[Choix idiosyncrasiques et erratiques : non-linéarité et transitions induites par le vieillissement dans le modèle de l'électeur aléatoire]
Nous considérons la transition grégaire/non grégaire causée par des choix idiosyncrasiques ou une imitation imparfaite dans le contexte du modèle de Kirman pour les marchés financiers ou, de façon équivalente, du modèle de l'électeur aléatoire pour la formation de l'opinion. Dans ces modèles originaux, il s'agit d'une transition de taille finie qui disparaît pour un grand nombre d'agents. Nous montrons comment l'introduction de deux mécanismes différents rend cette transition robuste et bien définie. Un premier mécanisme est celui des interactions non linéaires entre agents tenant compte de l'effet non linéaire des majorités locales. La deuxième est le vieillissement, de sorte que plus un agent a été longtemps dans un état donné, plus il devient réticent à changer d'état.
We consider the herding-to-non-herding transition caused by idiosyncratic choices or imperfect imitation in the context of the Kirman Model for financial markets, or equivalently the Noisy Voter Model for opinion formation. In these original models, this is a finite-size transition that disappears for a large number of agents. We show how the introduction of two different mechanisms makes this transition robust and well defined. A first mechanism is nonlinear interactions among agents taking into account the nonlinear effect of local majorities. The second one is aging, so that the longer an agent has been in a given state the more reluctant she becomes to change state.
Mot clés : Dynamique des opinions, Modèle de l'électeur aléatoire, Vieillissement, Transition de phase
Oriol Artime 1, 2 ; Adrián Carro 3, 4 ; Antonio F. Peralta 1 ; José J. Ramasco 1 ; Maxi San Miguel 1 ; Raúl Toral 1
@article{CRPHYS_2019__20_4_262_0, author = {Oriol Artime and Adri\'an Carro and Antonio F. Peralta and Jos\'e J. Ramasco and Maxi San Miguel and Ra\'ul Toral}, title = {Herding and idiosyncratic choices: {Nonlinearity} and aging-induced transitions in the noisy voter model}, journal = {Comptes Rendus. Physique}, pages = {262--274}, publisher = {Elsevier}, volume = {20}, number = {4}, year = {2019}, doi = {10.1016/j.crhy.2019.05.003}, language = {en}, }
TY - JOUR AU - Oriol Artime AU - Adrián Carro AU - Antonio F. Peralta AU - José J. Ramasco AU - Maxi San Miguel AU - Raúl Toral TI - Herding and idiosyncratic choices: Nonlinearity and aging-induced transitions in the noisy voter model JO - Comptes Rendus. Physique PY - 2019 SP - 262 EP - 274 VL - 20 IS - 4 PB - Elsevier DO - 10.1016/j.crhy.2019.05.003 LA - en ID - CRPHYS_2019__20_4_262_0 ER -
%0 Journal Article %A Oriol Artime %A Adrián Carro %A Antonio F. Peralta %A José J. Ramasco %A Maxi San Miguel %A Raúl Toral %T Herding and idiosyncratic choices: Nonlinearity and aging-induced transitions in the noisy voter model %J Comptes Rendus. Physique %D 2019 %P 262-274 %V 20 %N 4 %I Elsevier %R 10.1016/j.crhy.2019.05.003 %G en %F CRPHYS_2019__20_4_262_0
Oriol Artime; Adrián Carro; Antonio F. Peralta; José J. Ramasco; Maxi San Miguel; Raúl Toral. Herding and idiosyncratic choices: Nonlinearity and aging-induced transitions in the noisy voter model. Comptes Rendus. Physique, Volume 20 (2019) no. 4, pp. 262-274. doi : 10.1016/j.crhy.2019.05.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2019.05.003/
[1] Critical Mass: How One Thing Leads to Another, Macmillan, 2004
[2] Statistical physics of social dynamics, Rev. Mod. Phys., Volume 81 (2009) no. 2, p. 591
[3] Statistical mechanics and social sciences, J. Stat. Phys., Volume 151 (2013), pp. 1-783
[4] Sociophysics: An Introduction, Oxford University Press, 2014
[5] Sociophysics, Phys. Today, Volume 71 (2018), pp. 40-46
[6] Dynamic models of segregation, J. Math. Sociol., Volume 1 (1971) no. 2, pp. 143-186
[7] Phase diagram of a Schelling segregation model, Eur. Phys. J. B, Volume 70 (2009), p. 293
[8] Everything Is Obvious: Once You Know the Answer. How Common Sense Fails, Crown Business, 2011
[9] A model for spatial conflict, Biometrika, Volume 60 (1973) no. 3, pp. 581-588
[10] Ergodic theorems for weakly interacting infinite systems and the voter model, Ann. Probab., Volume 3 (1975) no. 4, pp. 643-663
[11] Stochastic Interacting Systems: Contact, Voter and Exclusion Processes, vol. 324, Springer Science & Business Media, 2013
[12] Nonequilibrium Phase Transitions in Lattice Models, Cambridge University Press, 2005
[13] Voter model dynamics in complex networks: role of dimensionality, disorder, and degree distribution, Phys. Rev. B, Volume 72 (2005) no. 3
