[Dynamique temporelle multivariée invariante d'échelle : de l'analyse spectrale (Fourier) à l'analyse fractale (ondelette)]
La transformée de Fourier (ou analyse spectrale) est aujourd'hui devenue un outil universel pour l'analyse de données issues de nombreuses applications réelles de natures très différentes, particulièrement pertinent pour la caractérisation de la dynamique temporelle ou spatiale. La transformée en ondelettes (ou analyse multéchelle) peut être vue comme une analyse spectrale adaptée à des classes de signaux ou fonctions dont la dynamique est invariante d'échelle. La présente contribution propose d'abord de faire un état de l'art des relations formelles entre ces deux analyses dans le cadre des processus aléatoires stationaires multivariés, puis de montrer la capacité de la transformée en ondelettes à étendre l'analyse de l'invariance d'échelle multivariée au-delà des statistiques de second ordre (fonction de covariance et spectre de Fourier), à l'auto-similarité multivariée et à la multifractalité multivariée. Quelques illustrations et éléments de discussion sur la pertinence de ces concepts et outils pour l'analyse de l'activité cérébrale macroscopique sont proposés.
The Fourier transform (or spectral analysis) has become a universal tool for data analysis in many different real-world applications, notably for the characterization of temporal/spatial dynamics in data. The wavelet transform (or multiscale analysis) can be regarded as tailoring spectral estimation to classes of signals or functions defined by scale-free dynamics. The present contribution first formally reviews these connections in the context of multivariate stationary processes, and second details the ability of the wavelet transform to extend multivariate scale-free temporal dynamics analysis beyond second-order statistics (Fourier spectrum and autocovariance function) to multivariate self-similarity and multivariate multifractality. Illustrations and qualitative discussions of the relevance of scale-free dynamics for macroscopic brain activity description using MEG data are proposed.
Mot clés : Transformée de Fourier, transformée en ondelettes, Signaux multivariés, Dynamique invariante d'échelle, Auto-similarité, Multifractalité
Patrice Abry 1 ; Herwig Wendt 2 ; Stéphane Jaffard 3 ; Gustavo Didier 4
@article{CRPHYS_2019__20_5_489_0, author = {Patrice Abry and Herwig Wendt and St\'ephane Jaffard and Gustavo Didier}, title = {Multivariate scale-free temporal dynamics: {From} spectral {(Fourier)} to fractal (wavelet) analysis}, journal = {Comptes Rendus. Physique}, pages = {489--501}, publisher = {Elsevier}, volume = {20}, number = {5}, year = {2019}, doi = {10.1016/j.crhy.2019.08.005}, language = {en}, }
TY - JOUR AU - Patrice Abry AU - Herwig Wendt AU - Stéphane Jaffard AU - Gustavo Didier TI - Multivariate scale-free temporal dynamics: From spectral (Fourier) to fractal (wavelet) analysis JO - Comptes Rendus. Physique PY - 2019 SP - 489 EP - 501 VL - 20 IS - 5 PB - Elsevier DO - 10.1016/j.crhy.2019.08.005 LA - en ID - CRPHYS_2019__20_5_489_0 ER -
%0 Journal Article %A Patrice Abry %A Herwig Wendt %A Stéphane Jaffard %A Gustavo Didier %T Multivariate scale-free temporal dynamics: From spectral (Fourier) to fractal (wavelet) analysis %J Comptes Rendus. Physique %D 2019 %P 489-501 %V 20 %N 5 %I Elsevier %R 10.1016/j.crhy.2019.08.005 %G en %F CRPHYS_2019__20_5_489_0
Patrice Abry; Herwig Wendt; Stéphane Jaffard; Gustavo Didier. Multivariate scale-free temporal dynamics: From spectral (Fourier) to fractal (wavelet) analysis. Comptes Rendus. Physique, Volume 20 (2019) no. 5, pp. 489-501. doi : 10.1016/j.crhy.2019.08.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2019.08.005/
[1] Signal Analysis, vol. 191, McGraw-Hill, New York, 1977
[2] Fourier Analysis, Cambridge University Press, 1988
