Comptes Rendus
From statistical physics to social sciences / De la physique statistique aux sciences sociales
Reality-inspired voter models: A mini-review
[Modèles d'électeurs inspirés de la réalité : une mini-revue]
Comptes Rendus. Physique, Volume 20 (2019) no. 4, pp. 275-292.

Cette mini-revue présente des extensions du modèle de l'électeur qui intègrent divers éléments plausibles des processus réels de prise de décision par des individus. Bien que ces généralisations ne soient pas calibrées par des données empiriques, la dynamique qui en résulte suggère des comportements sociaux collectifs réalistes.

This mini-review presents extensions of the voter model that incorporate various plausible features of real decision-making processes by individuals. Although these generalizations are not calibrated by empirical data, the resulting dynamics are suggestive of realistic collective social behaviors.

Publié le :
DOI : 10.1016/j.crhy.2019.05.004
Keywords: Voter model, Heterogeneity, Networks, Non-conserved dynamics, Majority rule, Multiple states
Mot clés : Modèle de l'électeur, Hétérogénéité, Réseaux, Dynamique non conservée, Règle de la majorité, États multiples

Sidney Redner 1

1 Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
@article{CRPHYS_2019__20_4_275_0,
     author = {Sidney Redner},
     title = {Reality-inspired voter models: {A} mini-review},
     journal = {Comptes Rendus. Physique},
     pages = {275--292},
     publisher = {Elsevier},
     volume = {20},
     number = {4},
     year = {2019},
     doi = {10.1016/j.crhy.2019.05.004},
     language = {en},
}
TY  - JOUR
AU  - Sidney Redner
TI  - Reality-inspired voter models: A mini-review
JO  - Comptes Rendus. Physique
PY  - 2019
SP  - 275
EP  - 292
VL  - 20
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crhy.2019.05.004
LA  - en
ID  - CRPHYS_2019__20_4_275_0
ER  - 
%0 Journal Article
%A Sidney Redner
%T Reality-inspired voter models: A mini-review
%J Comptes Rendus. Physique
%D 2019
%P 275-292
%V 20
%N 4
%I Elsevier
%R 10.1016/j.crhy.2019.05.004
%G en
%F CRPHYS_2019__20_4_275_0
Sidney Redner. Reality-inspired voter models: A mini-review. Comptes Rendus. Physique, Volume 20 (2019) no. 4, pp. 275-292. doi : 10.1016/j.crhy.2019.05.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2019.05.004/

[1] P. Clifford; A. Sudbury A model for spatial conflict, Biometrika, Volume 60 (1973), p. 581

[2] R.A. Holley; T.M. Liggett Ergodic theorems for weakly interacting infinite systems and the voter model, Ann. Probab., Volume 3 (1975), p. 643

[3] J.T. Cox Coalescing random walks and voter model consensus times on the torus in Z, Ann. Probab., Volume 17 (1989), p. 1333

[4] T.M. Liggett Stochastic Interacting Systems: Contact, Voter, and Exclusion Processes, Springer, New York, 1999

[5] P.L. Krapivsky Kinetics of monomer-monomer surface catalytic reactions, Phys. Rev. A, Volume 45 (1992), p. 1067

[6] L. Frachebourg; P.L. Krapivsky Exact results for kinetics of catalytic reactions, Phys. Rev. E, Volume 53 (1996)

[7] I. Dornic; H. Chaté; J. Chave; H. Hinrichsen Critical coarsening without surface tension: the universality class of the voter model, Phys. Rev. Lett., Volume 87 (2001)

[8] C. Castellano; S. Fortunato; V. Loreto Statistical physics of social dynamics, Rev. Mod. Phys., Volume 81 (2009), p. 591

[9] P.L. Krapivsky; S. Redner; E. Ben-Naim A Kinetic View of Statistical Physics, Cambridge University Press, Cambridge, UK, 2010

[10] A. Baronchelli The emergence of consensus: a primer, R. Soc. Open Sci., Volume 5 (2018)