[14] Incomplete ordering of the voter model on small-world networks, Europhys. Lett., Volume 63 (2003) no. 1, p. 153
[15] Ants, rationality, and recruitment, Q. J. Econ., Volume 108 (1993) no. 1, pp. 137-156
[16] The noisy voter model on complex networks, Sci. Rep., Volume 6 (2016)
[17] Stochastic pair approximation treatment of the noisy voter model, New J. Phys., Volume 20 (2018)
[18] Zealots in the mean-field noisy voter model, Phys. Rev. B, Volume 97 (2018) no. 1
[19] The noisy voter model, Stoch. Process. Appl., Volume 55 (1995) no. 1, pp. 23-43
[20] Percolation in strongly correlated systems, Phys. A, Stat. Mech. Appl., Volume 138 (1986) no. 1–2, pp. 194-205
[21] Noise-induced bistability in a Monte Carlo surface-reaction model, Phys. Rev. Lett., Volume 63 (1989) no. 14, p. 1527
[22] Comment on “Noise-induced bistability in a Monte Carlo surface-reaction model”, Phys. Rev. Lett., Volume 63 (1989) no. 26, p. 2857
[23] Is the voter model a model for voters?, Phys. Rev. Lett., Volume 112 (2014) no. 15
[24] Reality inspired voter models: a mini-review (arXiv e-prints) | arXiv
[25] Statistical physics of opinion formation: is it a SPOOF? (arXiv e-prints) | arXiv
[26] Estimation of agent-based models: the case of an asymmetric herding model, Comput. Econ., Volume 26 (2005) no. 1, pp. 19-49
[27] Time variation of higher moments in a financial market with heterogeneous agents: an analytical approach, J. Econ. Dyn. Control, Volume 32 (2008) no. 1, pp. 101-136
[28] Nonlinear q-voter model, Phys. Rev. B, Volume 80 (2009) no. 4
[29] Phase transitions in the q-voter model with two types of stochastic driving, Phys. Rev. E, Volume 86 (2012)
[30] Anticonformity or independence?—Insights from statistical physics, J. Stat. Phys., Volume 151 (2013) no. 1, pp. 174-202
[31] Pair approximation for the q-voter model with independence on complex networks, Phys. Rev. E, Volume 95 (2017)
[32] Analytical and numerical study of the non-linear noisy voter model on complex networks, Chaos, Interdiscip. J. Nonlinear Sci., Volume 28 (2018) no. 7
[33] Competition in the presence of aging: dominance, coexistence, and alternation between states, Sci. Rep., Volume 6 (2016)
[34] Dynamics on networks: competition of temporal and topological correlations, Sci. Rep., Volume 7 (2017)
[35] Aging-induced continuous phase transition, Phys. Rev. B, Volume 98 (2018) no. 3
[36] Linguistics: modelling the dynamics of language death, Nature, Volume 424 (2003) no. 6951, p. 900
[37] Agent based models of language competition: macroscopic descriptions and order–disorder transitions, J. Stat. Mech. Theory Exp., Volume 2010 (2010) no. 04
[38] Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam, 2007
[39] Stochastic Numerical Methods: An Introduction for Students and Scientists, Wiley, 2014
[40] First-passage distributions for the one-dimensional Fokker–Planck equation, Phys. Rev. B, Volume 98 (2018) no. 4
[41] An Agent-Based Stochastic Volatility Model, Faculty of Business, Economics and Social Sciences, Kiel University, 2006 (Ph.D. thesis)
[42] Statistical Mechanics of Phase Transitions, Clarendon Press, 1992
[43] Control of the socio-economic systems using herding interactions, Phys. A, Stat. Mech. Appl., Volume 405 (2014), pp. 80-84
[44] Markets, herding and response to external information, PLoS ONE, Volume 10 (2015) no. 7
[45] Network structure and N-dependence in agent-based herding models, J. Econ. Dyn. Control, Volume 33 (2009), pp. 78-92
[46] Noise in coevolving networks, Phys. Rev. B, Volume 92 (2015) no. 3
[47] On the effect of heterogeneity in stochastic interacting-particle systems, Sci. Rep., Volume 3 (2013), p. 1189
[48] Does a single zealot affect an infinite group of voters?, Phys. Rev. Lett., Volume 91 (2003) no. 2
[49] From private attitude to public opinion: a dynamic theory of social impact, Psychol. Rev., Volume 97 (1990) no. 3, p. 362
[50] A continuous-time persistent random walk model for flocking, Chaos, Volume 28 (2018) no. 7
[51] Update rules and interevent time distributions: slow ordering versus no ordering in the voter model, Phys. Rev. B, Volume 84 (2011) no. 1
[52] Bursty Human Dynamics, Springer, 2018
[53] Decelerating microdynamics can accelerate macrodynamics in the voter model, Phys. Rev. Lett., Volume 101 (2008) no. 1
[54] Finite size scaling analysis of Ising model block distribution functions, Z. Phys. B, Condens. Matter, Volume 43 (1981) no. 2, pp. 119-140
[55] Optimized analysis of the critical behavior in polymer mixtures from Monte Carlo simulations, J. Stat. Phys., Volume 67 (1992) no. 5–6, pp. 1039-1082
Cité par Sources :
Commentaires - Politique