Comptes Rendus
From statistical physics to social sciences / De la physique statistique aux sciences sociales
Herding and idiosyncratic choices: Nonlinearity and aging-induced transitions in the noisy voter model
[Choix idiosyncrasiques et erratiques : non-linéarité et transitions induites par le vieillissement dans le modèle de l'électeur aléatoire]
Comptes Rendus. Physique, Volume 20 (2019) no. 4, pp. 262-274.

Nous considérons la transition grégaire/non grégaire causée par des choix idiosyncrasiques ou une imitation imparfaite dans le contexte du modèle de Kirman pour les marchés financiers ou, de façon équivalente, du modèle de l'électeur aléatoire pour la formation de l'opinion. Dans ces modèles originaux, il s'agit d'une transition de taille finie qui disparaît pour un grand nombre d'agents. Nous montrons comment l'introduction de deux mécanismes différents rend cette transition robuste et bien définie. Un premier mécanisme est celui des interactions non linéaires entre agents tenant compte de l'effet non linéaire des majorités locales. La deuxième est le vieillissement, de sorte que plus un agent a été longtemps dans un état donné, plus il devient réticent à changer d'état.

We consider the herding-to-non-herding transition caused by idiosyncratic choices or imperfect imitation in the context of the Kirman Model for financial markets, or equivalently the Noisy Voter Model for opinion formation. In these original models, this is a finite-size transition that disappears for a large number of agents. We show how the introduction of two different mechanisms makes this transition robust and well defined. A first mechanism is nonlinear interactions among agents taking into account the nonlinear effect of local majorities. The second one is aging, so that the longer an agent has been in a given state the more reluctant she becomes to change state.

Publié le :
DOI : 10.1016/j.crhy.2019.05.003
Keywords: Opinion dynamics, Noisy voter model, Aging, Phase transitions
Mot clés : Dynamique des opinions, Modèle de l'électeur aléatoire, Vieillissement, Transition de phase

Oriol Artime 1, 2 ; Adrián Carro 3, 4 ; Antonio F. Peralta 1 ; José J. Ramasco 1 ; Maxi San Miguel 1 ; Raúl Toral 1

1 Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain
2 Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo (TN), Italy
3 Institute for New Economic Thinking at the Oxford Martin School, University of Oxford, OX2 6ED Oxford, UK
4 Mathematical Institute, University of Oxford, OX2 6GG Oxford, UK
@article{CRPHYS_2019__20_4_262_0,
     author = {Oriol Artime and Adri\'an Carro and Antonio F. Peralta and Jos\'e J. Ramasco and Maxi San Miguel and Ra\'ul Toral},
     title = {Herding and idiosyncratic choices: {Nonlinearity} and aging-induced transitions in the noisy voter model},
     journal = {Comptes Rendus. Physique},
     pages = {262--274},
     publisher = {Elsevier},
     volume = {20},
     number = {4},
     year = {2019},
     doi = {10.1016/j.crhy.2019.05.003},
     language = {en},
}
TY  - JOUR
AU  - Oriol Artime
AU  - Adrián Carro
AU  - Antonio F. Peralta
AU  - José J. Ramasco
AU  - Maxi San Miguel
AU  - Raúl Toral
TI  - Herding and idiosyncratic choices: Nonlinearity and aging-induced transitions in the noisy voter model
JO  - Comptes Rendus. Physique
PY  - 2019
SP  - 262
EP  - 274
VL  - 20
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crhy.2019.05.003
LA  - en
ID  - CRPHYS_2019__20_4_262_0
ER  - 
%0 Journal Article
%A Oriol Artime
%A Adrián Carro
%A Antonio F. Peralta
%A José J. Ramasco
%A Maxi San Miguel
%A Raúl Toral
%T Herding and idiosyncratic choices: Nonlinearity and aging-induced transitions in the noisy voter model
%J Comptes Rendus. Physique
%D 2019
%P 262-274
%V 20
%N 4
%I Elsevier
%R 10.1016/j.crhy.2019.05.003
%G en
%F CRPHYS_2019__20_4_262_0
Oriol Artime; Adrián Carro; Antonio F. Peralta; José J. Ramasco; Maxi San Miguel; Raúl Toral. Herding and idiosyncratic choices: Nonlinearity and aging-induced transitions in the noisy voter model. Comptes Rendus. Physique, Volume 20 (2019) no. 4, pp. 262-274. doi : 10.1016/j.crhy.2019.05.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2019.05.003/

