[Démons de Maxwell réalisés avec des circuits électroniques]
Nous passons en revue des progrès récents qui ont permis de faire des anciennes propositions du démon de Maxwell des expériences réelles de laboratoire. En particulier, nous nous concentrons sur des réalisations basées sur l'effet tunnel à un électron dans des circuits électroniques. Nous montrons d'abord comment la thermodynamique stochastique peut être explorée dans ces circuits. Ensuite, nous passons en revue des expériences récentes sur un moteur de Szilard électronique. Enfin, nous rendons compte d'expériences de refroidissement basées sur l'effet tunnel à un électron, incluant la réalisation d'un refrigérateur à gap de Coulomb, ainsi que celle d'un démon de Maxwell autonome.
We review recent progress in making the former gedanken experiments of Maxwell's demon [1] into real experiments in a lab. In particular, we focus on realizations based on single-electron tunneling in electronic circuits. We first present how stochastic thermodynamics can be investigated in these circuits. Next we review recent experiments on an electron-based Szilard engine. Finally, we report on experiments on single-electron tunneling-based cooling, overviewing the recent realization of a Coulomb gap refrigerator, as well as an autonomous Maxwell's demon.
Mot clés : Démon de Maxwell, Information
Jonne V. Koski 1, 2 ; Jukka P. Pekola 1
@article{CRPHYS_2016__17_10_1130_0, author = {Jonne V. Koski and Jukka P. Pekola}, title = {Maxwell's demons realized in electronic circuits}, journal = {Comptes Rendus. Physique}, pages = {1130--1138}, publisher = {Elsevier}, volume = {17}, number = {10}, year = {2016}, doi = {10.1016/j.crhy.2016.08.011}, language = {en}, }
Jonne V. Koski; Jukka P. Pekola. Maxwell's demons realized in electronic circuits. Comptes Rendus. Physique, Volume 17 (2016) no. 10, pp. 1130-1138. doi : 10.1016/j.crhy.2016.08.011. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.08.011/
[1] (H.S. Leff; A.F. Rex, eds.), Maxwell's Demon, IoP, Bristol, UK, 2003
[2] Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen, Z. Phys., Volume 53 (1929), p. 840
[3] General theory of thermal fluctuations in nonlinear systems, Sov. Phys. JETP, Volume 72 (1977), p. 238
[4] Nonequilibrium equality for free energy differences, Phys. Rev. Lett., Volume 78 (1997), p. 2690
[5] Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences, Phys. Rev. E, Volume 60 (1999), p. 2721
[6] Stochastic thermodynamics, fluctuation theorems and molecular machines, Rep. Prog. Phys., Volume 75 (2012), p. 126001
[7] Generalized Jarzynski equality under nonequilibrium feedback control, Phys. Rev. Lett., Volume 104 (2010)
[8] Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality, Nat. Phys., Volume 6 (2010), p. 988
[9] Experimental verification of Landauer's principle linking information and thermodynamics, Nature, Volume 483 (2011), p. 187
[10] Thermal-noise suppression in nano-scale Si field-effect transistors by feedback control based on single-electron detection, Appl. Phys. Lett., Volume 107 (2015)
[11] Photonic Maxwell's demon, Phys. Rev. Lett., Volume 116 (2016)
[12] Work and information processing in a solvable model of Maxwell's demon, Proc. Natl. Acad. Sci. USA, Volume 109 (2012), p. 11641
[13] Thermodynamics of a physical model implementing a Maxwell demon, Phys. Rev. Lett., Volume 110 (2013)
[14] Thermodynamics with continuous information flow, Phys. Rev. X, Volume 4 (2014)
[15] Zero-current persistent potential drop across small-capacitance Josephson junctions, Phys. Rev. B, Volume 36 (1987), p. 3548
[16] Direct observation of macroscopic charge quantization, Z. Phys. B, Volume 85 (1991), p. 327
[17] Test of the Jarzynski and crooks fluctuation relations in an electronic system, Phys. Rev. Lett., Volume 109 (2012)
[18] Irreversibility on the level of single-electron tunneling, Phys. Rev. X, Volume 2 (2012)
[19] Equilibrium free energy measurement of a confined electron driven out of equilibrium, Phys. Rev. B, Volume 93 (2016)
[20] Maxwell's demon based on a single-electron pump, Phys. Rev. B, Volume 84 (2011)
[21] Experimental realization of a Szilard engine with a single electron, Proc. Natl. Acad. Sci. USA, Volume 111 (2014), p. 13786
[22] Second law of thermodynamics with discrete quantum feedback control, Phys. Rev. Lett., Volume 100 (2008)
[23] Thermodynamic reversibility in feedback processes, Europhys. Lett., Volume 95 (2011), p. 10005
[24] Experimental observation of the role of mutual information in the nonequilibrium dynamics of a Maxwell demon, Phys. Rev. Lett., Volume 113 (2014)
[25] Refrigerator based on the Coulomb barrier for single-electron tunneling, Phys. Rev. B, Volume 89 (2014)
[26] Experimental realization of a Coulomb blockade refrigerator, Phys. Rev. B, Volume 90 (2014)
[27] Opportunities for mesoscopics in thermometry and refrigeration: physics and applications, Rev. Mod. Phys., Volume 78 (2006), p. 217
[28] Electronic refrigeration of a two-dimensional electron gas, Phys. Rev. Lett., Volume 102 (2009)
[29] On-chip Maxwell's demon as an information-powered refrigerator, Phys. Rev. Lett., Volume 115 (2015)
[30] Fast electron thermometry for ultrasensitive calorimetric detection, Phys. Rev. Appl., Volume 3 (2015)
[31] Energy distribution function of quasiparticles in mesoscopic wires, Phys. Rev. Lett., Volume 79 (1997), p. 3490
[32] Irreversibility and heat generation in the computing process, IBM J. Res. Dev., Volume 5 (1961), p. 183
[33] Logical reversibility of computation, IBM J. Res. Dev., Volume 17 (1973), p. 525
[34] Maxwell's demon based on a single qubit, Phys. Rev. B, Volume 93 (2016)
Cité par Sources :
Commentaires - Politique