Comptes Rendus
Article de synthèse
Frustrated spin systems: history of the emergence of a modern physics
[Systèmes de spins frustrés : émergence d’une physique moderne]
Comptes Rendus. Physique, Volume 26 (2025), pp. 225-251.

Cet article fait partie du numéro thématique Gérard Toulouse, une vie de découvertes et d'engagement coordonné par Bernard Derrida et al..

En 1977, Gérard Toulouse a introduit le concept nommé « frustration » pour les systèmes de spins dans lesquels une partie des interactions n’est pas satisfaite (cas de spins Ising) ou toutes les interactions ne sont pas satisfaites (cas de spins XY et Heisenberg). En utilisant cette notion, beaucoup de systèmes de spins frustrés ont été créés et étudiés. On peut mentionner quelques modèles populaires : le modèle de Villain, le modèle frustré sur un réseau cubique simple et le modèle antiferromagnétque sur un réseau triangulaire. La frustration dans les deux premiers modèles est due à un mélange des interactions ferromagnétiques et antiferromagnétiques, tandis que la frustration dans le dernier modèle est due à l’incompatibilité de l’interaction avec la géométrie du réseau (on dit alors « frustration par géométrie » ). Les systèmes frustrés ont des propriétés nouvelles et remarquables. Ce qui est frappant est que des méthodes très puissantes telles que le groupe de renormalissation ont du mal à clarifier un certain nombre de points tels que la nature de la phase transition dans des systèmes de spins frustrés, comme on le verra dans cet article de revue. J’ai commencé à étudier des systèmes de spins frustrés au début des années 80, après ma thèse. J’ai bénéficié de nombreuses discussions avec Gérard Toulouse. Je continue mes recherches jusqu’aujourd’hui sur des systèmes frustrés tels que les skyrmions. Dans cette revue, j’évoque mes travaux représentatifs sur des systèmes frustrés, allant des systèmes frustrés de spins Ising exactement résolus aux systèmes de spins XY ou Heisenberg en 2D et 3D. J’évoquerai mes derniers travaux sur les skyrmions résultant de la compétition entre l’interaction d’échange et l’interaction Dzyaloshinskii–Moriya (DM) soumis à un champ magnétique appliqué. Enfin, une théorie quantique de magnons utilisant la méthode de fonction de Green est présentée pour des systèmes frustrés avec des configurations de spin non-colinéaires tels que ceux avec l’interaction DM.

In 1977, Gérard Toulouse has proposed a new concept termed as “frustration" in spin systems. Using this definition, several frustrated models have been created and studied, among them we can mention the Villain’s model, the fully frustrated simple cubic lattice, the antiferromagnetic triangular lattice. The former models are systems with mixed ferromagnetic and antiferromagnetic bonds, while in the latter containing only an antiferromagnetic interaction, the frustration is caused by the lattice geometry. These frustrated spin systems have novel properties that we will review in this paper. One of the striking aspects is the fact that well-established methods such as the renormalization group fail to deal with the nature of the phase transition in frustrated systems. Investigations of properties of frustrated spin systems have been intensive since the 80’s. I myself got involved in several investigations of frustrated spin systems soon after my PhD. I have learned a lot from numerous discussions with Gérard Toulouse. Until today, I am still working on frustrated systems such as skyrmions. In this review, I trace back a number of my works over the years on frustrated spin systems going from exactly solved 2D Ising frustrated models, to XY and Heisenberg 2D and 3D frustrated lattices. At the end I present my latest results on skyrmions resulting from the frustration caused by the competition between the exchange interaction and the Dzyaloshinskii–Moriya interaction under an applied magnetic field. A quantum spin-wave theory using the Green’s function method is shown and discussed.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crphys.235
Keywords: Frustrated spin systems, Exactly solved models, Non-collinear spin configuration, Phase transitions, Reentrance, Disorder lines
Mots-clés : Systèmes de spins frustrés, Modèles exactement solvables, Configurations de spin non-colinéaires, Skyrmions, Théorie de Magnons dans des Systèmes Frustrés

