[Modèles d'électeurs inspirés de la réalité : une mini-revue]
Cette mini-revue présente des extensions du modèle de l'électeur qui intègrent divers éléments plausibles des processus réels de prise de décision par des individus. Bien que ces généralisations ne soient pas calibrées par des données empiriques, la dynamique qui en résulte suggère des comportements sociaux collectifs réalistes.
This mini-review presents extensions of the voter model that incorporate various plausible features of real decision-making processes by individuals. Although these generalizations are not calibrated by empirical data, the resulting dynamics are suggestive of realistic collective social behaviors.
Mot clés : Modèle de l'électeur, Hétérogénéité, Réseaux, Dynamique non conservée, Règle de la majorité, États multiples
Sidney Redner 1
@article{CRPHYS_2019__20_4_275_0, author = {Sidney Redner}, title = {Reality-inspired voter models: {A} mini-review}, journal = {Comptes Rendus. Physique}, pages = {275--292}, publisher = {Elsevier}, volume = {20}, number = {4}, year = {2019}, doi = {10.1016/j.crhy.2019.05.004}, language = {en}, }
Sidney Redner. Reality-inspired voter models: A mini-review. Comptes Rendus. Physique, Volume 20 (2019) no. 4, pp. 275-292. doi : 10.1016/j.crhy.2019.05.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2019.05.004/
[1] A model for spatial conflict, Biometrika, Volume 60 (1973), p. 581
[2] Ergodic theorems for weakly interacting infinite systems and the voter model, Ann. Probab., Volume 3 (1975), p. 643
[3] Coalescing random walks and voter model consensus times on the torus in , Ann. Probab., Volume 17 (1989), p. 1333
[4] Stochastic Interacting Systems: Contact, Voter, and Exclusion Processes, Springer, New York, 1999
[5] Kinetics of monomer-monomer surface catalytic reactions, Phys. Rev. A, Volume 45 (1992), p. 1067
[6] Exact results for kinetics of catalytic reactions, Phys. Rev. E, Volume 53 (1996)
[7] Critical coarsening without surface tension: the universality class of the voter model, Phys. Rev. Lett., Volume 87 (2001)
[8] Statistical physics of social dynamics, Rev. Mod. Phys., Volume 81 (2009), p. 591
[9] A Kinetic View of Statistical Physics, Cambridge University Press, Cambridge, UK, 2010
[10] The emergence of consensus: a primer, R. Soc. Open Sci., Volume 5 (2018)
[11] Statistical physics of opinion formation: is it a SPOOF?, C. R. Physique, Volume 20 (2019) no. 4, pp. 244-261 ( in this issue ) | DOI
[12] On power-law relationships of the Internet topology, Comput. Commun. Rev., Volume 29 (1999), p. 251
[13] Graph structure in the Web, Comput. Netw., Volume 33 (2000), p. 309
[14] The structure of scientific collaboration networks, Proc. Natl. Acad. Sci. USA, Volume 98 (2001), p. 404
[15] Epidemic dynamics on an adaptive network, Phys. Rev. Lett., Volume 96 (2006)
[16] Nonequilibrium phase transition in the coevolution of networks and opinions, Phys. Rev. E, Volume 74 (2006)
[17] Consensus formation on adaptive networks, Phys. Rev. E, Volume 77 (2008)
[18] Fluctuating epidemics on adaptive networks, Phys. Rev. E, Volume 77 (2008)
[19] Enhanced vaccine control of epidemics in adaptive networks, Phys. Rev. E, Volume 81 (2010)
[20] Graph fission in an evolving voter model, Proc. Natl. Acad. Sci. USA, Volume 109 (2012), p. 3682
[21] Consensus time and conformity in the adaptive voter model, Phys. Rev. E, Volume 88 (2013)
[22] Statistical physics models of belief dynamics: theory and empirical tests, Physica A, Volume 519 (2019), p. 275
[23] Phase Transitions and Critical Phenomena, Vol. 8 (C. Domb; J.L. Lebowitz, eds.), Academic Press, New York, 1983
[24] Theory of phase-ordering kinetics, Adv. Phys., Volume 43 (1994), p. 357
[25] On analytical methods in probability theory, Math. Ann., Volume 104 (1931), p. 415
[26] Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam, 1997
[27] A Guide to First-Passage Processes, Cambridge University Press, New York, 2001
[28] Groups, Leadership and Men (H. Guetzkow, ed.), Carnegie Press, Pittsburgh, PA, 1951
[29] Social learning strategies: bridge-building between fields, Trends Cogn. Sci., Volume 22 (2018), p. 651
[30] Heterogeneous voter models, Phys. Rev. E, Volume 82 (2010)
[31] Threshold models of collective behavior, Am. J. Sociol., Volume 83 (1978), p. 1420
[32] A simple model of global cascades on random networks, Proc. Natl. Acad. Sci. USA, Volume 99 (2002), p. 5766
[33] Social and Economic Networks, Princeton University Press, Princeton, NJ, USA, 2008
[34] The Asymptotic Theory of Extreme Order Statistics, Krieger Publishing Co., Malabar, FL, 1987
[35] Toward a theory of conversion behavior, Adv. Exp. Soc. Psychol., Volume 13 (1980), p. 209
[36] Innovation and minority influence (S. Moscovic; G. Mugny; E. Van Vermaet, eds.), Perspectives on Minority Influence, Cambridge University Press, Cambridge, UK, 1985