[1] P. Ball Critical Mass: How One Thing Leads to Another, Macmillan, 2004

[2] C. Castellano; S. Fortunato; V. Loreto Statistical physics of social dynamics, Rev. Mod. Phys., Volume 81 (2009) no. 2, p. 591

[3] S. Fortunato; M. Macy; S. Redner Statistical mechanics and social sciences, J. Stat. Phys., Volume 151 (2013), pp. 1-783

[4] P. Sen; B.K. Chakrabarti Sociophysics: An Introduction, Oxford University Press, 2014

[5] F. Schweitzer Sociophysics, Phys. Today, Volume 71 (2018), pp. 40-46

[6] T.C. Schelling Dynamic models of segregation, J. Math. Sociol., Volume 1 (1971) no. 2, pp. 143-186

[7] L. Gauvin; J. Nadal; J. Vannimenus Phase diagram of a Schelling segregation model, Eur. Phys. J. B, Volume 70 (2009), p. 293

[8] D. Watts Everything Is Obvious: Once You Know the Answer. How Common Sense Fails, Crown Business, 2011

[9] P. Clifford; A. Sudbury A model for spatial conflict, Biometrika, Volume 60 (1973) no. 3, pp. 581-588

[10] R.A. Holley; T.M. Liggett Ergodic theorems for weakly interacting infinite systems and the voter model, Ann. Probab., Volume 3 (1975) no. 4, pp. 643-663

[11] T.M. Liggett Stochastic Interacting Systems: Contact, Voter and Exclusion Processes, vol. 324, Springer Science & Business Media, 2013

[12] J. Marro; R. Dickman Nonequilibrium Phase Transitions in Lattice Models, Cambridge University Press, 2005

[13] K. Suchecki; V.M. Eguíluz; M. San Miguel Voter model dynamics in complex networks: role of dimensionality, disorder, and degree distribution, Phys. Rev. B, Volume 72 (2005) no. 3

[14] C. Castellano; D. Vilone; A. Vespignani Incomplete ordering of the voter model on small-world networks, Europhys. Lett., Volume 63 (2003) no. 1, p. 153

[15] A. Kirman Ants, rationality, and recruitment, Q. J. Econ., Volume 108 (1993) no. 1, pp. 137-156

[16] A. Carro; R. Toral; M. San Miguel The noisy voter model on complex networks, Sci. Rep., Volume 6 (2016)

[17] A.F. Peralta; A. Carro; M. San Miguel; R. Toral Stochastic pair approximation treatment of the noisy voter model, New J. Phys., Volume 20 (2018)

[18] N. Khalil; M. San Miguel; R. Toral Zealots in the mean-field noisy voter model, Phys. Rev. B, Volume 97 (2018) no. 1

[19] B.L. Granovsky; N. Madras The noisy voter model, Stoch. Process. Appl., Volume 55 (1995) no. 1, pp. 23-43

[20] J.L. Lebowitz; H. Saleur Percolation in strongly correlated systems, Phys. A, Stat. Mech. Appl., Volume 138 (1986) no. 1–2, pp. 194-205

[21] K. Fichthorn; E. Gulari; R. Ziff Noise-induced bistability in a Monte Carlo surface-reaction model, Phys. Rev. Lett., Volume 63 (1989) no. 14, p. 1527

[22] D. Considine; S. Redner; H. Takayasu Comment on “Noise-induced bistability in a Monte Carlo surface-reaction model”, Phys. Rev. Lett., Volume 63 (1989) no. 26, p. 2857

[23] J. Fernández-Gracia; K. Suchecki; J.J. Ramasco; M. San Miguel; V.M. Eguíluz Is the voter model a model for voters?, Phys. Rev. Lett., Volume 112 (2014) no. 15

[24] S. Redner Reality inspired voter models: a mini-review (arXiv e-prints) | arXiv

[25] A. Jędrzejewski; K. Sznajd-Weron Statistical physics of opinion formation: is it a SPOOF? (arXiv e-prints) | arXiv

[26] S. Alfarano; T. Lux; F. Wagner Estimation of agent-based models: the case of an asymmetric herding model, Comput. Econ., Volume 26 (2005) no. 1, pp. 19-49

[27] S. Alfarano; T. Lux; F. Wagner Time variation of higher moments in a financial market with heterogeneous agents: an analytical approach, J. Econ. Dyn. Control, Volume 32 (2008) no. 1, pp. 101-136

[28] C. Castellano; M.A. Muñoz; R. Pastor-Satorras Nonlinear q-voter model, Phys. Rev. B, Volume 80 (2009) no. 4

[29] P. Nyczka; K. Sznajd-Weron; J. Cisło Phase transitions in the q-voter model with two types of stochastic driving, Phys. Rev. E, Volume 86 (2012)