Hung The Diep 1

1 Laboratoire de Physique Théorique et Modélisation, CY Cergy Paris Université, CNRS, UMR 8089, 2 Avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2025__26_G1_225_0,
     author = {Hung The Diep},
     title = {Frustrated spin systems: history of the emergence of a modern physics},
     journal = {Comptes Rendus. Physique},
     pages = {225--251},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {26},
     year = {2025},
     doi = {10.5802/crphys.235},
     language = {en},
}
TY  - JOUR
AU  - Hung The Diep
TI  - Frustrated spin systems: history of the emergence of a modern physics
JO  - Comptes Rendus. Physique
PY  - 2025
SP  - 225
EP  - 251
VL  - 26
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.235
LA  - en
ID  - CRPHYS_2025__26_G1_225_0
ER  - 
%0 Journal Article
%A Hung The Diep
%T Frustrated spin systems: history of the emergence of a modern physics
%J Comptes Rendus. Physique
%D 2025
%P 225-251
%V 26
%I Académie des sciences, Paris
%R 10.5802/crphys.235
%G en
%F CRPHYS_2025__26_G1_225_0
Hung The Diep. Frustrated spin systems: history of the emergence of a modern physics. Comptes Rendus. Physique, Volume 26 (2025), pp. 225-251. doi : 10.5802/crphys.235. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.235/

[1] G. Toulouse Theory of frustration effects in spin glass: I, Commun. Phys., Volume 2 (1977), pp. 115-119

[2] J. Villain Spin glass with non-random interactions, J. Phys. C, Volume 10 (1977), pp. 1717-1734 | DOI

[3] K. G. Wilson Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture, Phys. Rev. B, Volume 4 (1971), pp. 3174-3183 | DOI | Zbl

[4] D. J. Amit Field Theory, The Renormalization Group and Critical Phenomena, World Scientific, Singapore, 1984 | DOI

[5] J. Cardy Scaling and Renormalization in Statistical Physics, Cambridge University Press, London, 1996 | DOI

[6] J. Zinn-Justin Quantum Field Theory and Critical Phenomena, Oxford University Press, London, 2002 | DOI

[7] R. J. Baxter Exactly Solved Models in Statistical Mechanics, Academic, New York, 1982 | DOI

[8] A. Yoshimori A new type of antiferromagnetic structure in the rutile type crystal, J. Phys. Soc. Jpn, Volume 14 (1959), pp. 807-821 | DOI

[9] J. Villain La structure des substances magnetiques, Phys. Chem. Solids, Volume 11 (1959), pp. 303-330 | DOI

[10] G. H. Wannier Antiferromagnetism. The triangular Ising net, Phys. Rev., Volume 79 (1950), pp. 357-364 | DOI | Zbl

[11] G. H. Wannier Antiferromagnetism. The triangular Ising net, Phys. Rev. B, Volume 7 (1973), p. 5017 (Erratum) | DOI

[12] H. Kawamura Renormalization-group analysis of chiral transitions, Phys. Rev. B, Volume 38 (1988), pp. 4916-4928 (Erratum Phys. Rev. B, 42, 1990, 2610) | DOI

[13] H. Kawamura Universality of phase transitions of frustrated antiferromagnets, J. Phys. Condens. Matter, Volume 10 (1998), pp. 4707-4754 | DOI

[14] B. Delamotte; D. Mouhanna; M. Tissier Nonperturbative renormalization group approach to frustrated magnets, Phys. Rev. B, Volume 69 (2004), 134413 | DOI

[15] B. Delamotte; M. Dudka; Y. Holovatch; D. Mouhanna About the relevance of the fixed dimension perturbative approach to frustrated magnets in two and three dimensions, Phys. Rev. B, Volume 82 (2010), 104432 | DOI

[16] M. Reehorst; S. Rychkov; B. Sirois; B. C. van Rees Bootstrapping frustrated magnets: the fate of the chiral O(N) × O(2) universality class, preprint, 2024 | arXiv

[17] C. A. Sánchez-Villalobos; B. Delamotte; N. Wschebor O(N) × O(2) scalar models: including O(2) corrections in the Functional Renormalization Group analysis, preprint, 2024 | arXiv

[18] V.-T. Ngo; H. T. Diep Phase transition in Heisenberg stacked triangular antiferromagnets: End of a controversy, Phys. Rev. E, Volume 78 (2008), 031119 | DOI

