[Que mesure-t-on en mesurant un coefficient thermoélectrique ?]
A thermal gradient generates an electric field in any solid hosting mobile electrons. In presence of a finite magnetic field (or Berry curvature) this electric field has a transverse component. These are known as Seebeck and Nernst coefficients. As Callen argued, back in 1948, the Seebeck effect quantifies the entropy carried by a flow of charged particles in absence of thermal gradient. Similarly, the Nernst conductivity,
Dans un solide contenant des électrons itinérants, un gradient thermique génère un champ électrique. En présence d’un champ magnétique (ou une courbure de Berry) ce champ électrique a une composante transverse. Ces deux effets sont connus sous le nom de coefficients de Seebeck et de Nernst. Callen a soutenu, en 1948 que l’effet Seebeck quantifie l’entropie portée par un flux de particules chargées en l’absence de gradient thermique. De même, la conductivité de Nernst quantifie l’entropie portée par un flux de flux magnétique en l’absence de gradient thermique. Cet article résume une approche aux phénomènes thermoélectriques dans laquelle leur amplitude approximative est donnée par des constantes fondamentales et des longueur caractéristiques qui dépendent du matériau. Par conséquent, la connaissance de ces échelles de longueur permet de prédire l’amplitude du signal mesuré. Plus précisément, la conductivité de Nernst dans les métaux varie avec le carré du libre parcours moyen. Sa composante anormale dans les solides magnétiques est proportionnelle au carré de la longueur magnétique fictive. Dans l’état normal d’un supraconducteur, les paires de Cooper éphémères génèrent un signal qui évolue avec le carré de la longueur de cohérence supraconductrice. En dessous de la température critique, se signal devient celui produit par les vortex mobiles du supraconducteur en question.
Révisé le :
Accepté le :
Première publication :
Publié le :
Mots-clés : Thermoélectricité, électrons corrélés, matériaux topologiques
Kamran Behnia 1

@article{CRPHYS_2022__23_S2_25_0, author = {Kamran Behnia}, title = {What is measured when measuring a thermoelectric coefficient?}, journal = {Comptes Rendus. Physique}, pages = {25--40}, publisher = {Acad\'emie des sciences, Paris}, volume = {23}, number = {S2}, year = {2022}, doi = {10.5802/crphys.100}, language = {en}, }
Kamran Behnia. What is measured when measuring a thermoelectric coefficient?. Comptes Rendus. Physique, Prizes of the French Academy of Sciences 2021, Volume 23 (2022) no. S2, pp. 25-40. doi : 10.5802/crphys.100. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.100/
[1] Thermoelectricity: An introduction to the principles, Dover Publications, 2006
[2] Introduction to Thermoelectricity, Springer Series in materials science, 121, Springer, 2009 | DOI
[3] Fundamentals of Thermoelectricity, Oxford University Press, 2015 | DOI
[4] Theory of the Thermoelectric Power of Semiconductors, Phys. Rev., Volume 96 (1954) no. 5, pp. 1163-1187 | DOI
[5] Conductance viewed as transmission, Rev. Mod. Phys., Volume 71 (1999) no. 2, p. S306-S312 | DOI
[6] Reciprocal Relations in Irreversible Processes. I., Phys. Rev., Volume 37 (1931) no. 4, pp. 405-426 | DOI
[7] Reciprocal Relations in Irreversible Processes. II., Phys. Rev., Volume 38 (1931) no. 12, pp. 2265-2279 | DOI
[8] On Onsager’s Principle of Microscopic Reversibility, Rev. Mod. Phys., Volume 17 (1945) no. 2-3, pp. 343-350 | DOI
[9] The Application of Onsager’s Reciprocal Relations to Thermoelectric, Thermomagnetic, and Galvanomagnetic Effects, Phys. Rev., Volume 73 (1948) no. 11, pp. 1349-1358 | DOI
