Comptes Rendus
From statistical physics to social sciences / De la physique statistique aux sciences sociales
A structural model of market dynamics, and why it matters
[Un modèle structurel de la dynamique des marchés]
Comptes Rendus. Physique, Volume 20 (2019) no. 4, pp. 336-348.

Dans cet article, nous explorons une approche permettant de comprendre les fluctuations de prix au sein d'un marché en tenant compte des dépendances fonctionnelles entre les prix des actifs. Cette approche suggère une classe de modèles d'un type utilisé précédemment pour décrire la dynamique des réseaux neuronaux réels et artificiels. Les approches de la physique statistique s'avèrent appropriées pour l'analyse de leurs propriétés collectives. Dans cet article, nous motivons d'abord la phénoménologie de base et les arguments de modélisation avant de passer à la discussion de certaines questions majeures avec inférence et vérification empirique. En particulier, nous nous concentrons sur la création naturelle d'états de marché par l'inclusion d'interactions et sur la façon dont celles-ci interfèrent ensuite avec l'inférence. Cette question est principalement abordée dans le cadre de données synthétiques. Enfin, nous examinons des données réelles pour vérifier la capacité de notre approche à saisir certaines caractéristiques clés du comportement des marchés financiers.

In this paper, we explore an approach to understanding price fluctuations within a market via considerations of functional dependencies between asset prices. Interestingly, this approach suggests a class of models of a type used earlier to describe the dynamics of real and artificial neural networks. Statistical physics approaches turn out to be suitable for an analysis of their collective properties. In this paper, we first motivate the basic phenomenology and modelling arguments before moving on to discussing some major issues with inference and empirical verification. In particular, we focus on the natural creation of market states through the inclusion of interactions and how these then interfere with inference. This is primarily addressed in a synthetic setting. Finally we investigate real data to test the ability of our approach to capture some key features of the behaviour of financial markets.

Publié le :
DOI : 10.1016/j.crhy.2019.05.013
Keywords: Market risk, Phase transitions, Generating functional analysis
Mot clés : Risque de marché, Transitions de phase, Méthode de la fonctionnelle génératrice

Jonathan Khedair 1 ; Reimer Kühn 1

1 Department of Mathematics, King's College London, Strand, London WC2R 2LS, UK
@article{CRPHYS_2019__20_4_336_0,
     author = {Jonathan Khedair and Reimer K\"uhn},
     title = {A structural model of market dynamics, and why it matters},
     journal = {Comptes Rendus. Physique},
     pages = {336--348},
     publisher = {Elsevier},
     volume = {20},
     number = {4},
     year = {2019},
     doi = {10.1016/j.crhy.2019.05.013},
     language = {en},
}
TY  - JOUR
AU  - Jonathan Khedair
AU  - Reimer Kühn
TI  - A structural model of market dynamics, and why it matters
JO  - Comptes Rendus. Physique
PY  - 2019
SP  - 336
EP  - 348
VL  - 20
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crhy.2019.05.013
LA  - en
ID  - CRPHYS_2019__20_4_336_0
ER  - 
%0 Journal Article
%A Jonathan Khedair
%A Reimer Kühn
%T A structural model of market dynamics, and why it matters
%J Comptes Rendus. Physique
%D 2019
%P 336-348
%V 20
%N 4
%I Elsevier
%R 10.1016/j.crhy.2019.05.013
%G en
%F CRPHYS_2019__20_4_336_0
Jonathan Khedair; Reimer Kühn. A structural model of market dynamics, and why it matters. Comptes Rendus. Physique, Volume 20 (2019) no. 4, pp. 336-348. doi : 10.1016/j.crhy.2019.05.013. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2019.05.013/

[1] R. Cont Empirical properties of asset returns: stylized facts and statistical issues, Quant. Finance, Volume 1 (2001), pp. 223-236

[2] J.-P. Bouchaud; M. Potters Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management, Cambridge University Press, Cambridge, UK, 2006

[3] R.N. Mantegna; H.E. Stanley An Introduction to Econophysics: Correlations and Complexity in Finance, Cambridge University Press, New York, NY, USA, 2000

[4] J. Feigenbaum Financial physics, Rep. Prog. Phys., Volume 66 (2003) no. 10, p. 1611

[5] D. Sornette Physics and financial economics (1776–2014): puzzles, Ising and agent-based models, Rep. Prog. Phys., Volume 77 (2014)

[6] R.N. Mantegna; H.E. Stanley Stochastic process with ultraslow convergence to a Gaussian: the truncated Lévy flight, Phys. Rev. Lett., Volume 73 (1994), pp. 2946-2949

[7] R. Cont; P. Tankov Financial Modelling with Jump Processes, CRC Press, Inc., 2003

[8] T. Bollersev Generalized autoregressive conditional heteroscedasticity, J. Econom., Volume 31 (1986), pp. 307-327

[9] S.L. Heston A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud., Volume 6 (1993) no. 2, pp. 327-343

[10] D. Stauffer; D. Sornette Self-organized percolation model for stock market fluctuations, Physica A, Volume 271 (1999), pp. 496-506

[11] R. Cont; J.-P. Bouchaud Herd behavior and aggregate fluctuations in financial markets, Macroecon. Dyn., Volume 4 (2000), pp. 170-196

[12] S. Bornholdt Expectation bubbles in a spin model of market intermittency from frustration across scales, Int. J. Mod. Phys. C, Volume 12 (2001), pp. 667-674