[19] V.-T. Ngo; H. T. Diep Stacked triangular XY antiferromagnets: End of a controversial issue on the phase transition, J. Appl. Phys., Volume 103 (2008), 07C712 | DOI

[20] P. Lallemand; H. T. Diep; A. Ghazali; G. Toulouse Configuration space analysis for fully frustrated vector spins, J. Phys. Lett., Volume 46 (1985), pp. 1087-1093 | DOI

[21] H. T. Diep; P. Lallemand; O. Nagai Simple cubic fully frustrated Ising crystal by Monte Carlo simulations, J. Appl. Phys., Volume 57 (1985), pp. 3309-3311 | DOI

[22] H. T. Diep; A. Ghazali; P. Lallemand A fully frustrated simple cubic lattice with XY and Heisenberg spin : ground state and phase transition, J. Phys. C, Volume 18 (1985), pp. 5881-5895 | DOI

[23] B. Derrida; Y. Pomeau; G. Toulouse; J. Vannimenus Fully frustrated simple cubic lattices and the overblocking effect, J. Physique, Volume 40 (1979), pp. 617-626 | DOI

[24] B. Derrida; Y. Pomeau; G. Toulouse; J. Vannimenus Fully frustrated simple cubic lattices and phase transitions, J. Physique, Volume 41 (1980), pp. 213-221 | DOI

[25] Frustrated Spin Systems (H. T. Diep, ed.), World Scientific, Singapore, 2020 | DOI | Zbl

[26] Pol Duwez; R. H. Willens; W. Klement Jr Continuous series of metastable solid solutions of silver-copper alloys, J Appl. Phys., Volume 31 (1960), pp. 1136-1137 | DOI

[27] Rapidly Quenched Metals (S. Steeb, ed.), Elsevier, Amsterdam, 2012 (Note: The reviews of this book were papers presented at the Fifth International Conference on Rapidly Quenched Metals, held in Wurzburg, Germany on September 3–7, 1984) | DOI

[28] S. F. Edwards; P. W. Anderson Theory of spin glasses, J. Phys. F: Metal Phys., Volume 5 (1975) no. 5, pp. 965-974 | DOI

[29] D. Sherrington; S. Kirkpatrick Solvable model of a spin-glass, Phys. Rev. Lett., Volume 35 (1975) no. 26, pp. 1792-1796 | DOI

[30] G. Parisi Infinite number of order parameters for spin-glasses, Phys. Rev. Lett., Volume 43 (1979) no. 23, pp. 1754-1756 | DOI

[31] M. Mézard; G. Parisi; M. A. Virasoro Spin Glass Theory and Beyond, World Scientific, Singapore, 1987 | DOI

[32] O. Nagai; M. Toyonaga; H. T. Diep Effect of bond disorder in the Ising spin glass problem, J. Magn. Magn. Mater., Volume 31–34 (1983), pp. 1313-1314 | DOI

[33] H. T. Diep; O. Nagai Monte Carlo study of a three-dimensional Ising lattice with frustration, J. Phys. C: Solid State Phys., Volume 17 (1984), pp. 1357-1365 | DOI

[34] A. Ghazali; P. Lallemand; H. T. Diep Spin-glass transition in Heisenberg spin system with ±J random bonds, Physica A, Volume 134 (1986), pp. 628-635 | DOI

[35] A. T. Ogielski Dynamics of three-dimensional Ising spin glasses in thermal equilibrium, Phys. Rev. B, Volume 32 (1985), pp. 7384-7398 | DOI

[36] H. T. Diep First-order transition in the hexagonal-close-packed lattice with vector spins, Phys. Rev. B, Volume 45 (1992), pp. 2863-2867 | DOI

[37] D.-T. Hoang; H. T. Diep Hexagonal-close-packed lattice: ground state and phase transition, Phys. Rev. E, Volume 85 (2012), 041107 | DOI

[38] H. T. Diep; H. Kawamura First-order transition in the FCC Heisenberg antiferromagnet, Phys. Rev. B, Volume 40 (1989), pp. 7019-7022 | DOI

