Comptes Rendus
Science in the making 2: From 1940 to the early 1980s / La science en mouvement 2 : de 1940 aux premières années 1980
Dynamic nuclear polarization
[Polarisation dynamique nucléaire]
Comptes Rendus. Physique, La science en mouvement 2 : de 1940 aux premières années 1980 – Avancées en physique, Volume 20 (2019) no. 7-8, pp. 694-705.

La polarisation nucléaire dynamique (en anglais DNP) se réfère à l'augmentation de la polarisation de spins nucléaires dans la matière condensée, liquide ou solide, couplés à des spins électroniques à faible concentration relative, en induisant des transitions radio ou micro-ondes de fréquence proche d'une fréquence de résonance électronique dans un champ magnétique extérieur. Une autre méthode décrite consiste en l'utilisation indirecte du pompage optique à température proche de la température ordinaire pour la polarisation nucléaire de gaz rares. Les divers mécanismes de polarisation sont décrits en termes physiques. Ceci est suivi d'une description succincte des principales applications de la DNP dans différents domaines de la physique, de la chimie et de la médecine.

Dynamic nuclear polarization, or DNP, refers to the increase of the polarization of nuclear spins in condensed matter, liquid or solid, coupled with electronic spins at low relative concentration, by inducing radio or microwave transitions at frequencies close to the electronic resonance frequency in the external magnetic field. Another described method relies on indirect optical pumping methods at temperatures close to room temperature for the nuclear polarization of rare gases. The various mechanisms of DNP are described in physical terms. This is followed by a succinct description of its main applications in various domains of physics, in chemistry and in medicine.

Publié le :
DOI : 10.1016/j.crhy.2019.05.010
Keywords: DNP, Liquids, Solids, Gases, Applications
Mots-clés : DNP, Liquides, Solides, Gaz, Applications

Maurice Goldman 1

1 Académie des sciences, 23, quai de Conti, 75006 Paris, France
@article{CRPHYS_2019__20_7-8_694_0,
     author = {Maurice Goldman},
     title = {Dynamic nuclear polarization},
     journal = {Comptes Rendus. Physique},
     pages = {694--705},
     publisher = {Elsevier},
     volume = {20},
     number = {7-8},
     year = {2019},
     doi = {10.1016/j.crhy.2019.05.010},
     language = {en},
}
TY  - JOUR
AU  - Maurice Goldman
TI  - Dynamic nuclear polarization
JO  - Comptes Rendus. Physique
PY  - 2019
SP  - 694
EP  - 705
VL  - 20
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crhy.2019.05.010
LA  - en
ID  - CRPHYS_2019__20_7-8_694_0
ER  - 
%0 Journal Article
%A Maurice Goldman
%T Dynamic nuclear polarization
%J Comptes Rendus. Physique
%D 2019
%P 694-705
%V 20
%N 7-8
%I Elsevier
%R 10.1016/j.crhy.2019.05.010
%G en
%F CRPHYS_2019__20_7-8_694_0
Maurice Goldman. Dynamic nuclear polarization. Comptes Rendus. Physique, La science en mouvement 2 : de 1940 aux premières années 1980 – Avancées en physique, Volume 20 (2019) no. 7-8, pp. 694-705. doi : 10.1016/j.crhy.2019.05.010. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2019.05.010/

[1] A. Abragam The Principles of Nuclear Magnetism, Oxford University Press, Oxford, UK, 1961

[2] C.P. Slichter Principles of Magnetic Resonance, Springer-Verlag, Berlin, 1990

[3] M. Goldman Spin Temperature and Nuclear Magnetic Resonance in Solids, Oxford University Press, Oxford, UK, 1970

[4] M. Goldman Quantum Description of High-Resolution NMR in Liquids, Oxford University Press, Oxford, UK, 1988

[5] R.V. Pound Phys. Rev., 81 (1951), p. 156

[6] E.M. Purcell; R.V. Pound Phys. Rev., 81 (1951), p. 279

[7] A. Abragam; W.G. Proctor Phys. Rev., 109 (1958), p. 1441

[8] A.G. Redfield Phys. Rev., 98 (1955), p. 1787

[9] A.W. Overhauser Phys. Rev., 92 (1953), p. 411

[10] T.R. Carver; C.P. Slichter Phys. Rev., 92 (1953), p. 212

[11] I. Solomon Phys. Rev., 99 (1955), p. 559

[12] I. Solomon; N. Bloembergen J. Chem. Phys., 25 (1956), p. 261

[13] A. Abragam; J. Combrisson; I. Solomon C. r. hebd. séances Acad. sci., 245 (1957), p. 157