[11] A. Jȩdrzejewski; K. Sznajd-Weron Statistical physics of opinion formation: is it a SPOOF?, C. R. Physique, Volume 20 (2019) no. 4, pp. 244-261 ( in this issue ) | DOI

[12] M. Faloutsos; P. Faloutsos; C. Faloutsos On power-law relationships of the Internet topology, Comput. Commun. Rev., Volume 29 (1999), p. 251

[13] A. Broder; R. Kumar; F. Maghoul; P. Raghavan; S. Rajagopalan; R. Stata; A. Tomkins; J. Wiener Graph structure in the Web, Comput. Netw., Volume 33 (2000), p. 309

[14] M.E.J. Newman The structure of scientific collaboration networks, Proc. Natl. Acad. Sci. USA, Volume 98 (2001), p. 404

[15] T. Gross; C.J.D. D'Lima; B. Blasius Epidemic dynamics on an adaptive network, Phys. Rev. Lett., Volume 96 (2006)

[16] P. Holme; M.E.J. Newman Nonequilibrium phase transition in the coevolution of networks and opinions, Phys. Rev. E, Volume 74 (2006)

[17] B. Kozma; A. Barrat Consensus formation on adaptive networks, Phys. Rev. E, Volume 77 (2008)

[18] L.B. Shaw; I.B. Schwartz Fluctuating epidemics on adaptive networks, Phys. Rev. E, Volume 77 (2008)

[19] L.B. Shaw; I.B. Schwartz Enhanced vaccine control of epidemics in adaptive networks, Phys. Rev. E, Volume 81 (2010)

[20] R. Durrett; J.P. Gleeson; A.L. Lloyd; P.J. Mucha; F. Shi; D. Sivakoff; J.E.S. Socolar; C. Varghese Graph fission in an evolving voter model, Proc. Natl. Acad. Sci. USA, Volume 109 (2012), p. 3682

[21] T.C. Rogers; T. Gross Consensus time and conformity in the adaptive voter model, Phys. Rev. E, Volume 88 (2013)

[22] M. Galesic; D.L. Stein Statistical physics models of belief dynamics: theory and empirical tests, Physica A, Volume 519 (2019), p. 275

[23] J.D. Gunton; M. San Miguel; P.S. Sahni Phase Transitions and Critical Phenomena, Vol. 8 (C. Domb; J.L. Lebowitz, eds.), Academic Press, New York, 1983

[24] A.J. Bray Theory of phase-ordering kinetics, Adv. Phys., Volume 43 (1994), p. 357

[25] A. Kolmogoroff On analytical methods in probability theory, Math. Ann., Volume 104 (1931), p. 415

[26] N.G. van Kampen Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam, 1997

[27] S. Redner A Guide to First-Passage Processes, Cambridge University Press, New York, 2001

[28] S.E. Asch Groups, Leadership and Men (H. Guetzkow, ed.), Carnegie Press, Pittsburgh, PA, 1951

[29] R.L. Kendal; N.J. Boogert; L. Rendell; K.N. Laland; M. Webster; P.L. Jones Social learning strategies: bridge-building between fields, Trends Cogn. Sci., Volume 22 (2018), p. 651

[30] N. Masuda; N. Gibert; S. Redner Heterogeneous voter models, Phys. Rev. E, Volume 82 (2010)

[31] M. Granovetter Threshold models of collective behavior, Am. J. Sociol., Volume 83 (1978), p. 1420

[32] D.J. Watts A simple model of global cascades on random networks, Proc. Natl. Acad. Sci. USA, Volume 99 (2002), p. 5766

[33] M.O. Jackson Social and Economic Networks, Princeton University Press, Princeton, NJ, USA, 2008

[34] J. Galambos The Asymptotic Theory of Extreme Order Statistics, Krieger Publishing Co., Malabar, FL, 1987

[35] S. Moscovici Toward a theory of conversion behavior, Adv. Exp. Soc. Psychol., Volume 13 (1980), p. 209

