[Prime instantanée de liquidité et sa mesure économétrique par les volatilités itérées]
Dans le cas univarié l'existence de la prime instantanée de liquidité est démontrée, ceci indépendamment de toute spécification du modéle ; ce taux donne une mesure quantitative de la stabilité du marché. Nous établissons une formule mathématique donnant la prime instantanée de liquidité en terms de termes de volatilités itérées, qui, pour les valeurs objets d'un nombre élevé de cotations, sont économétriquement mesurables.
In the univariate case we show mathematical existence, in real time and model free, of the instantaneous liquidity rate, which is a measure of the market stability. We give a mathematical formula expressing the instantaneous liquidity rate in terms of self cross volatilities, which, for frequently traded assets, are econometrically measurable.
Accepté le :
Publié le :
Paul Malliavin 1 ; Maria Elvira Mancino 2
@article{CRMATH_2002__334_6_505_0, author = {Paul Malliavin and Maria Elvira Mancino}, title = {Instantaneous liquidity rate, its econometric measurement by volatility feedback}, journal = {Comptes Rendus. Math\'ematique}, pages = {505--508}, publisher = {Elsevier}, volume = {334}, number = {6}, year = {2002}, doi = {10.1016/S1631-073X(02)02297-5}, language = {en}, }
TY - JOUR AU - Paul Malliavin AU - Maria Elvira Mancino TI - Instantaneous liquidity rate, its econometric measurement by volatility feedback JO - Comptes Rendus. Mathématique PY - 2002 SP - 505 EP - 508 VL - 334 IS - 6 PB - Elsevier DO - 10.1016/S1631-073X(02)02297-5 LA - en ID - CRMATH_2002__334_6_505_0 ER -
Paul Malliavin; Maria Elvira Mancino. Instantaneous liquidity rate, its econometric measurement by volatility feedback. Comptes Rendus. Mathématique, Volume 334 (2002) no. 6, pp. 505-508. doi : 10.1016/S1631-073X(02)02297-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02297-5/
[1] The constant elasticity of variance option pricing model, J. Portfolio Management, Volume 23 (1997) no. 3, pp. 15-17
[2] Non perturbative construction of invariant measure through confinement by curvature, J. Math. Pures Appl., Volume 77 (1998), pp. 527-538
[3] Derivatives in Financial Markets with Stochastic Volatility, Cambridge University Press, 2000
[4] Fourier series method for measurement of multivariate volatilities, Finance and Stochastics, Volume VI (2002), pp. 49-61
Cité par Sources :
Commentaires - Politique