[Systèmes de spins frustrés : émergence d’une physique moderne]
En 1977, Gérard Toulouse a introduit le concept nommé « frustration » pour les systèmes de spins dans lesquels une partie des interactions n’est pas satisfaite (cas de spins Ising) ou toutes les interactions ne sont pas satisfaites (cas de spins XY et Heisenberg). En utilisant cette notion, beaucoup de systèmes de spins frustrés ont été créés et étudiés. On peut mentionner quelques modèles populaires : le modèle de Villain, le modèle frustré sur un réseau cubique simple et le modèle antiferromagnétque sur un réseau triangulaire. La frustration dans les deux premiers modèles est due à un mélange des interactions ferromagnétiques et antiferromagnétiques, tandis que la frustration dans le dernier modèle est due à l’incompatibilité de l’interaction avec la géométrie du réseau (on dit alors « frustration par géométrie » ). Les systèmes frustrés ont des propriétés nouvelles et remarquables. Ce qui est frappant est que des méthodes très puissantes telles que le groupe de renormalissation ont du mal à clarifier un certain nombre de points tels que la nature de la phase transition dans des systèmes de spins frustrés, comme on le verra dans cet article de revue. J’ai commencé à étudier des systèmes de spins frustrés au début des années 80, après ma thèse. J’ai bénéficié de nombreuses discussions avec Gérard Toulouse. Je continue mes recherches jusqu’aujourd’hui sur des systèmes frustrés tels que les skyrmions. Dans cette revue, j’évoque mes travaux représentatifs sur des systèmes frustrés, allant des systèmes frustrés de spins Ising exactement résolus aux systèmes de spins XY ou Heisenberg en 2D et 3D. J’évoquerai mes derniers travaux sur les skyrmions résultant de la compétition entre l’interaction d’échange et l’interaction Dzyaloshinskii–Moriya (DM) soumis à un champ magnétique appliqué. Enfin, une théorie quantique de magnons utilisant la méthode de fonction de Green est présentée pour des systèmes frustrés avec des configurations de spin non-colinéaires tels que ceux avec l’interaction DM.
In 1977, Gérard Toulouse has proposed a new concept termed as “frustration" in spin systems. Using this definition, several frustrated models have been created and studied, among them we can mention the Villain’s model, the fully frustrated simple cubic lattice, the antiferromagnetic triangular lattice. The former models are systems with mixed ferromagnetic and antiferromagnetic bonds, while in the latter containing only an antiferromagnetic interaction, the frustration is caused by the lattice geometry. These frustrated spin systems have novel properties that we will review in this paper. One of the striking aspects is the fact that well-established methods such as the renormalization group fail to deal with the nature of the phase transition in frustrated systems. Investigations of properties of frustrated spin systems have been intensive since the 80’s. I myself got involved in several investigations of frustrated spin systems soon after my PhD. I have learned a lot from numerous discussions with Gérard Toulouse. Until today, I am still working on frustrated systems such as skyrmions. In this review, I trace back a number of my works over the years on frustrated spin systems going from exactly solved 2D Ising frustrated models, to XY and Heisenberg 2D and 3D frustrated lattices. At the end I present my latest results on skyrmions resulting from the frustration caused by the competition between the exchange interaction and the Dzyaloshinskii–Moriya interaction under an applied magnetic field. A quantum spin-wave theory using the Green’s function method is shown and discussed.