[3] Lectures on the Fourier Transform and Its Applications, American Mathematical Society, Providence, RI, USA, 2019
[4] Time Series: Theory and Methods, Springer Science and Business Media, 1991
[5] An algorithm for the machine calculation of complex Fourier series, Math. Comput., Volume 19 (1965) no. 90, pp. 297-301
[6] The re-discovery of the fast Fourier transform algorithm, Mikrochim. Acta, Volume 93 (1987) no. 1–6, pp. 33-45
[7] Neuronal oscillations in cortical networks, Science, Volume 304 (2004) no. 5679, pp. 1926-1929
[8] A wavelet-based joint estimator of the parameters of long-range dependence, IEEE Trans. Inf. Theory, Volume 45 (1999) no. 3, pp. 878-897
[9] Self-similar network traffic: an overview (K. Park; W. Willinger, eds.), Self-Similar Network Traffic and Performance Evaluation, Wiley, 2000, pp. 1-38
[10] Multiscale nature of network traffic, IEEE Signal Process. Mag., Volume 19 (2002) no. 3, pp. 28-46
[11] Scaling in Internet traffic: a 14 year and 3 day longitudinal study, with multiscale analyses and random projections, IEEE/ACM Trans. Netw., Volume 25 (2017) no. 4, pp. 2152-2165
[12] Information theory and psycholinguistics (B.B. Wolman; E. Nagel, eds.), Scientific Psychology: Principles and Approaches, Basic Books, New York, 1965
[13] The multifractal model of asset returns, Cowles Foundation Discussion Papers, vol. 1164, 1997
[14] Multifractality in assets returns: theory and evidence, Rev. Econ. Stat., Volume LXXXIV (2002) no. 84, pp. 381-406
[15] L'approche fractale: un nouvel outil dans l'analyse spatiale des agglomerations urbaines, Population, Volume 4 (1997), pp. 1005-1040
[16] When Van Gogh meets Mandelbrot: multifractal classification of painting's texture, Signal Process., Volume 93 (2013) no. 3, pp. 554-572
[17] R. Leonarduzzi, P. Abry, S. Jaffard, H. Wendt, L. Gournay, T. Kyriacopoulou, C. Martineau, C. Martinez, p-Leader multifractal analysis for text type identification, in: Proc. 42nd IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP2017, New Orleans, LA, USA, 5–9 March 2017.
[18] Invited editorial on “Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations”, J. Appl. Physiol. (1996), pp. 1446-1447
[19] Scale-invariant aspects of cardiac dynamics, IEEE Eng. Med. Biol. Mag., Volume 26 (2007) no. 6, pp. 33-37
[20] Multifractal analysis of fetal heart rate variability in fetuses with and without severe acidosis during labor, Am. J. Perinatol., Volume 28 (2011) no. 4, pp. 259-266
[21] Multiscale analysis of intensive longitudinal biomedical signals and its clinical applications, Proc. IEEE, Volume 104 (2016) no. 2, SI, pp. 242-261
[22] Wavelet p-leader non Gaussian multiscale expansions for heart rate variability analysis in congestive heart failure patients, IEEE Trans. Biomed. Eng., Volume 66 (2019) no. 1, pp. 80-88
[23] Fractals in the nervous system: conceptual implications for theoretical neuroscience, Front. Physiol., Volume 1 (2010)
[24] Scale-free brain activity: past, present, and future, Trends Cogn. Sci., Volume 18 (2014) no. 9, pp. 480-487
[25] Neural integration of stimulus history underlies prediction for naturalistically evolving sequences, J. Neurosci., Volume 38 (2018) no. 6, pp. 1541-1557
[26] Self-similarity and multifractality in human brain activity: a wavelet-based analysis of scale-free brain dynamics, J. Neurosci. Methods, Volume 309:175–187 (2018)
[27] Turbulence, the Legacy of A.N. Kolmogorov, Addison-Wesley, 1993
[28] Physically based rain and cloud modeling by anisotropic, multiplicative turbulent cascades, J. Geophys. Res., Volume 92 (1987), pp. 9693-9714
[29] Comprehensive multifractal analysis of turbulent velocity using the wavelet leaders, Eur. Phys. J. B, Volume 61 (2008) no. 2, pp. 201-215
[30] Wavelets in Geophysics (E. Foufoula-Georgiou; P. Kumar, eds.), Academic Press, San Diego, CA, USA, 1994