[39] H. T. Diep; H. Giacomini Frustration—exactly solved models, Frustrated Spin Systems (H. T. Diep, ed.), World Scientific, Singapore, 2020 | DOI

[40] B. Berge; H. T. Diep; A. Ghazali; P. Lallemand Phase transitions in two-dimensional uniformly frustrated XY spin systems, Phys. Rev. B, Volume 34 (1986), pp. 3177-3184 | DOI

[41] I. Harada; K. Motizuki Effect of magnon-magnon interaction on spin wave dispersion and magnon sideband in MnS, J. Phys. Soc. Jpn, Volume 32 (1972), pp. 927-940 | DOI

[42] E. Rastelli; L. Reatto; A. Tassi Quantum fluctuations in helimagnets, J. Phys. C, Volume 18 (1985), pp. 353-360 | DOI

[43] H. T. Diep Low-temperature properties of quantum Heisenberg helimagnets, Phys. Rev. B, Volume 40 (1989), pp. 741-744 | DOI

[44] P. Azaria; H. T. Diep; H. Giacomini Coexistence of order and disorder and reentrance in an exactly solvable model, Phys. Rev. Lett., Volume 59 (1987), pp. 1629-1632 | DOI

[45] M. Debauche; H. T. Diep; P. Azaria; H. Giacomini Exact phase diagram in a generalized Kagomé Ising lattice: reentrance and disorder lines, Phys. Rev. B, Volume 44 (1991), pp. 2369-2372 | DOI

[46] H. T. Diep; M. Debauche; H. Giacomini Exact solution of an anisotropic centered honeycomb Ising lattice: Reentrance and Partial Disorder, Phys. Rev. B, Volume 43 (1991), pp. 8759-8762 (Rapid Communication) | DOI

[47] M. Debauche; H. T. Diep Successive reentrances and phase transitions in exactly solved dilute centered square ising lattices, Phys. Rev. B, Volume 46 (1992), pp. 8214-8218 | DOI

[48] H. T. Diep; M. Debauche; H. Giacomini Reentrance and disorder solutions in exactly solvable ising models, J. Magn. Magn. Mater., Volume 104 (1992), pp. 184-186 | DOI

[49] V. Vaks; A. Larkin; Y. Ovchinnikov Ising model with interaction between nonnearest neighbors, Sov. Phys. JEPT, Volume 22 (1966), pp. 820-826

[50] K. Kano; S. Naya Antiferromagnetism. The Kagomé Ising net, Prog. Theor. Phys., Volume 10 (1953), pp. 158-172 | DOI

[51] J. Stephenson Ising-model spin correlations on the triangular lattice. IV. Anisotropic ferromagnetic and antiferromagnetic lattices, J. Math. Phys., Volume 11 (1970), pp. 420-431 | DOI

[52] J. Stephenson Range of order in antiferromagnets with next-nearest neighbor coupling, Can. J. Phys., Volume 48 (1970), pp. 2118-2122 | DOI

[53] J. Stephenson Ising model with antiferromagnetic next-nearest-neighbor coupling: Spin correlations and disorder points, Phys. Rev. B, Volume 1 (1970), pp. 4405-4409 | DOI

[54] R. Quartu; H. T. Diep Partial order in frustrated quantum spin systems, Phys. Rev. B, Volume 55 (1997), pp. 2975-2980 | DOI

[55] C. Santamaria; H. T. Diep Evidence of a partial disorder in a frustrated Heisenberg system, J. Appl. Phys., Volume 81 (1997), pp. 5276-5278 | DOI

[56] E. H. Boubcheur; R. Quartu; H. T. Diep; O. Nagai Non collinear XY spin system: first-order transition and evidence of a reentrance, Phys. Rev. B, Volume 58 (1998), pp. 400-408 | DOI

[57] F. Wang; D. P. Landau Efficient, multiple-range random walk algorithm to calculate the density of states, Phys. Rev. Lett., Volume 86 (2001), pp. 2050-2053 | DOI

[58] F. Wang; D. P. Landau Determining the density of states for classical statistical models, Phys. Rev. E, Volume 64 (2001), 056101 | DOI

[59] G. Brown; T. C. Schulhess Wang–Landau estimation of magnetic properties for the Heisenberg model, J. Appl. Phys., Volume 97 (2005), 10E303 | DOI