Révisé le :
Accepté le :
Publié le :
Mots-clés : Systèmes de spins frustrés, Modèles exactement solvables, Configurations de spin non-colinéaires, Skyrmions, Théorie de Magnons dans des Systèmes Frustrés
Hung The Diep 1

@article{CRPHYS_2025__26_G1_225_0, author = {Hung The Diep}, title = {Frustrated spin systems: history of the emergence of a modern physics}, journal = {Comptes Rendus. Physique}, pages = {225--251}, publisher = {Acad\'emie des sciences, Paris}, volume = {26}, year = {2025}, doi = {10.5802/crphys.235}, language = {en}, }
Hung The Diep. Frustrated spin systems: history of the emergence of a modern physics. Comptes Rendus. Physique, Volume 26 (2025), pp. 225-251. doi : 10.5802/crphys.235. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.235/
[1] Theory of frustration effects in spin glass: I, Commun. Phys., Volume 2 (1977), pp. 115-119
[2] Spin glass with non-random interactions, J. Phys. C, Volume 10 (1977), pp. 1717-1734 | DOI
[3] Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture, Phys. Rev. B, Volume 4 (1971), pp. 3174-3183 | DOI | Zbl
[4] Field Theory, The Renormalization Group and Critical Phenomena, World Scientific, Singapore, 1984 | DOI
[5] Scaling and Renormalization in Statistical Physics, Cambridge University Press, London, 1996 | DOI
[6] Quantum Field Theory and Critical Phenomena, Oxford University Press, London, 2002 | DOI
[7] Exactly Solved Models in Statistical Mechanics, Academic, New York, 1982 | DOI
[8] A new type of antiferromagnetic structure in the rutile type crystal, J. Phys. Soc. Jpn, Volume 14 (1959), pp. 807-821 | DOI
[9] La structure des substances magnetiques, Phys. Chem. Solids, Volume 11 (1959), pp. 303-330 | DOI
[10] Antiferromagnetism. The triangular Ising net, Phys. Rev., Volume 79 (1950), pp. 357-364 | DOI | Zbl
[11] Antiferromagnetism. The triangular Ising net, Phys. Rev. B, Volume 7 (1973), p. 5017 (Erratum) | DOI
[12] Renormalization-group analysis of chiral transitions, Phys. Rev. B, Volume 38 (1988), pp. 4916-4928 (Erratum Phys. Rev. B, 42, 1990, 2610) | DOI
[13] Universality of phase transitions of frustrated antiferromagnets, J. Phys. Condens. Matter, Volume 10 (1998), pp. 4707-4754 | DOI
[14] Nonperturbative renormalization group approach to frustrated magnets, Phys. Rev. B, Volume 69 (2004), 134413 | DOI
[15] About the relevance of the fixed dimension perturbative approach to frustrated magnets in two and three dimensions, Phys. Rev. B, Volume 82 (2010), 104432 | DOI
[16] Bootstrapping frustrated magnets: the fate of the chiral O(N) O(2) universality class, preprint, 2024 | arXiv
[17] O(N) O(2) scalar models: including O(2) corrections in the Functional Renormalization Group analysis, preprint, 2024 | arXiv
[18] Phase transition in Heisenberg stacked triangular antiferromagnets: End of a controversy, Phys. Rev. E, Volume 78 (2008), 031119 | DOI
[19] Stacked triangular XY antiferromagnets: End of a controversial issue on the phase transition, J. Appl. Phys., Volume 103 (2008), 07C712 | DOI
[20] Configuration space analysis for fully frustrated vector spins, J. Phys. Lett., Volume 46 (1985), pp. 1087-1093 | DOI
[21] Simple cubic fully frustrated Ising crystal by Monte Carlo simulations, J. Appl. Phys., Volume 57 (1985), pp. 3309-3311 | DOI
[22] A fully frustrated simple cubic lattice with XY and Heisenberg spin : ground state and phase transition, J. Phys. C, Volume 18 (1985), pp. 5881-5895 | DOI
[23] Fully frustrated simple cubic lattices and the overblocking effect, J. Physique, Volume 40 (1979), pp. 617-626 | DOI
[24] Fully frustrated simple cubic lattices and phase transitions, J. Physique, Volume 41 (1980), pp. 213-221 | DOI
[25] Frustrated Spin Systems (H. T. Diep, ed.), World Scientific, Singapore, 2020 | DOI | Zbl
[26] Continuous series of metastable solid solutions of silver-copper alloys, J Appl. Phys., Volume 31 (1960), pp. 1136-1137 | DOI