[37] The role of inflexible minorities in the breaking of democratic opinion dynamics, Physica A, Volume 381 (2007), p. 366
[38] Social consensus through the influence of committed minorities, Phys. Rev. E, Volume 84 (2011)
[39] The spread of behavior in an online social network experiment, Science, Volume 329 (2010), p. 1194
[40] Nonlinear q-voter model, Phys. Rev. E, Volume 80 (2009)
[41] Universal behavior in a generalized model of contagion, Phys. Rev. Lett., Volume 92 (2004)
[42] Dynamics of confident voting, J. Stat. Mech., Volume P04003 (2012)
[43] Conservation laws for the voter model in complex networks, Europhys. Lett., Volume 69 (2004), p. 228
[44] Voter model dynamics in complex networks: role of dimensionality, disorder, and degree distribution, Phys. Rev. E, Volume 72 (2005)
[45] Comparison of voter and Glauber ordering dynamics on networks, Phys. Rev. E, Volume 71 (2005)
[46] Voter model on heterogeneous graphs, Phys. Rev. Lett., Volume 94 (2005)
[47] Evolutionary dynamics on degree-heterogeneous graphs, Phys. Rev. Lett., Volume 96 (2006)
[48] Voter models on heterogeneous networks, Phys. Rev. E, Volume 77 (2008)
[49] Analytical solution of the voter model on uncorrelated networks, New J. Phys., Volume 10 (2008)
[50] Essai sur l'application de l'analyse à la probabilité des décisions rendues à la pluralité des voix, Imprimerie royale, Paris, France, 1785 (facsimile edition, AMS Chelsea Publishing Series, vol. 252, New York, 1972)
[51] Thirteen theorems in search of the truth, Theory Decis., Volume 15 (1983), p. 261
[52] The Origin and Evolution of Cultures, Oxford University Press, Oxford, UK, 2005
[53] Group decision making in humans and animals, Philos. Trans. R. Soc. Lond. B, Biol. Sci., Volume 364 (2009), p. 719
[54] Phys. Rev. E, 63 (2001)
[55] Phys. Rev. E, 65 (2001)
[56] Application of statistical physics to politics, Physica A, Volume 274 (1999), p. 132
[57] Opinion evolution in closed community, Int. J. Mod. Phys. C, Volume 11 (2000), p. 1157
[58] Minority opinion spreading in random geometry, Eur. Phys. J. B, Volume 25 (2002), p. 403
[59] Monte Carlo simulations of Sznajd models, J. Artif. Soc. Soc. Simul., Volume 5 (2002), p. 1
[60] Dynamics of majority rule in two-state interacting spin systems, Phys. Rev. Lett., Volume 90 (2003)
[61] Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, New York, 1978
[62] Majority rule dynamics in finite dimensions, Phys. Rev. E, Volume 71 (2005)
[63] Dynamics of vacillating voters, J. Stat. Mech., Volume L10001 (2007)
[64] Dynamics of non-conservative voters, Europhys. Lett., Volume 82 (2008)
[65] Some new results on one-dimensional outflow dynamics, Europhys. Lett., Volume 82 (2008)
[66] Unanimity rule on networks, Phys. Rev. E, Volume 76 (2007)
[67] Time-dependent statistics of the Ising model, J. Math. Phys., Volume 4 (1963), p. 294
[68] Majority versus minority dynamics: phase transition in an interacting two-state spin system, Phys. Rev. E, Volume 68 (2003)
[69] Non-equilibrium Statistical Mechanics in One Dimension (V. Privman, ed.), Cambridge University Press, Cambridge, UK, 1997 (Chap. 2)
[70] Integrating the study of conformity and culture in humans and nonhuman animals, Psychol. Bull., Volume 138 (2012), p. 126
[71] The biological bases of conformity, Front. Neurosci., Volume 6 (2012), p. 87
[72] Ultimate fate of constrained voters, J. Phys. A, Volume 37 (2004), p. 8479
[73] The dissemination of culture: a model with local convergence and global polarization, J. Confl. Resolut., Volume 41 (1977), p. 203
[74] Aligning simulation models: a case study and results, Comput. Math. Organ. Theory, Volume 1 (1996), p. 123
[75] The Complexity of Cooperation, Princeton University Press, Princeton, NJ, USA, 1997
[76] Nonequilibrium phase transition in a model for social influence, Phys. Rev. Lett., Volume 85 (2000), p. 3536
[77] Ordering phase transition in the one-dimensional Axelrod model, Eur. Phys. J. B, Volume 30 (2002), p. 399
[78] Nonequilibrium transitions in complex networks: a model of social interaction, Phys. Rev. E, Volume 67 (2003)
[79] Global culture: a noise-induced transition in finite systems, Phys. Rev. E, Volume 67 (2003) 045101(R)
[80] Non-monotonicity and divergent time scale in Axelrod model dynamics, Europhys. Lett., Volume 78 (2007)
[81] Deterministic nonperiodic flow, J. Atmos. Sci., Volume 20 (1963), p. 130
[82] Nonlinear aspects of competition between three species, SIAM J. Appl. Math., Volume 29 (1975), p. 243
[83] Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., Volume 41 (1999), p. 3 (See, e.g.)
[84] Meet, discuss, and segregate!, Complexity, Volume 7 (2002), p. 55
[85] Opinion dynamics and bounded confidence models, analysis, and simulation, J. Artif. Soc. Soc. Simul., Volume 5 (2002), p. 3
[86] Bifurcations and patterns in compromise processes, Physica D, Volume 183 (2003), p. 190
Cité par Sources :
Commentaires - Politique