[10] A Note on the Adiabatic Thermomagnetic Effects, Phys. Rev., Volume 85 (1952) no. 1, pp. 16-19 | DOI
[11] Thermoelectric Power in the Nearly-Free-Electron Model, Phys. Rev., Volume 161 (1967) no. 3, pp. 533-539 | DOI
[12] First Principles Explanation of the Positive Seebeck Coefficient of Lithium, Phys. Rev. Lett., Volume 112 (2014) no. 19, 196603 | DOI
[13] Thermoelectric properties of elemental metals from first-principles electron-phonon coupling, Phys. Rev. B, Volume 102 (2020) no. 15, 155128 | DOI
[14] Vortex-like excitations and the onset of superconducting phase fluctuation in underdoped La
[15] The Kondo Problem to Heavy Fermions, Cambridge University Press, 1993
[16] Single impurity Kondo effect in gold: I. Thermopower, Journal of Physics F: Metal Physics, Volume 5 (1975) no. 6, pp. 1211-1216 | DOI
[17] Quantum Point Contacts, Physics Today, Volume 49 (1996) no. 7, pp. 22-27 | DOI
[18] Conductance from transmission: common sense points, Phys. Scr., Volume T42 (1992), pp. 110-114 | DOI
[19] Quantized conductance through individual rows of suspended gold atoms, Nature, Volume 395 (1998) no. 6704, pp. 780-783 | DOI
[20] Solid State: A New Exposition: Solid State Physics, Holt-Saunders, 1976
[21] On the Heavy Fermion Road (W. P. Halperin, ed.) (Progress in low temperature physics), Volume 15, Elsevier, 2005, pp. 139-281 | DOI
[22] On the thermoelectricity of correlated electrons in the zero-temperature limit, J. Phys.: Condens. Matter, Volume 16 (2004) no. 28, pp. 5187-5198 | DOI
[23] Anisotropic inelastic scattering and its interplay with superconductivity in URu
[24] Fermi-Surface Instability in the Heavy-Fermion Superconductor UTe
[25] Thermoelectric power of a disordered metal near the metal-insulator transition, Phys. Rev. Lett., Volume 70 (1993) no. 22, pp. 3475-3478 | DOI
[26] Fermi Surface of the Most Dilute Superconductor, Phys. Rev. X, Volume 3 (2013) no. 2, 021002 | DOI
[27] Magnetothermoelectric properties of Bi
[28] Fermi-surface reconstruction by stripe order in cuprate superconductors, Nat. Commun., Volume 2 (2011) no. 1, 432 | DOI
[29] Transport properties of very pure copper and silver below 8.5K, Journal of Physics F: Metal Physics, Volume 6 (1976) no. 1, pp. 85-98 | DOI
[30] Heavy Nondegenerate Electrons in Doped Strontium Titanate, Phys. Rev. X, Volume 10 (2020) no. 3, 031025 | DOI
[31] Experimental study of the valence band of Bi
[32] Semiconductor thermoelements and thermoelectric cooling, Infosearch Limited London, 1957 (translated from russian by A. Gelbtuch)
[33] Theory of Thermoelectric Power in Semiconductors with Applications to Germanium, Phys. Rev., Volume 92 (1953) no. 2, pp. 226-232 | DOI
[34] Sackur–Tetrode equation in the lab, Eur. J. Phys., Volume 36 (2015) no. 5, 055033 | DOI
[35] Colloquium: Area laws for the entanglement entropy, Rev. Mod. Phys., Volume 82 (2010) no. 1, pp. 277-306 | DOI
[36] Black holes and information theory, Contemporary Physics, Volume 45 (2004) no. 1, pp. 31-43 | DOI
[37] Entropy and area, Phys. Rev. Lett., Volume 71 (1993) no. 5, pp. 666-669 | DOI
[38] Information Theory and Statistical Mechanics. II, Phys. Rev., Volume 108 (1957) no. 2, pp. 171-190 | DOI
[39] Generalised information and entropy measures in physics, Contemporary Physics, Volume 50 (2009) no. 4, pp. 495-510 | DOI
[40] Bose–Einstein condensation, Am. J. Phys., Volume 65 (1997) no. 6, pp. 570-574 | DOI
[41] Colossal Seebeck Coefficient of Hopping Electrons in (TMTSF)
[42] Seebeck Effect in Germanium, Phys. Rev., Volume 94 (1954) no. 5, pp. 1134-1140 | DOI
[43] Seebeck Effect in Silicon, Phys. Rev., Volume 98 (1955) no. 4, pp. 940-947 | DOI