[27] Rapidly Quenched Metals (S. Steeb, ed.), Elsevier, Amsterdam, 2012 (Note: The reviews of this book were papers presented at the Fifth International Conference on Rapidly Quenched Metals, held in Wurzburg, Germany on September 3–7, 1984) | DOI
[28] Theory of spin glasses, J. Phys. F: Metal Phys., Volume 5 (1975) no. 5, pp. 965-974 | DOI
[29] Solvable model of a spin-glass, Phys. Rev. Lett., Volume 35 (1975) no. 26, pp. 1792-1796 | DOI
[30] Infinite number of order parameters for spin-glasses, Phys. Rev. Lett., Volume 43 (1979) no. 23, pp. 1754-1756 | DOI
[31] Spin Glass Theory and Beyond, World Scientific, Singapore, 1987 | DOI
[32] Effect of bond disorder in the Ising spin glass problem, J. Magn. Magn. Mater., Volume 31–34 (1983), pp. 1313-1314 | DOI
[33] Monte Carlo study of a three-dimensional Ising lattice with frustration, J. Phys. C: Solid State Phys., Volume 17 (1984), pp. 1357-1365 | DOI
[34] Spin-glass transition in Heisenberg spin system with J random bonds, Physica A, Volume 134 (1986), pp. 628-635 | DOI
[35] Dynamics of three-dimensional Ising spin glasses in thermal equilibrium, Phys. Rev. B, Volume 32 (1985), pp. 7384-7398 | DOI
[36] First-order transition in the hexagonal-close-packed lattice with vector spins, Phys. Rev. B, Volume 45 (1992), pp. 2863-2867 | DOI
[37] Hexagonal-close-packed lattice: ground state and phase transition, Phys. Rev. E, Volume 85 (2012), 041107 | DOI
[38] First-order transition in the FCC Heisenberg antiferromagnet, Phys. Rev. B, Volume 40 (1989), pp. 7019-7022 | DOI
[39] Frustration—exactly solved models, Frustrated Spin Systems (H. T. Diep, ed.), World Scientific, Singapore, 2020 | DOI
[40] Phase transitions in two-dimensional uniformly frustrated XY spin systems, Phys. Rev. B, Volume 34 (1986), pp. 3177-3184 | DOI
[41] Effect of magnon-magnon interaction on spin wave dispersion and magnon sideband in MnS, J. Phys. Soc. Jpn, Volume 32 (1972), pp. 927-940 | DOI
[42] Quantum fluctuations in helimagnets, J. Phys. C, Volume 18 (1985), pp. 353-360 | DOI
[43] Low-temperature properties of quantum Heisenberg helimagnets, Phys. Rev. B, Volume 40 (1989), pp. 741-744 | DOI
[44] Coexistence of order and disorder and reentrance in an exactly solvable model, Phys. Rev. Lett., Volume 59 (1987), pp. 1629-1632 | DOI
[45] Exact phase diagram in a generalized Kagomé Ising lattice: reentrance and disorder lines, Phys. Rev. B, Volume 44 (1991), pp. 2369-2372 | DOI
[46] Exact solution of an anisotropic centered honeycomb Ising lattice: Reentrance and Partial Disorder, Phys. Rev. B, Volume 43 (1991), pp. 8759-8762 (Rapid Communication) | DOI
[47] Successive reentrances and phase transitions in exactly solved dilute centered square ising lattices, Phys. Rev. B, Volume 46 (1992), pp. 8214-8218 | DOI
[48] Reentrance and disorder solutions in exactly solvable ising models, J. Magn. Magn. Mater., Volume 104 (1992), pp. 184-186 | DOI
[49] Ising model with interaction between nonnearest neighbors, Sov. Phys. JEPT, Volume 22 (1966), pp. 820-826
[50] Antiferromagnetism. The Kagomé Ising net, Prog. Theor. Phys., Volume 10 (1953), pp. 158-172 | DOI
[51] Ising-model spin correlations on the triangular lattice. IV. Anisotropic ferromagnetic and antiferromagnetic lattices, J. Math. Phys., Volume 11 (1970), pp. 420-431 | DOI
[52] Range of order in antiferromagnets with next-nearest neighbor coupling, Can. J. Phys., Volume 48 (1970), pp. 2118-2122 | DOI
[53] Ising model with antiferromagnetic next-nearest-neighbor coupling: Spin correlations and disorder points, Phys. Rev. B, Volume 1 (1970), pp. 4405-4409 | DOI
[54] Partial order in frustrated quantum spin systems, Phys. Rev. B, Volume 55 (1997), pp. 2975-2980 | DOI
[55] Evidence of a partial disorder in a frustrated Heisenberg system, J. Appl. Phys., Volume 81 (1997), pp. 5276-5278 | DOI