[60] B. J. Schulz; K. Binder; M. Müller; D. P. Landau Avoiding boundary effects in Wang–Landau sampling, Phys. Rev. E, Volume 67 (2003), 067102 | DOI

[61] A. Malakis; S. S. Martinos; I. A. Hadjiagapiou; N. G. Fytas; P. Kalozoumis Entropic sampling via Wang–Landau random walks in dominant energy subspaces, Phys. Rev. E, Volume 72 (2005), 066120 | DOI

[62] V.-T. Ngo; D. T. Hoang; H. T. Diep First-order transition in XY fully frustrated simple cubic lattice, Phys. Rev. E, Volume 82 (2010), 041123 | DOI

[63] V. T. Ngo; D. T. Hoang; H. T. Diep Phase transition in heisenberg fully frustrated simple cubic lattice, Mod. Phys. Lett. B, Volume 25 (2011), pp. 929-936 | DOI | Zbl

[64] C. Pinettes; H. T. Diep Phase transition and phase diagram of the J1–J2 Heisenberg model on a simple cubic lattice, J. Appl. Phys., Volume 83 (1998), pp. 6317-6319 | DOI

[65] D. T. Hoang; Y. Magnin; H. T. Diep Spin resistivity in the frustrated J1–J2 model, Mod. Phys. Lett. B, Volume 25 (2011), pp. 937-945 | DOI | Zbl

[66] E. H. Boubcheur; H. T. Diep Critical behavior of the two-dimensional fully frustrated XY model, Phys. Rev. B, Volume 58 (1998), pp. 5163-5165 | DOI

[67] M. P. Nightingale; E. Granato; J. M. Kosterlitz Conformal anomaly and critical exponents of the XY Ising model, Phys. Rev. B, Volume 52 (1995), pp. 7402-7411 | DOI

[68] E. Granato; M. P. Nightingale Chiral exponents of the square-lattice frustrated XY model: a Monte Carlo transfer-matrix calculation, Phys. Rev. B, Volume 48 (1993), pp. 7438-7444 | DOI

[69] J. Lee; J. M. Kosterlitz; E. Granato Monte Carlo study of frustrated XY models on a triangular and square lattice, Phys. Rev. B, Volume 43 (1991), pp. 11531-11534 | DOI

[70] E. Granato; J. M. Kosterlitz; J. Lee; M. P. Nightingale Phase transitions in coupled XY-Ising systems, Phys. Rev. Lett., Volume 66 (1991), pp. 1090-1093 | DOI

[71] A. N. Bogdanov; U. K. Rößler; A. A. Shestakov Skyrmions in liquid crystals, Phys. Rev. E, Volume 67 (2003), 016602 | DOI

[72] A. Fert; V. Cros; J. Sampaio Skyrmions on the track, Nat. Nanotechnol., Volume 8 (2013), pp. 152-156 | DOI

[73] A. O. Leonov; I. E. Dragumov; U. K. Rößler; A. N. Bogdanov Theory of skyrmion states in liquid crystals, Phys. Rev. E, Volume 90 (2014), 042502 | DOI

[74] M. Ezawa Giant skyrmions stabilized by dipole–dipole interactions in thin ferromagnetic films, Phys. Rev. Lett., Volume 105 (2010), 197202 | DOI

[75] X. C. Zhang; M. Ezawa; Y. Zhou Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions, Sci. Rep., Volume 5 (2015), 9400 | DOI

[76] X. C. Zhang; J. Xia; Y. Zhou; X. Liu; H. Zhang; M. Ezawa Skyrmion dynamics in a frustrated ferromagnetic film and current-induced helicity locking-unlocking transition, Nat. Commun., Volume 8 (2017), 1717 | DOI

[77] J. Xia; X. C. Zhang; M. Ezawa; O. A. Tretiakov; Z. Hou; W Wang; G. Zhao; X. Liu; H. T. Diep; Y. Zhou Current-driven skyrmionium in a frustrated magnetic system, Appl. Phys. Lett., Volume 117 (2020), 012403 | DOI