[13] D. Challet; M. Marsili; Y.-C. Zhang Minority Games: Interacting Agents in Financial Markets, Oxford University Press, 2004

[14] A.C.C. Coolen The Mathematical Theory of Minority Games — Statistical Mechanics of Interacting Agents, Oxford University Press, Oxford, UK, 2005

[15] R. Kühn; P. Neu Intermittency in a minimal interacting generalisation of the geometric Brownian motion model, J. Phys. A, Volume 41 (2008)

[16] H.M. Markowitz Portfolio selection, J. Finance, Volume 7 (1952), pp. 77-91

[17] G. Marti; F. Nielsen; M. Binkowski; P. Donnat A review of two decades of correlations, hierarchies, networks and clustering in financial markets, 2018 | arXiv

[18] M.C. Münnix; T. Shimada; R. Schäfer; F. Leyvraz; Th.H. Seligman; Th. Guhr; H.E. Stanley Identifying states of a financial market, Sci. Rep., Volume 2 (2012)

[19] M. Marsili Dissecting financial markets: sectors and states, Quant. Finance, Volume 2 (2002), pp. 297-304

[20] R.N. Mantegna Hierarchical structure in financial markets, Eur. Phys. J. B, Volume 11 (1999), pp. 193-197

[21] M. Tumminello; F. Lillo; R.N. Mantegna Correlation, hierarchies, and networks in financial markets, J. Econ. Behav. Organ., Volume 75 (2010), pp. 40-58 (Transdisciplinary Perspectives on Economic Complexity)

[22] D.-M. Song; M. Tumminello; W.-X. Zhou; R.N. Mantegna Evolution of worldwide stock markets, correlation structure, and correlation-based graphs, Phys. Rev. E, Volume 84 (2011)

[23] M. MacMahon; D. Garlaschelli Community detection for correlation matrices, Phys. Rev. X, Volume 5 ( Apr 2015 )

[24] A. Kocheturov; M. Batsyn; P.M. Pardalos Dynamics of cluster structures in a financial market network, Physica A, Volume 413 (2014), pp. 523-533

[25] D.Y. Kenett; Y. Shapira; A. Madi; S. Bransburg-Zabary; G. Gur-Gershgoren; E. Ben-Jacob Dynamics of stock market correlations, Czech Econ. Rev., Volume 4 (2010), pp. 330-341

[26] A. Sensoy; B.M. Tabak Dynamic spanning trees in stock market networks: the case of Asia-Pacific, Physica A, Volume 414 (2014), pp. 387-402

[27] J.-P. Onnela; A. Chakraborti; K. Kaski; J. Kertész; A. Kanto Dynamics of market correlations: taxonomy and portfolio analysis, Phys. Rev. E, Volume 68 (2003)

[28] V. Plerou; P. Gopikrishnan; B. Rosenow; L.A.N. Amaral; T. Guhr; H.E. Stanley Random matrix approach to cross correlations in financial data, Phys. Rev. E, Volume 65 (2002)

[29] J.P. Bouchaud; M. Potters, Oxford University Press, Oxford (2011), pp. 824-848 (Chapter 40)

[30] J. Bun; J.-P. Bouchaud; M. Potters Cleaning large correlation matrices: tools from random matrix theory, Phys. Rep., Volume 666 (2017), pp. 1-109

[31] K. Anand; J. Khedair; R. Kühn A structural model for fluctuations in financial markets, Phys. Rev. E, Volume 97 (2018)

[32] J.J. Hopfield Neurons with graded responses have collective computational properties like those of two-state neurons, Proc. Natl. Acad. Sci. USA, Volume 81 (1984), pp. 3088-3092

[33] M. Mézard; J. Sakellariou Exact mean-field inference in asymmetric kinetic Ising systems, J. Stat. Mech. Theory Exp., Volume 2011 (2011) no. 07

[34] H.C. Nguyen; J. Berg Mean-field theory for the inverse Ising problem at low temperatures, Phys. Rev. Lett., Volume 109 (2012)

[35] A. Braunstein; A. Ramezanpour; R. Zecchina; P. Zhang Inference and learning in sparse systems with multiple states, Phys. Rev. E, Volume 83 ( May 2011 )

[36] S. Cocco; R. Monasson; L. Posani; S. Rosay; J. Tubiana Statistical physics and representations in real and artificial neural networks, Physica A, Volume 504 (2018), pp. 45-76 (Lecture Notes of the 14th International Summer School on Fundamental Problems in Statistical Physics)

[37] Basel Committee on banking supervision. Minimum capital requirements for market risk, 2016 www.bis.org

[38] L. Laloux; P. Cizeau; J.-P. Bouchaud; M. Potters Noise dressing of financial correlation matrices, Phys. Rev. Lett., Volume 83 (1999), pp. 1467-1470

[39] P. Gopikrishnan; B. Rosenow; V. Plerou; H.E. Stanley Quantifying and interpreting collective behavior in financial markets, Phys. Rev. E, Volume 64 ( Aug 2001 )

[40] V. Plerou; P. Gopikrishnan; B. Rosenow; L.A. Nunes Amaral; H.E. Stanley Universal and nonuniversal properties of cross correlations in financial time series, Phys. Rev. Lett., Volume 83 (1999), pp. 1471-1474

Cité par Sources :

Commentaires - Politique