[44] Thermopower studies of a series of salts of tetramethyltetrathiafulvalene [
[45] Theory of thermoelectric effect in insulators (2021) (https://arxiv.org/abs/2105.08228)
[46] Nernst effect in metals and superconductors: a review of concepts and experiments, Rep. Prog. Phys., Volume 79 (2016) no. 4, 046502 | DOI
[47] Intrinsic Anomalous Nernst Effect Amplified by Disorder in a Half-Metallic Semimetal, Phys. Rev. X, Volume 9 (2019) no. 4, 041061 | DOI
[48] Thermoelectric transport and phonon drag in Weyl semimetal monochalcogenides, Phys. Rev. B, Volume 104 (2021) no. 11, 115164 | DOI
[49] The Theory of the Properties of Metals and Alloys, International Series of Monographs on Physics, Clarendon Press; Oxford University Press, 1936
[50] Transport properties of bismuth in quantizing magnetic fields, Phys. Rev. B, Volume 14 (1976) no. 10, pp. 4381-4385 | DOI
[51] Nernst Effect in Semimetals: The Effective Mass and the Figure of Merit, Phys. Rev. Lett., Volume 98 (2007) no. 7, 076603 | DOI
[52] The Nernst effect and the boundaries of the Fermi liquid picture, J. Phys.: Condens. Matter, Volume 21 (2009) no. 11, 113101 | DOI
[53] Energy bands in the presence of an external force field—II: Anomalous velocities, Journal of Physics and Chemistry of Solids, Volume 10 (1959) no. 4, pp. 286-303 | DOI
[54] Anomalous Hall effect, Rev. Mod. Phys., Volume 82 (2010) no. 2, pp. 1539-1592 | DOI
[55] Berry phase effects on electronic properties, Rev. Mod. Phys., Volume 82 (2010) no. 3, pp. 1959-2007 | DOI
[56] Semiclassical theories of the anomalous Hall effect, J. Phys.: Condens. Matter, Volume 20 (2007) no. 2, 023201 | DOI
[57] Chiral degeneracies and Fermi-surface Chern numbers in bcc Fe, Phys. Rev. B, Volume 92 (2015) no. 8, 085138 | DOI
[58] Quantum Mechanics with a Momentum-Space Artificial Magnetic Field, Phys. Rev. Lett., Volume 113 (2014) no. 19, 190403 | DOI
[59] Anomalous transverse response of Co
[60] Colossal anomalous Nernst effect in a correlated noncentrosymmetric kagome ferromagnet, Sci. adv., Volume 7 (2021) no. 13, eabf1467 | DOI
[61] Iron-based binary ferromagnets for transverse thermoelectric conversion, Nature, Volume 581 (2020) no. 7806, pp. 53-57 | DOI
[62] Nernst effect in high-
[63] Gaussian Superconducting Fluctuations, Thermal Transport, and the Nernst Effect, Phys. Rev. Lett., Volume 89 (2002) no. 28, 287001 | DOI
[64] Observation of the Nernst signal generated by fluctuating Cooper pairs, Nat. Phys., Volume 2 (2006) no. 10, pp. 683-686 | DOI
[65] Length scale for the superconducting Nernst signal above
[66] Giant Nernst Effect due to Fluctuating Cooper Pairs in Superconductors, Phys. Rev. Lett., Volume 102 (2009) no. 6, 067001 | DOI
[67] Fluctuations of the superconducting order parameter as an origin of the Nernst effect, Eur. Phys. Lett., Volume 86 (2009) no. 2, 27007 | DOI
[68] Nernst Effect Measurements of Epitaxial
[69] Decrease of upper critical field with underdoping in cuprate superconductors, Nat. Phys., Volume 8 (2012) no. 10, pp. 751-756 | DOI
[70] Nernst effect in the electron-doped cuprate superconductor Pr
[71] Pseudogap temperature
[72] Universal Bound to the Amplitude of the Vortex Nernst Signal in Superconductors, Phys. Rev. Lett., Volume 126 (2021) no. 7, 077001 | DOI
- Nernst Effect of High-Mobility Weyl Electrons in NdAlSi Enhanced by a Fermi Surface Nesting Instability, Physical Review X, Volume 14 (2024) no. 2 | DOI:10.1103/physrevx.14.021012
- Apparatus for the room temperature measurement of low field Nernst and magneto-Seebeck coefficients, Review of Scientific Instruments, Volume 95 (2024) no. 8 | DOI:10.1063/5.0222406
Cité par 2 documents. Sources : Crossref
Commentaires - Politique