[78] X. C. Zhang; J. Xia; M. Ezawa; O. A. Tretiakov; H. T. Diep; G. Zhao; X. Liu; Y. Zhou A frustrated bimeronium: static structure and dynamics, Appl. Phys. Lett., Volume 118 (2021), 052411 | DOI

[79] T. Okubo; S. Chung; H. Kawamura Multiple-states and the skyrmion lattice of the triangular-lattice Heisenberg antiferromagnet under magnetic fields, Phys. Rev. Lett., Volume 108 (2012), 017206 | DOI

[80] S. Hayami; S. Z. Lin; C. D. Batista Bubble and skyrmion crystals in frustrated magnets with easy-axis anisotropy, Phys. Rev. B, Volume 93 (2016), 184413 | DOI

[81] S. El Hog; A. Bailly-Reyre; H. T. Diep Stability and phase transition of skyrmion crystals generated by Dzyaloshinskii-Moriya interaction, J. Magn. Magn. Mater., Volume 455 (2018), pp. 32-38 | DOI

[82] I. F. Sharafullin; M. K. Kharrasov; H. T. Diep Dzyaloshinskii-Moriya interaction in magneto-ferroelectric superlattices: Spin waves and skyrmions, Phys. Rev. B, Volume 99 (2019), 214420 | DOI

[83] I.F. Sharafullin; H. T. Diep Skyrmion crystals and phase transitions in Magneto-Ferroelectric superlattices: Dzyaloshinskii–Moriya interaction in a frustrated J 1 - J 2 model, Symmetry, Volume 12 (2020), pp. 26-41 | DOI

[84] S. El Hog; I. F. Sharafullin; H. T. Diep; H. Garbouj; M. Debbichi; M. Said Frustrated antiferromagnetic triangular lattice with Dzyaloshinskii–Moriya interaction: Ground states, spin waves, skyrmion crystal, phase transition, J. Magn. Magn. Mater., Volume 563 (2022), 169920 (and references therein) | DOI

[85] W. Kang; Y. Huang; X. Zhang; Y. Zhou; W. Zhao Skyrmion-electronics: an overview and outlook, Proc. IEEE, Volume 104 (2016) no. 10, pp. 1-22 | DOI

[86] H. D. Rosales; D. C. Cabra; P. Pujol Three-sublattice Skyrmions crystal in the antiferromagnetic triangular lattice, Phys. Rev. B, Volume 92 (2015), 214439 | DOI

[87] M. Mohylna; M. Žukovič Stability of skyrmion crystal phase in antiferromagnetic triangular lattice with DMI and single-ion anisotropy, J. Magn. Magn. Mater., Volume 546 (2022), 168840 | DOI

[88] M. Mohylna et al. Formation and growth of skyrmion crystal phase in a frustrated Heisenberg antiferromagnet with Dzyaloshinskii-Moriya interaction, J. Magn. Magn. Mater., Volume 527 (2021), 167755 | DOI

[89] Z. Liu; M. d. S. Dias; S. Lounis Theoretical investigation of antiferromagnetic skyrmions in a triangular monolayer, J. Phys.: Condens. Matter, Volume 32 (2020), 425801 | DOI

[90] H. T. Diep Theory of Magnetism — Applications to Surface Physics, World Scientific, Singapore, 2014 | DOI

[91] D. N. Zubarev Double-time green functions in statistical physics, Sov. Phys. Uspekhi, Volume 3 (1960), pp. 320-345 | DOI

[92] H. T. Diep; J. C. S. Levy; O. Nagai Effects of surface spin waves and surface anisotropy in magnetic thin films at finite temperatures, Phys. Status Solidi (b), Volume 93 (1979), pp. 351-361

[93] V. Thanh Ngo; H. T. Diep Frustration effects in antiferromagnetic face-centered cubic Heisenberg films, J. Phys.: Condens. Matter, Volume 19 (2007), 386202 | DOI

[94] V. T. Ngo; H. T. Diep Effects of frustrated surface in Heisenberg thin films, Phys. Rev. B, Volume 75 (2007), 035412 | DOI

[95] H. T. Diep Quantum theory of helimagnetic thin films, Phys. Rev. B, Volume 91 (2015), 014436 | DOI

[96] Ultrathin Magnetic Structures (J. A. C. Bland; B. Heinrich, eds.), 1 and 2, Springer-Verlag, Berlin, 1994 | DOI

