attractor network dynamics, J. Neurosci., Volume 39 (2019) no. 5, pp. 833-853 | DOI

[96] D. Campbell-Meiklejohn; D. Bach; A. Roepstorff; R. Dolan; C. Frith How the opinion of others affects our valuation of objects, Curr. Biol., Volume 20 (2010) no. 13, pp. 1165-1170 | DOI

[97] D.O. Madsena; T. Stenheimb Experimental methods in economics and psychology: a comparison, Proc., Soc. Behav. Sci., Volume 187 (2015), pp. 113-117 | DOI

[98] M. Argyle Social pressure in public and private situations, J. Abnorm. Soc. Psychol., Volume 2 (1957), pp. 172-175 | DOI

[99] J.P. Gleeson Binary-state dynamics on complex networks: pair approximation and beyond, Phys. Rev. X, Volume 3 (2013) no. 2 | DOI

[100] L.P. Kadanoff More is the same; phase transitions and mean field theories, J. Stat. Phys., Volume 137 (2009) no. 5–6, p. 777 | DOI

[101] P. Weiss L'hypothèse du champ moléculaire et la propriété ferromagnétique, J. Phys. Theor. Appl., Volume 6 (1907) no. 1, pp. 661-690

[102] P.L. Krapivsky; S. Redner; E. Ben-Naim A Kinetic View of Statistical Physics, Cambridge University Press, 2010

[103] J. Marro; R. Dickman Nonequilibrium Phase Transitions in Lattice Models, Cambridge University Press, 2005

[104] C. Escudero; S.B. Yuste; E. Abad; F.L. Vot Reaction–diffusion kinetics in growing domains (A.S.S. Rao; C. Rao, eds.), Integrated Population Biology and Modeling, Part A, Handbook of Statistics, vol. 39, Elsevier, 2018, pp. 131-151 (Chapter 4) | DOI

[105] F. Vazquez; X. Castelló; M. San Miguel Agent based models of language competition: macroscopic descriptions and order–disorder transitions, J. Stat. Mech. Theory Exp., Volume 2010 (2010) no. 04 | DOI

[106] X. Qian; Y. Deng; Y. Liu; W. Guo; H.W. Blöte Equivalent-neighbor Potts models in two dimensions, Phys. Rev. E, Volume 94 (2016) no. 5 | DOI

[107] H. Hinrichsen Non-equilibrium critical phenomena and phase transitions into absorbing states, Adv. Phys., Volume 49 (2000) no. 7, pp. 815-958 | DOI

[108] L.D. Landau On the theory of phase transitions, Zh. Eksp. Teor. Fiz., Volume 7 (1937), pp. 19-32

[109] L. Landau; E. Lifshitz Statistical Physics, Course of Theoretical Physics, vol. 5, Pergamon Press, 1980

[110] S. Strogatz Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, Perseus Books Publishing, 1994

[111] J.M. Coey Magnetism and Magnetic Materials, Cambridge University Press, 2010

[112] M. Plischke; B. Bergersen Equilibrium Statistical Physics, World Scientific, 2006 | DOI

[113] O. Al Hammal; H. Chaté; I. Dornic; M.A. Munoz Langevin description of critical phenomena with two symmetric absorbing states, Phys. Rev. Lett., Volume 94 (2005) no. 23 | DOI

[114] F. Vazquez; C. López Systems with two symmetric absorbing states: relating the microscopic dynamics with the macroscopic behavior, Phys. Rev. E, Volume 78 (2008) no. 6 | DOI

[115] F. Schweitzer; L. Behera Nonlinear voter models: the transition from invasion to coexistence, Eur. Phys. J. B, Volume 67 (2009) no. 3, pp. 301-318 | DOI

[116] R. Apriasz; T. Krueger; G. Marcjasz; K. Sznajd-Weron The hunt opinion model–an agent based approach to recurring fashion cycles, PLoS ONE, Volume 11 (2016) no. 11, pp. 1-19 | DOI

[117] J.P. Gleeson; S. Melnik; J.A. Ward; M.A. Porter; P.J. Mucha Accuracy of mean-field theory for dynamics on real-world networks, Phys. Rev. E, Volume 85 (2012) no. 2 | DOI

[118] A. Baronchelli; R. Pastor-Satorras Mean-field diffusive dynamics on weighted networks, Phys. Rev. E, Volume 82 (2010) no. 1 | DOI

[119] P. Moretti; S. Liu; A. Baronchelli; R. Pastor-Satorras Heterogenous mean-field analysis of a generalized voter-like model on networks, Eur. Phys. J. B, Volume 85 (2012) no. 3, p. 88 | DOI

[120] F. Vazquez; V.M. Eguíluz Analytical solution of the voter model on uncorrelated networks, New J. Phys., Volume 10 (2008) no. 6 | DOI

[121] S. Boccaletti; V. Latora; Y. Moreno; M. Chavez; D.-U. Hwang Complex networks: structure and dynamics, Phys. Rep., Volume 424 (2006) no. 4–5, pp. 175-308 | DOI

[122] T. Gross; B. Blasius Adaptive coevolutionary networks: a review, J. R. Soc. Interface, Volume 5 (2008) no. 20, p. 259 | DOI

[123] F. Vazquez; V.M. Eguíluz; M. San Miguel Generic absorbing transition in coevolution dynamics, Phys. Rev. Lett., Volume 100 (2008) no. 10 | DOI

[124] J. Toruniewska; K. Kułakowski; K. Suchecki; J.A. Hołyst Coupling of link-and node-ordering in the coevolving voter model, Phys. Rev. E, Volume 96 (2017) no. 4 | DOI

[125] E. Pugliese; C. Castellano Heterogeneous pair approximation for voter models on networks, Europhys. Lett., Volume 88 (2009) no. 5 | DOI

Cité par Sources :

Commentaires - Politique