[36] S. Moscovici Innovation and minority influence (S. Moscovic; G. Mugny; E. Van Vermaet, eds.), Perspectives on Minority Influence, Cambridge University Press, Cambridge, UK, 1985

[37] S. Galam; F. Jacobs The role of inflexible minorities in the breaking of democratic opinion dynamics, Physica A, Volume 381 (2007), p. 366

[38] J. Xie; S. Sreenivasan; G. Korniss; W. Zhang; C. Lim; B.K. Szymanski Social consensus through the influence of committed minorities, Phys. Rev. E, Volume 84 (2011)

[39] D. Centola The spread of behavior in an online social network experiment, Science, Volume 329 (2010), p. 1194

[40] C. Castellano; M.A. Muñoz; R. Pastor-Satorras Nonlinear q-voter model, Phys. Rev. E, Volume 80 (2009)

[41] P.S. Dodds; D.J. Watts Universal behavior in a generalized model of contagion, Phys. Rev. Lett., Volume 92 (2004)

[42] D. Volovik; S. Redner Dynamics of confident voting, J. Stat. Mech., Volume P04003 (2012)

[43] K. Suchecki; V.M. Equíluz; M. San Miguel Conservation laws for the voter model in complex networks, Europhys. Lett., Volume 69 (2004), p. 228

[44] K. Suchecki; V.M. Equíluz; M. San Miguel Voter model dynamics in complex networks: role of dimensionality, disorder, and degree distribution, Phys. Rev. E, Volume 72 (2005)

[45] C. Castellano; V. Loreto; A. Barrat; F. Cecconi; D. Parisi Comparison of voter and Glauber ordering dynamics on networks, Phys. Rev. E, Volume 71 (2005)

[46] V. Sood; S. Redner Voter model on heterogeneous graphs, Phys. Rev. Lett., Volume 94 (2005)

[47] T. Antal; S. Redner; V. Sood Evolutionary dynamics on degree-heterogeneous graphs, Phys. Rev. Lett., Volume 96 (2006)

[48] V. Sood; T. Antal; S. Redner Voter models on heterogeneous networks, Phys. Rev. E, Volume 77 (2008)

[49] F. Vazquez; V.M. Eguiluz Analytical solution of the voter model on uncorrelated networks, New J. Phys., Volume 10 (2008)

[50] M.J.A. Condorcet Essai sur l'application de l'analyse à la probabilité des décisions rendues à la pluralité des voix, Imprimerie royale, Paris, France, 1785 (facsimile edition, AMS Chelsea Publishing Series, vol. 252, New York, 1972)

[51] B. Grofman; G. Owen; S.L. Feld Thirteen theorems in search of the truth, Theory Decis., Volume 15 (1983), p. 261

[52] R. Boyd; P.J. Richerson The Origin and Evolution of Cultures, Oxford University Press, Oxford, UK, 2005

[53] L. Conradt; C. List Group decision making in humans and animals, Philos. Trans. R. Soc. Lond. B, Biol. Sci., Volume 364 (2009), p. 719

[54] V. Spirin; P.L. Krapivsky; S. Redner Phys. Rev. E, 63 (2001)

[55] V. Spirin; P.L. Krapivsky; S. Redner Phys. Rev. E, 65 (2001)

[56] S. Galam Application of statistical physics to politics, Physica A, Volume 274 (1999), p. 132

[57] K. Sznajd-Weron; J. Sznajd Opinion evolution in closed community, Int. J. Mod. Phys. C, Volume 11 (2000), p. 1157

[58] S. Galam Minority opinion spreading in random geometry, Eur. Phys. J. B, Volume 25 (2002), p. 403

[59] D. Stauffer Monte Carlo simulations of Sznajd models, J. Artif. Soc. Soc. Simul., Volume 5 (2002), p. 1

[60] P.L. Krapivsky; S. Redner Dynamics of majority rule in two-state interacting spin systems, Phys. Rev. Lett., Volume 90 (2003)

[61] C.M. Bender; S.A. Orszag Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, New York, 1978