[56] Non collinear XY spin system: first-order transition and evidence of a reentrance, Phys. Rev. B, Volume 58 (1998), pp. 400-408 | DOI
[57] Efficient, multiple-range random walk algorithm to calculate the density of states, Phys. Rev. Lett., Volume 86 (2001), pp. 2050-2053 | DOI
[58] Determining the density of states for classical statistical models, Phys. Rev. E, Volume 64 (2001), 056101 | DOI
[59] Wang–Landau estimation of magnetic properties for the Heisenberg model, J. Appl. Phys., Volume 97 (2005), 10E303 | DOI
[60] Avoiding boundary effects in Wang–Landau sampling, Phys. Rev. E, Volume 67 (2003), 067102 | DOI
[61] Entropic sampling via Wang–Landau random walks in dominant energy subspaces, Phys. Rev. E, Volume 72 (2005), 066120 | DOI
[62] First-order transition in XY fully frustrated simple cubic lattice, Phys. Rev. E, Volume 82 (2010), 041123 | DOI
[63] Phase transition in heisenberg fully frustrated simple cubic lattice, Mod. Phys. Lett. B, Volume 25 (2011), pp. 929-936 | DOI | Zbl
[64] Phase transition and phase diagram of the J1–J2 Heisenberg model on a simple cubic lattice, J. Appl. Phys., Volume 83 (1998), pp. 6317-6319 | DOI
[65] Spin resistivity in the frustrated J1–J2 model, Mod. Phys. Lett. B, Volume 25 (2011), pp. 937-945 | DOI | Zbl
[66] Critical behavior of the two-dimensional fully frustrated XY model, Phys. Rev. B, Volume 58 (1998), pp. 5163-5165 | DOI
[67] Conformal anomaly and critical exponents of the XY Ising model, Phys. Rev. B, Volume 52 (1995), pp. 7402-7411 | DOI
[68] Chiral exponents of the square-lattice frustrated XY model: a Monte Carlo transfer-matrix calculation, Phys. Rev. B, Volume 48 (1993), pp. 7438-7444 | DOI
[69] Monte Carlo study of frustrated XY models on a triangular and square lattice, Phys. Rev. B, Volume 43 (1991), pp. 11531-11534 | DOI
[70] Phase transitions in coupled XY-Ising systems, Phys. Rev. Lett., Volume 66 (1991), pp. 1090-1093 | DOI
[71] Skyrmions in liquid crystals, Phys. Rev. E, Volume 67 (2003), 016602 | DOI
[72] Skyrmions on the track, Nat. Nanotechnol., Volume 8 (2013), pp. 152-156 | DOI
[73] Theory of skyrmion states in liquid crystals, Phys. Rev. E, Volume 90 (2014), 042502 | DOI
[74] Giant skyrmions stabilized by dipole–dipole interactions in thin ferromagnetic films, Phys. Rev. Lett., Volume 105 (2010), 197202 | DOI
[75] Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions, Sci. Rep., Volume 5 (2015), 9400 | DOI
[76] Skyrmion dynamics in a frustrated ferromagnetic film and current-induced helicity locking-unlocking transition, Nat. Commun., Volume 8 (2017), 1717 | DOI
[77] Current-driven skyrmionium in a frustrated magnetic system, Appl. Phys. Lett., Volume 117 (2020), 012403 | DOI
[78] A frustrated bimeronium: static structure and dynamics, Appl. Phys. Lett., Volume 118 (2021), 052411 | DOI
[79] Multiple-states and the skyrmion lattice of the triangular-lattice Heisenberg antiferromagnet under magnetic fields, Phys. Rev. Lett., Volume 108 (2012), 017206 | DOI
[80] Bubble and skyrmion crystals in frustrated magnets with easy-axis anisotropy, Phys. Rev. B, Volume 93 (2016), 184413 | DOI
[81] Stability and phase transition of skyrmion crystals generated by Dzyaloshinskii-Moriya interaction, J. Magn. Magn. Mater., Volume 455 (2018), pp. 32-38 | DOI
[82] Dzyaloshinskii-Moriya interaction in magneto-ferroelectric superlattices: Spin waves and skyrmions, Phys. Rev. B, Volume 99 (2019), 214420 | DOI
[83] Skyrmion crystals and phase transitions in Magneto-Ferroelectric superlattices: Dzyaloshinskii–Moriya interaction in a frustrated J J model, Symmetry, Volume 12 (2020), pp. 26-41 | DOI
[84] Frustrated antiferromagnetic triangular lattice with Dzyaloshinskii–Moriya interaction: Ground states, spin waves, skyrmion crystal, phase transition, J. Magn. Magn. Mater., Volume 563 (2022), 169920 (and references therein) | DOI
