[Du chaos de l'espace-temps à la thermodynamique stochastique]
Nous résumons plusieurs expériences qui montrent l'évolution de certains intérêts et objectifs scientifiques de la physique statistique au cours des quarante dernières années. En particulier, nous présentons de quelle façon les idées sur les fluctuations d'énergie dans les systèmes hors équilibre se sont développées aux niveaux théorique et expérimental, en partant des études sur le chaos spatio-temporel. Ces idées ont été appliquées aux systèmes microscopiques dans lesquels le rôle des fluctuations thermiques ne peut pas être négligé. Dans ce contexte, nous décrivons quelques expériences dans lesquelles les propriétés statistiques des fluctuations du travail, de la chaleur et de l'entropie ont été mesurées. Enfin, nous montrons comment ces mesures nous ont permis de mieux comprendre le lien entre information et thermodynamique.
We summarize the results of several experiments that show the evolution of some scientific interests and goals of the statistical and nonlinear physics community in the last 40 years. Specifically, we present how the ideas of extending concepts of equilibrium statistical physics to out-of-equilibrium physics have been developed to characterize various phenomena such as, for example, transition to space-time chaos and glass aging. We then discuss the applications of this out-of-equilibrium thermodynamics to microsystems driven out of equilibrium either by external forces or by temperature gradients. We show that in these systems thermal fluctuations play a role and that all thermodynamics quantities, such as work, heat, and entropy fluctuate. We recall general concepts such as fluctuation theorems and fluctuation dissipation relations used to characterize the statistical properties of these small systems. We describe experiments where all these concepts have been applied and tested with high accuracy. Finally, we show how these theoretical concepts and the experiments allowed us to improve our knowledge on the connection between information and thermodynamics.
Mots-clés : Thermodynamique stochastique, Hors équilibre, Bruit thermique, Information, Dynamique chaotique
Sergio Ciliberto 1
@article{CRPHYS_2019__20_6_529_0, author = {Sergio Ciliberto}, title = {From space-time chaos to stochastic thermodynamics}, journal = {Comptes Rendus. Physique}, pages = {529--539}, publisher = {Elsevier}, volume = {20}, number = {6}, year = {2019}, doi = {10.1016/j.crhy.2019.09.001}, language = {en}, }
Sergio Ciliberto. From space-time chaos to stochastic thermodynamics. Comptes Rendus. Physique, Prizes of the French Academy of Sciences 2018 / Prix 2018 de l'Académie des sciences, Volume 20 (2019) no. 6, pp. 529-539. doi : 10.1016/j.crhy.2019.09.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2019.09.001/
[1] J. Phys. II, 6 (1996), p. 1099
[2] Physica A, 340 (2004), p. 240
[3] Phys. Rev. Lett., 92 (2004)
[4] Phys. Rev. Lett., 106 (2011)
[5] Europhys. Lett., 100 (2012) | DOI
[6] Europhys. Lett., 97 (2012) | DOI
[7] Eur. Phys. J. B, 66 (2008), p. 399
[8] arXiv
, 2017 |[9] Nat. Phys., 12 (2016), p. 1134
[10] Physica D, 23 (1986), p. 3
[11] Phys. Rev. Lett., 54 (1987), p. 112
[12] Phys. Rev. Lett., 60 (1988), p. 286
[13] Phys. Rev. Lett., 64 (1990), p. 2775
[14] Physica D, 37 (1989), p. 109
[15] Physica D, 58 (1992), p. 365
[16] Phys. Rev. Lett., 71 (1993), p. 173
[17] Phys. Rev. E, 55 (1997), p. 3898