[62] P. Chen; S. Redner Majority rule dynamics in finite dimensions, Phys. Rev. E, Volume 71 (2005)

[63] R. Lambiotte; S. Redner Dynamics of vacillating voters, J. Stat. Mech., Volume L10001 (2007)

[64] R. Lambiotte; S. Redner Dynamics of non-conservative voters, Europhys. Lett., Volume 82 (2008)

[65] F. Slanina; K. Sznajd-Weron; P. Przybyła Some new results on one-dimensional outflow dynamics, Europhys. Lett., Volume 82 (2008)

[66] R. Lambiotte; S. Thurner; R. Hanel Unanimity rule on networks, Phys. Rev. E, Volume 76 (2007)

[67] R.J. Glauber Time-dependent statistics of the Ising model, J. Math. Phys., Volume 4 (1963), p. 294

[68] M. Mobilia; S. Redner Majority versus minority dynamics: phase transition in an interacting two-state spin system, Phys. Rev. E, Volume 68 (2003)

[69] D. ben-Avraham Non-equilibrium Statistical Mechanics in One Dimension (V. Privman, ed.), Cambridge University Press, Cambridge, UK, 1997 (Chap. 2)

[70] N. Claidière; A. Whiten Integrating the study of conformity and culture in humans and nonhuman animals, Psychol. Bull., Volume 138 (2012), p. 126

[71] T.J.H. Morgan; K.N. Laland The biological bases of conformity, Front. Neurosci., Volume 6 (2012), p. 87

[72] F. Vazquez; S. Redner Ultimate fate of constrained voters, J. Phys. A, Volume 37 (2004), p. 8479

[73] R. Axelrod The dissemination of culture: a model with local convergence and global polarization, J. Confl. Resolut., Volume 41 (1977), p. 203

[74] R. Axtell; R. Axelrod; J. Epstein; M.D. Cohen Aligning simulation models: a case study and results, Comput. Math. Organ. Theory, Volume 1 (1996), p. 123

[75] R. Axelrod The Complexity of Cooperation, Princeton University Press, Princeton, NJ, USA, 1997

[76] C. Castellano; M. Marsili; A. Vespignani Nonequilibrium phase transition in a model for social influence, Phys. Rev. Lett., Volume 85 (2000), p. 3536

[77] D. Vilone; A. Vespignani; C. Castellano Ordering phase transition in the one-dimensional Axelrod model, Eur. Phys. J. B, Volume 30 (2002), p. 399

[78] K. Klemm; V.M. Eguiluz; R. Toral; M. San Miguel Nonequilibrium transitions in complex networks: a model of social interaction, Phys. Rev. E, Volume 67 (2003)

[79] K. Klemm; V.M. Eguiluz; R. Toral; M. San Miguel Global culture: a noise-induced transition in finite systems, Phys. Rev. E, Volume 67 (2003) 045101(R)

[80] F. Vazquez; S. Redner Non-monotonicity and divergent time scale in Axelrod model dynamics, Europhys. Lett., Volume 78 (2007)

[81] E.N. Lorenz Deterministic nonperiodic flow, J. Atmos. Sci., Volume 20 (1963), p. 130

[82] R.M. May; W.J. Leonard Nonlinear aspects of competition between three species, SIAM J. Appl. Math., Volume 29 (1975), p. 243

[83] A.S. Perelson; P.W. Nelson Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., Volume 41 (1999), p. 3 (See, e.g.)

[84] G. Weisbuch; G. Deffuant; F. Amblard; J.P. Nadal Meet, discuss, and segregate!, Complexity, Volume 7 (2002), p. 55

[85] R. Hegselmann; U. Krause Opinion dynamics and bounded confidence models, analysis, and simulation, J. Artif. Soc. Soc. Simul., Volume 5 (2002), p. 3

[86] E. Ben-Naim; P.L. Krapivsky; S. Redner Bifurcations and patterns in compromise processes, Physica D, Volume 183 (2003), p. 190

Cité par Sources :

Commentaires - Politique