[85] Skyrmion-electronics: an overview and outlook, Proc. IEEE, Volume 104 (2016) no. 10, pp. 1-22 | DOI
[86] Three-sublattice Skyrmions crystal in the antiferromagnetic triangular lattice, Phys. Rev. B, Volume 92 (2015), 214439 | DOI
[87] Stability of skyrmion crystal phase in antiferromagnetic triangular lattice with DMI and single-ion anisotropy, J. Magn. Magn. Mater., Volume 546 (2022), 168840 | DOI
[88] et al. Formation and growth of skyrmion crystal phase in a frustrated Heisenberg antiferromagnet with Dzyaloshinskii-Moriya interaction, J. Magn. Magn. Mater., Volume 527 (2021), 167755 | DOI
[89] Theoretical investigation of antiferromagnetic skyrmions in a triangular monolayer, J. Phys.: Condens. Matter, Volume 32 (2020), 425801 | DOI
[90] Theory of Magnetism — Applications to Surface Physics, World Scientific, Singapore, 2014 | DOI
[91] Double-time green functions in statistical physics, Sov. Phys. Uspekhi, Volume 3 (1960), pp. 320-345 | DOI
[92] Effects of surface spin waves and surface anisotropy in magnetic thin films at finite temperatures, Phys. Status Solidi (b), Volume 93 (1979), pp. 351-361
[93] Frustration effects in antiferromagnetic face-centered cubic Heisenberg films, J. Phys.: Condens. Matter, Volume 19 (2007), 386202 | DOI
[94] Effects of frustrated surface in Heisenberg thin films, Phys. Rev. B, Volume 75 (2007), 035412 | DOI
[95] Quantum theory of helimagnetic thin films, Phys. Rev. B, Volume 91 (2015), 014436 | DOI
[96] Ultrathin Magnetic Structures (J. A. C. Bland; B. Heinrich, eds.), 1 and 2, Springer-Verlag, Berlin, 1994 | DOI
[97] Physics at Surfaces, Cambridge University, Cambridge, 1988 | DOI
[98] Magnetic surface phase of thin helimagnetic films, Phys. Rev. B, Volume 67 (2003), 012401 | DOI
[99] Exotic magnetic structures in ultrathin helimagnetic holmium films, Phys. Rev. B, Volume 78 (2008), 020402(R) | DOI
[100] Magnetic structures in ultra-thin Holmium films: Influence of external magnetic field, J. Magn. Magn. Mater., Volume 377 (2015), pp. 24-28 | DOI
[101] Helical magnetic order in MnSi thin films, Phys. Rev. B, Volume 84 (2011), 060404(R) | DOI
[102] Chiral modulation and reorientation effects in MnSi thin films, Phys. Rev. B, Volume 85 (2012), 094429 | DOI
[103] Persistent spin currents in helimagnets, Phys. Rev. B, Volume 68 (2003), 064406 | DOI
[104] Spin-transfer torque in helical spin-density waves, Phys. Rev. B, Volume 79 (2009), 104433 | DOI
[105] et al. Spin transfer torques in MnSi at ultralow current densities, Science, Volume 330 (2010), pp. 1648-1651 | DOI
[106] Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett., Volume 17 (1966), pp. 1133-1136 | DOI
[107] Retarded and advanced Green functions in the theory of ferromagnetism, Ukr. Mat. Zh., Volume 11 (1959), pp. 287-289
[108] Methods in the Quantum Theory of Magnetism, Plenum Press, New York, 1967 | DOI
[109] Quantum effects in antiferromagnetic thin films, Phys. Rev. B, Volume 43 (1991), pp. 8509-8515 | DOI
[110] Theory of antiferromagnetic superlattices at finite temperatures, Phys. Rev. B, Volume 40 (1989), pp. 4818-4823 | DOI
[111] et al. Geometric frustration in the myosin superlattice of vertebrate muscle, J. R. Soc. Interface, Volume 18 (2021), 20210585 | DOI
[112] Electronic packing frustration in complex intermetallic structures: the role of chemical pressure in CaAg, J. Am. Chem. Soc., Volume 133 (2011), pp. 10070-10073 | DOI
[113] In search of chemical frustration in the Ca–Cu–Cd system: chemical pressure relief in the crystal structures of CaCuCd and CaCuCd, Z. Anorg. Allg. Chem., Volume 637 (2011), pp. 1961-1974 | DOI
[114] Three-body interactions in sociophysics and their role in coalition forming, Physica A, Volume 379 (2007), pp. 226-234 | DOI
[115] Sociophysics of intractable conflicts: three-group dynamics, Physica A, Volume 517 (2019), pp. 175-187 | DOI | Zbl
Cité par Sources :
Commentaires - Politique