[18] Phys. Rev. E, 71 (2005)
[19] Phys. Rev. Lett., 92 (2004)
[20] Nature, 483 (2012), p. 187
[21] Phys. Rev. X, 6 (2017)
[22] Prog. Theor. Phys. Suppl., 130 (1998), p. 17
[23] Phys. Rev. Lett., 71 (1993), p. 2401
[24] Adv. Phys., 51 (2002), p. 1529
[25] Phys. Rev. Lett., 74 (1995), p. 2694
[26] J. Stat. Phys., 95 (1999), p. 333
[27] J. Phys. A, Math. Gen., 31 (1998), p. 3719
[28] J. Stat. Phys., 128 (2007), p. 1337
[29] J. Chem. Phys., 128 (2008)
[30] Phys. Rev. Lett., 95 (2005)
[31] J. Stat. Mech. (2006)
[32] Phys. Rev. Lett., 91 (2003)
[33] J. Stat. Phys., 90 (1998), p. 1481
[34] J. Stat. Phys., 117 (2004), p. 599
[35] Rep. Prog. Phys., 75 (2012)
[36] J. Stat. Mech. Theory Exp., 2008 (2008)
[37] Europhys. Lett., 82 (2008)
[38] J. Stat. Mech. (2010)
[39] Phys. Rev. Lett., 78 (1997), p. 2690
[40] Phys. Rev. E, 56 (1997), p. 5018
[41] Europhys. Lett., 81 (2008)
[42] SIAM J. Appl. Math., 43 (1983), p. 565
[43] Phys. Rev. Lett., 74 (1995), p. 1052
[44] Phys. Rev. Lett., 74 (2006), p. 937
[45] J. Stat. Mech. Theory Exp., 2008 (2008)
[46] Phys. Rev. Lett., 110 (2013)
[47] J. Stat. Mech. Theory Exp., 2013 (2013)
[48] Phys. Rev. Lett., 87 (2001)
[49] Phys. Rep., 461 (2008), p. 111
[50] J. Phys. A, Math. Gen., 44 (2011)
[51] Phys. Rev. Lett., 83 (1999), p. 5038
[52] Europhys. Lett., 53 (2001), p. 511
[53] Phys. Rev. Lett., 88 (2002)
[54] Phys. Rev. Lett., 89 (2002)
[55] J. Phys. A, Math. Gen., 36 (2003), p. R181
[56] J. Phys. A, Math. Gen., 38 (2005), p. R133
[57] Phys. Rev. E, 66 (2002)
[58] Biophys. J., 93 (2007), p. 895
[59] et al. Phys. Rev. E, 85 (2012)
[60] Z. Phys., 22 (1975), p. 295
[61] Phys. Rev. Lett., 95 (2005)
[62] Phys. Rev. E, 71 (2005)
[63] Europhys. Lett., 74 (2006), p. 391
[64] J. Stat. Mech. (2008)
[65] Phys. Rev. Lett., 103 (2009)
[66] J. Stat. Phys., 143 (2011), p. 543
[67] Phys. Rev. Lett., 103 (2009)
[68] J. Stat. Phys., 137 (2009), p. 1094
[69] Europhys. Lett., 89 (2010)
[70] Phys. Rev. E, 69 (2004)
[71] Phys. Rev. E, 77 (2008)
[72] Phys. Rev. Lett., 117 (2016)
[73] Phys. Rev. Lett., 103 (2009)
[74] Phys. Rev. E, 82 (2010)
[75] Phys. Rev. Lett., 98 (2007)
[76] J. Stat. Mech. (2011)
[77] Phys. Rev. E, 94 (2016)
[78] J. Stat. Phys., 167 (2017), p. 29
[79] Annu. Rev. Condens. Matter Phys., 4 (2013), p. 235
[80] Phys. Today, 68 (2015), p. 30
[81] Nat. Phys., 11 (2015), p. 131
[82] Nat. Phys., 6 (2010), p. 988
[83] Phys. Rev. Lett., 104 (2010)
[84] Phys. Rev. Lett., 102 (2009)
[85] Phys. Rev. Lett., 113 (2014)
[86] Europhys. Lett., 103 (2013)
[87] Europhys. Lett., 114 (2016)
[88] J. Stat. Phys., 147 (2012), p. 487
[89] Europhys. Lett., 87 (2009)
[90] Proc. Natl. Acad. Sci., 111 (2014)
[91] Nat. Phys., 10 (2014), p. 457
[92] Phys. Rev. Lett., 113 (2014)
[93] Sci. Adv., 2 (2016)
[94] Phys. Rev. Lett., 117 (2016)
[95] New J. Phys., 16 (2014)
[96] Nat. Commun., 6 (2015), p. 7498
- Close to Optimal Cell Sensing Ensures the Robustness of Tissue Differentiation Process: The Avian Photoreceptor Mosaic Case, Entropy, Volume 23 (2021) no. 7, p. 867 | DOI:10.3390/e23070867
- Statistical properties of the heat flux between two nonequilibrium steady-state thermostats, Physical Review E, Volume 103 (2021) no. 4 | DOI:10.1103/physreve.103.042143
- Explicit Solution of the Generalised Langevin Equation, Journal of Statistical Physics, Volume 181 (2020) no. 5, p. 1609 | DOI:10.1007/s10955-020-02639-4
Cité par 3 documents. Sources : Crossref
Commentaires - Politique