[31] Scaling and multifractal fields in the solid Earth and topography, Nonlinear Process. Geophys., Volume 14 (2007) no. 4, pp. 465-502
[32] Noah, Joseph, and operational hydrology, Water Resour. Res., Volume 4 (1968) no. 5, pp. 909-918
[33] The Fractal Geometry of Nature, 1982 (New York)
[34] Irregularities and scaling in signal and image processing: multifractal analysis (M. Frame; N. Cohen, eds.), Benoît Mandelbrot: a Life in Many Dimensions, World Scientific Publishing, 2015, pp. 31-116
[35] Interplay between functional connectivity and scale-free dynamics in intrinsic fMRI networks, NeuroImage, Volume 95 (2014), pp. 248-263
[36] Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1992
[37] A Wavelet Tour of Signal Processing, Academic Press, San Diego, CA, USA, 1998
[38] On the spectrum of fractional Brownian motions, IEEE Trans. Inf. Theory, Volume IT-35 (1989) no. 1, pp. 197-199
[39] Wavelet analysis and synthesis of fractional Brownian motions, IEEE Trans. Inf. Theory, Volume 38 (1992), pp. 910-917
[40] Wavelets, spectrum estimation and processes, Wavelets and Statistics, Springer-Verlag, New York, 1995 (chapter 103, Lecture Notes in Statistics)
[41] Wavelet analysis of long-range dependent traffic, IEEE Trans. Inf. Theory, Volume 44 (1998) no. 1, pp. 2-15
[42] Integral representations and properties of operator fractional Brownian motions, Bernoulli, Volume 17 (2011) no. 1, pp. 1-33
[43] Wavelet estimation for operator fractional Brownian motion, Bernoulli, Volume 24 ( May 2018 ) no. 2, pp. 895-928
[44] Wavelet eigenvalue regression for n-variate operator fractional Brownian motion, J. Multivar. Anal., Volume 168 (2018), pp. 75-104
[45] Joint multifractal measures – theory and applications to turbulence, Phys. Rev. A, Volume 41 (1990) no. 2, pp. 894-913
[46] Multivariate multifractal analysis, Appl. Comput. Harmon. Anal., Volume 46 (2019) no. 3, pp. 653-663
[47] Time-Frequency/Time-Scale Analysis, vol. 10, Academic Press, 1998
[48] Wavelet analysis of covariance with application to atmospheric time series, J. Geophys. Res., Atmos., Volume 105 (2000) no. D11, pp. 14941-14962
[49] Multivariate Hadamard self-similarity: testing fractal connectivity, Physica D, Volume 356 (2017), pp. 1-36
[50] Supramodal processing optimizes visual perceptual learning and plasticity, Neuroimage, Volume 93 (2014) no. Pt 1, pp. 32-46
[51] Fractional Brownian motion, fractional noises and applications, SIAM Rev., Volume 10 (1968), pp. 422-437
[52] Stable Non-Gaussian Random Processes, Chapman and Hall, New York, 1994
[53] Operator-self-similar stable processes, Stoch. Process. Appl., Volume 54 (1994) no. 1, pp. 139-163
[54] Sample path properties of operator-self-similar Gaussian random fields, Theory Probab. Appl., Volume 46 (2002) no. 1, pp. 58-78
[55] Exponents, symmetry groups and classification of operator fractional Brownian motions, J. Theor. Probab., Volume 25 (2012) no. 2, pp. 353-395
[56] Sample means, sample autocovariances, and linear regression of stationary multivariate long memory processes, Econom. Theory, Volume 18 (2002), pp. 51-78
[57] Convergence in law to operator fractional Brownian motions, J. Theor. Probab., Volume 26 (2013) no. 3, pp. 676-696
[58] Two-step wavelet-based estimation for Gaussian mixed fractional processes, Stat. Inference Stoch. Process., Volume 22 (2019) no. 2, pp. 157-185
[59] Multiple local Whittle estimation in stationary systems, Ann. Stat., Volume 36 (2008) no. 5, pp. 2508-2530
[60] Fractal connectivity of long-memory networks, Phys. Rev. E, Volume 77 (2008) no. 3
[61] D. La Rocca, P. Ciuciu, V. van Wassenhove, H. Wendt, P. Abry, R. Leonarduzzi, Scale-free functional connectivity analysis from source reconstructed MEG data, in: Proc. European Signal Processing Conference (EUSIPCO 2018), Rome, Italy, 3–7 September 2018.