[14] M-A. Bouchiat; T.R. Carver; C.M. Varnum Phys. Rev. Lett., 5 (1960), p. 373

[15] F.D. Colegrove; L.D. Schearer; G.K. Walters Phys. Rev., 132 (1963), p. 2561

[16] T.R. Gentile; P.J. Nacher; B. Saam; T.T.G. Walker Rev. Mod. Phys., 89 (2017)

[17] A. Abragam; M. Goldman Rep. Prog. Phys., 41 (1978), p. 395

[18] A. Abragam; M. Goldman Nuclear Magnetism: Order and Disorder, Oxford University Press, Oxford, UK, 1982 (Chap. 6)

[19] T. Wenckebach Essentials of Dynamic Nuclear Polarization, Spindrift Publications, The Netherlands, 2016

[20] C.D. Jeffries Phys. Rev., 106 (1957), p. 164

[21] A. Abragam; W.G. Proctor C. r. hebd. séances Acad. sci., 246 (1958), p. 2253

[22] M. Goldman; A. Landesman C. r. hebd. séances Acad. sci., 252 (1961), p. 263

[23] M. Goldman Eindhoven, The Netherlands, July 1962 (J. Smidt, ed.), North Holland, Amsterdam (1963), p. 688

[24] M. Goldman; A. Landesman Phys. Rev., 132 (1963), p. 610

[25] I. Solomon Eindhoven, The Netherlands, July 1962 (J. Smidt, ed.), North Holland, Amsterdam (1963), p. 25

[26] S.F.J. Cox; V. Bouffard; M. Goldman J. Phys. C, 6 (1973), p. L100

[27] M. Goldman; S.F.J. Cox; V. Bouffard J. Phys. C, 7 (1974), p. 2940

[28] W. De Boer; M. Borghini; K. Morimoto; T.O. Niinikoski J. Low Temp. Phys., 15 (1974), p. 249

[29] W. De Boer J. Low Temp. Phys., 22 (1976), p. 185

[30] A. Abragam; M. Goldman Nuclear Magnetism: Order and Disorder, Oxford University Press, Oxford, UK, 1982 (Chap. 8)

[31] C. Urbina; J-F. Jacquinot; M. Goldman J. Phys. C, 19 (1986), p. 2275

[32] M. Goldman; J-F. Jacquinot; C. Urbina J. Phys. C, 19 (1986), p. 2299

[33] J-H. Ardenkjaer-Larsen J. Magn. Res., 264 (2016), p. 3

  • Johnnie Phuong; Billy Salgado; Tom Labusch; Hans Hasse; Kerstin Münnemann Overhauser Dynamic Nuclear Polarization Enables Single Scan Benchtop 13C NMR Spectroscopy in Continuous-Flow, Analytical Chemistry, Volume 97 (2025) no. 8, p. 4308 | DOI:10.1021/acs.analchem.4c03985
  • Bulat Gizatullin; Carlos Mattea; Siegfried Stapf Field-cycling NMR and DNP – A friendship with benefits, Journal of Magnetic Resonance, Volume 322 (2021), p. 106851 | DOI:10.1016/j.jmr.2020.106851
  • Derrick C. Kaseman; Per E. Magnelind; Scarlett Widgeon Paisner; Jacob L. Yoder; Marc Alvarez; Algis V. Urbaitis; Michael T. Janicke; Pulak Nath; Michelle A. Espy; Robert F. Williams Design and implementation of a J-coupled spectrometer for multidimensional structure and relaxation detection at low magnetic fields, Review of Scientific Instruments, Volume 91 (2020) no. 5 | DOI:10.1063/1.5130391
  • Markus M. Hoffmann; Sarah Bothe; Martin Brodrecht; Vytautas Klimavicius; Nadia B. Haro-Mares; Torsten Gutmann; Gerd Buntkowsky Direct and Indirect Dynamic Nuclear Polarization Transfer Observed in Mesoporous Materials Impregnated with Nonionic Surfactant Solutions of Polar Polarizing Agents, The Journal of Physical Chemistry C, Volume 124 (2020) no. 9, p. 5145 | DOI:10.1021/acs.jpcc.9b10504

Cité par 4 documents. Sources : Crossref

Commentaires - Politique