[97] A. Zangwill Physics at Surfaces, Cambridge University, Cambridge, 1988 | DOI

[98] V. D. Mello; C. V. Chianca; A. L. Danta; A. S. Carriço Magnetic surface phase of thin helimagnetic films, Phys. Rev. B, Volume 67 (2003), 012401 | DOI

[99] F. Cinti; A. Cuccoli; A. Rettori Exotic magnetic structures in ultrathin helimagnetic holmium films, Phys. Rev. B, Volume 78 (2008), 020402(R) | DOI

[100] L. J. Rodrigues; V. D. Mello; D. H. A. L. Anselmo; M. S. Vasconcelos Magnetic structures in ultra-thin Holmium films: Influence of external magnetic field, J. Magn. Magn. Mater., Volume 377 (2015), pp. 24-28 | DOI

[101] E. A. Karhu; S. Kahwaji; M. D. Robertson; H. Fritzsche; B. J. Kirby; C. F. Majkrzak; T. L. Monchesky Helical magnetic order in MnSi thin films, Phys. Rev. B, Volume 84 (2011), 060404(R) | DOI

[102] E. A. Karhu; U. K. Rößler; A. N. Bogdanov; S. Kahwaji; B. J. Kirby; H. Fritzsche; M. D. Robertson; C. F. Majkrzak; T. L. Monchesky Chiral modulation and reorientation effects in MnSi thin films, Phys. Rev. B, Volume 85 (2012), 094429 | DOI

[103] J. Heurich; J. König; A. H. MacDonald Persistent spin currents in helimagnets, Phys. Rev. B, Volume 68 (2003), 064406 | DOI

[104] O. Wessely; B. Skubic; L. Nordstrom Spin-transfer torque in helical spin-density waves, Phys. Rev. B, Volume 79 (2009), 104433 | DOI

[105] F. Jonietz; S. Mühlbauer; C. Pfleiderer et al. Spin transfer torques in MnSi at ultralow current densities, Science, Volume 330 (2010), pp. 1648-1651 | DOI

[106] N. D. Mermin; H. Wagner Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett., Volume 17 (1966), pp. 1133-1136 | DOI

[107] S. V. Tyablikov Retarded and advanced Green functions in the theory of ferromagnetism, Ukr. Mat. Zh., Volume 11 (1959), pp. 287-289

[108] S. V. Tyablikov Methods in the Quantum Theory of Magnetism, Plenum Press, New York, 1967 | DOI

[109] H. T. Diep Quantum effects in antiferromagnetic thin films, Phys. Rev. B, Volume 43 (1991), pp. 8509-8515 | DOI

[110] H. T. Diep Theory of antiferromagnetic superlattices at finite temperatures, Phys. Rev. B, Volume 40 (1989), pp. 4818-4823 | DOI

[111] R. P. Millane; D. H. Wojtas; C. H. Yoon et al. Geometric frustration in the myosin superlattice of vertebrate muscle, J. R. Soc. Interface, Volume 18 (2021), 20210585 | DOI

[112] D. C. Fredrickson Electronic packing frustration in complex intermetallic structures: the role of chemical pressure in Ca 2 Ag 7 , J. Am. Chem. Soc., Volume 133 (2011), pp. 10070-10073 | DOI

[113] N. A. Harris; A. B. Hadler; D. C. Fredrickson In search of chemical frustration in the Ca–Cu–Cd system: chemical pressure relief in the crystal structures of Ca 5 Cu 2 Cd and Ca 2 Cu 2 Cd 9 , Z. Anorg. Allg. Chem., Volume 637 (2011), pp. 1961-1974 | DOI

[114] G. G. Naumis; F. Samaniego-Steta; M. del Castillo-Mussot; G. J. Vázquez Three-body interactions in sociophysics and their role in coalition forming, Physica A, Volume 379 (2007), pp. 226-234 | DOI

[115] M. Kaufman; H. T. Diep; S. Kaufman Sociophysics of intractable conflicts: three-group dynamics, Physica A, Volume 517 (2019), pp. 175-187 | DOI | Zbl

Cité par Sources :

Commentaires - Politique