[30] P. Nyczka; K. Sznajd-Weron Anticonformity or independence?—Insights from statistical physics, J. Stat. Phys., Volume 151 (2013) no. 1, pp. 174-202

[31] A. Jędrzejewski Pair approximation for the q-voter model with independence on complex networks, Phys. Rev. E, Volume 95 (2017)

[32] A.F. Peralta; A. Carro; M. San Miguel; R. Toral Analytical and numerical study of the non-linear noisy voter model on complex networks, Chaos, Interdiscip. J. Nonlinear Sci., Volume 28 (2018) no. 7

[33] T. Pérez; K. Klemm; V.M. Eguíluz Competition in the presence of aging: dominance, coexistence, and alternation between states, Sci. Rep., Volume 6 (2016)

[34] O. Artime; J.J. Ramasco; M. San Miguel Dynamics on networks: competition of temporal and topological correlations, Sci. Rep., Volume 7 (2017)

[35] O. Artime; A.F. Peralta; R. Toral; J.J. Ramasco; M. San Miguel Aging-induced continuous phase transition, Phys. Rev. B, Volume 98 (2018) no. 3

[36] D.M. Abrams; S.H. Strogatz Linguistics: modelling the dynamics of language death, Nature, Volume 424 (2003) no. 6951, p. 900

[37] F. Vazquez; X. Castelló; M. San Miguel Agent based models of language competition: macroscopic descriptions and order–disorder transitions, J. Stat. Mech. Theory Exp., Volume 2010 (2010) no. 04

[38] N. van Kampen Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam, 2007

[39] R. Toral; P. Colet Stochastic Numerical Methods: An Introduction for Students and Scientists, Wiley, 2014

[40] O. Artime; N. Khalil; R. Toral; M. San Miguel First-passage distributions for the one-dimensional Fokker–Planck equation, Phys. Rev. B, Volume 98 (2018) no. 4

[41] S. Alfarano An Agent-Based Stochastic Volatility Model, Faculty of Business, Economics and Social Sciences, Kiel University, 2006 (Ph.D. thesis)

[42] J.M. Yeomans Statistical Mechanics of Phase Transitions, Clarendon Press, 1992

[43] A. Kononovicius; V. Gontis Control of the socio-economic systems using herding interactions, Phys. A, Stat. Mech. Appl., Volume 405 (2014), pp. 80-84

[44] A. Carro; R. Toral; M. San Miguel Markets, herding and response to external information, PLoS ONE, Volume 10 (2015) no. 7

[45] S. Alfarano; M. Milaković Network structure and N-dependence in agent-based herding models, J. Econ. Dyn. Control, Volume 33 (2009), pp. 78-92

[46] M. Diakonova; V.M. Eguíluz; M. San Miguel Noise in coevolving networks, Phys. Rev. B, Volume 92 (2015) no. 3

[47] L.F. Lafuerza; R. Toral On the effect of heterogeneity in stochastic interacting-particle systems, Sci. Rep., Volume 3 (2013), p. 1189

[48] M. Mobilia Does a single zealot affect an infinite group of voters?, Phys. Rev. Lett., Volume 91 (2003) no. 2

[49] A. Nowak; J. Szamrej; B. Latané From private attitude to public opinion: a dynamic theory of social impact, Psychol. Rev., Volume 97 (1990) no. 3, p. 362

[50] D. Escaff; R. Toral; C. Van Den Broeck; K. Lindenberg A continuous-time persistent random walk model for flocking, Chaos, Volume 28 (2018) no. 7

[51] J. Fernández-Gracia; V.M. Eguíluz; M. San Miguel Update rules and interevent time distributions: slow ordering versus no ordering in the voter model, Phys. Rev. B, Volume 84 (2011) no. 1

[52] M. Karsai; H.-H. Jo; K. Kaski Bursty Human Dynamics, Springer, 2018

[53] H.-U. Stark; C.J. Tessone; F. Schweitzer Decelerating microdynamics can accelerate macrodynamics in the voter model, Phys. Rev. Lett., Volume 101 (2008) no. 1

[54] K. Binder Finite size scaling analysis of Ising model block distribution functions, Z. Phys. B, Condens. Matter, Volume 43 (1981) no. 2, pp. 119-140

[55] H.-P. Deutsch Optimized analysis of the critical behavior in polymer mixtures from Monte Carlo simulations, J. Stat. Phys., Volume 67 (1992) no. 5–6, pp. 1039-1082

Cité par Sources :

Commentaires - Politique