[62] Non-linear wavelet regression and branch & bound optimization for the full identification of bivariate operator fractional Brownian motion, IEEE Trans. Signal Process., Volume 64 (2016) no. 15, pp. 4040-4049
[63] Multifractal processes (P. Doukhan; G. Oppenheim; M.S. Taqqu, eds.), Theory and Applications of Long Range Dependence, Birkhäuser, 2003, pp. 625-717
[64] Wavelet techniques in multifractal analysis (M. Lapidus; M. van Frankenhuijsen, eds.), Fractal Geometry and Applications: a Jubilee of Benoît Mandelbrot, Proc. Symp. Pure Math., vol. 72(2), American Mathematical Society, Providence, RI, USA, 2004, pp. 91-152
[65] Bootstrap for empirical multifractal analysis, IEEE Signal Process. Mag., Volume 24 (2007) no. 4, pp. 38-48
[66] p-exponent and p-leaders, part I: negative pointwise regularity, Physica A, Volume 448 (2016), pp. 300-318
[67] p-exponent and p-leaders, part II: multifractal analysis. Relations to detrended fluctuation analysis, Physica A, Volume 448 (2016), pp. 319-339
[68] Physically based rain and cloud modeling by anisotropic, multiplicative turbulent cascades, J. Geophys. Res., Volume 92.D8 (1987), pp. 9693-9714
[69] Baire typical results for mixed Hölder spectra on product of continuous Besov or oscillation spaces, Mediterr. J. Math., Volume 13 (2016), pp. 1513-1533
[70] Log-similarity for turbulent flows, Physica D, Volume 68 (1993) no. 3–4, pp. 387-400
[71] The thermodynamics of fractals revisited with wavelets, Physica A, Volume 213 (1995) no. 1–2, pp. 232-275
[72] H. Wendt, R. Leonarduzzi, P. Abry, S. Roux, S. Jaffard, S. Seuret, Assessing cross-dependencies using bivariate multifractal analysis, in: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2018), Calgary, Alberta, Canada, 15–20 April 2018.
[73] R. Leonarduzzi, P. Abry, S.G. Roux, H. Wendt, S. Jaffard, S. Seuret, Multifractal characterization for bivariate data, in: Proc. European Signal Processing Conference (EUSIPCO 2018), Rome, Italy, 3–7 September 2018.
[74] Multifractal random walk, Phys. Rev. E, Volume 64 (2001) no. 2
[75] Synthesis of multivariate stationary series with prescribed marginal distributions and covariance using circulant matrix embedding, Signal Process., Volume 91 (2011), pp. 1741-1758
[76] H. Wendt, P. Abry, G. Didier, Wavelet domain bootstrap for testing the equality of bivariate self-similarity exponents, in: Proc. IEEE Workshop Statistical Signal Proces. (SSP), Freiburg, Germany, 10–13 June 2018.
[77] P. Abry, H. Wendt, G. Didier, Detecting and estimating multivariate self-similar sources in high-dimensional noisy mixtures, in: Proc. IEEE Workshop Statistical Signal Proces. (SSP), Freiburg, Germany, 10–13 June 2018.
Cité par Sources :
Commentaires - Politique