logo CRAS
Comptes Rendus. Physique
What is measured when measuring a thermoelectric coefficient?
Comptes Rendus. Physique, Online first (2022), pp. 1-16.

Part of the special issue: Prizes of the French Academy of Sciences 2021

A thermal gradient generates an electric field in any solid hosting mobile electrons. In presence of a finite magnetic field (or Berry curvature) this electric field has a transverse component. These are known as Seebeck and Nernst coefficients. As Callen argued, back in 1948, the Seebeck effect quantifies the entropy carried by a flow of charged particles in absence of thermal gradient. Similarly, the Nernst conductivity, α xy , quantifies the entropy carried by a flow of magnetic flux in absence of thermal gradient. The present paper summarizes a picture in which the rough amplitude of the thermoelectric response is given by fundamental units and material-dependent length scales. Therefore, knowledge of material-dependent length scales allows predicting the amplitude of the signal measured by experiments. Specifically, the Nernst conductivity scales with the square of the mean-free-path in metals. Its anomalous component in magnets scales with the square of the fictitious magnetic length. Ephemeral Cooper pairs in the normal state of a superconductor generate a signal, which scales with the square of the superconducting coherence length and smoothly evolves to the signal produced by mobile vortices below the critical temperature.

Dans un solide contenant des électrons itinérants, un gradient thermique génère un champ électrique. En présence d’un champ magnétique (ou une courbure de Berry) ce champ électrique a une composante transverse. Ces deux effets sont connus sous le nom de coefficients de Seebeck et de Nernst. Callen a soutenu, en 1948 que l’effet Seebeck quantifie l’entropie portée par un flux de particules chargées en l’absence de gradient thermique. De même, la conductivité de Nernst quantifie l’entropie portée par un flux de flux magnétique en l’absence de gradient thermique. Cet article résume une approche aux phénomènes thermoélectriques dans laquelle leur amplitude approximative est donnée par des constantes fondamentales et des longueur caractéristiques qui dépendent du matériau. Par conséquent, la connaissance de ces échelles de longueur permet de prédire l’amplitude du signal mesuré. Plus précisément, la conductivité de Nernst dans les métaux varie avec le carré du libre parcours moyen. Sa composante anormale dans les solides magnétiques est proportionnelle au carré de la longueur magnétique fictive. Dans l’état normal d’un supraconducteur, les paires de Cooper éphémères génèrent un signal qui évolue avec le carré de la longueur de cohérence supraconductrice. En dessous de la température critique, se signal devient celui produit par les vortex mobiles du supraconducteur en question.

Online First:
DOI: 10.5802/crphys.100
Keywords: Thermoelectricity, correlated electrons, topological materials
Kamran Behnia 1

1 Laboratoire de Physique et d’Etude de Matériaux (CNRS-Sorbonne University), ESPCI Paris, PSL University, 10 Rue Vauquelin, 75005 Paris, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRPHYS_2022__23_S2_A6_0,
     author = {Kamran Behnia},
     title = {What is measured when measuring a thermoelectric coefficient?},
     journal = {Comptes Rendus. Physique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2022},
     doi = {10.5802/crphys.100},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Kamran Behnia
TI  - What is measured when measuring a thermoelectric coefficient?
JO  - Comptes Rendus. Physique
PY  - 2022
DA  - 2022///
PB  - Académie des sciences, Paris
N1  - Online first
UR  - https://doi.org/10.5802/crphys.100
DO  - 10.5802/crphys.100
LA  - en
ID  - CRPHYS_2022__23_S2_A6_0
ER  - 
%0 Journal Article
%A Kamran Behnia
%T What is measured when measuring a thermoelectric coefficient?
%J Comptes Rendus. Physique
%D 2022
%I Académie des sciences, Paris
%Z Online first
%U https://doi.org/10.5802/crphys.100
%R 10.5802/crphys.100
%G en
%F CRPHYS_2022__23_S2_A6_0
Kamran Behnia. What is measured when measuring a thermoelectric coefficient?. Comptes Rendus. Physique, Online first (2022), pp. 1-16. doi : 10.5802/crphys.100.

[1] David Keith Chalmers MacDonald Thermoelectricity: An introduction to the principles, Dover Publications, 2006

[2] H. Julian Goldsmid Introduction to Thermoelectricity, Springer Series in materials science, 121, Springer, 2009 | DOI

[3] Kamran Behnia Fundamentals of Thermoelectricity, Oxford University Press, 2015 | DOI

[4] Conyers Herring Theory of the Thermoelectric Power of Semiconductors, Phys. Rev., Volume 96 (1954) no. 5, pp. 1163-1187 | DOI

[5] Yoseph Imry; Rolf Landauer Conductance viewed as transmission, Rev. Mod. Phys., Volume 71 (1999) no. 2, p. S306-S312 | DOI

[6] Lars Onsager Reciprocal Relations in Irreversible Processes. I., Phys. Rev., Volume 37 (1931) no. 4, pp. 405-426 | DOI

[7] Lars Onsager Reciprocal Relations in Irreversible Processes. II., Phys. Rev., Volume 38 (1931) no. 12, pp. 2265-2279 | DOI

[8] H. B. G. Casimir On Onsager’s Principle of Microscopic Reversibility, Rev. Mod. Phys., Volume 17 (1945) no. 2-3, pp. 343-350 | DOI

[9] Herbert B. Callen The Application of Onsager’s Reciprocal Relations to Thermoelectric, Thermomagnetic, and Galvanomagnetic Effects, Phys. Rev., Volume 73 (1948) no. 11, pp. 1349-1358 | DOI

[10] Herbert B. Callen A Note on the Adiabatic Thermomagnetic Effects, Phys. Rev., Volume 85 (1952) no. 1, pp. 16-19 | DOI

[11] John E. Robinson Thermoelectric Power in the Nearly-Free-Electron Model, Phys. Rev., Volume 161 (1967) no. 3, pp. 533-539 | DOI

[12] Bin Xu; Matthieu J. Verstraete First Principles Explanation of the Positive Seebeck Coefficient of Lithium, Phys. Rev. Lett., Volume 112 (2014) no. 19, 196603 | DOI

[13] Bin Xu; Marco Di Gennaro; Matthieu J. Verstraete Thermoelectric properties of elemental metals from first-principles electron-phonon coupling, Phys. Rev. B, Volume 102 (2020) no. 15, 155128 | DOI

[14] Z. A. Xu; N. P. Ong; Y. Wang; T. Kakeshita; S. Uchida Vortex-like excitations and the onset of superconducting phase fluctuation in underdoped La 2-x Sr x CuO 4 , Nature, Volume 406 (2000) no. 6795, pp. 486-488 | DOI

[15] Alexandre Cyril Hewson The Kondo Problem to Heavy Fermions, Cambridge University Press, 1993

[16] J. Kopp Single impurity Kondo effect in gold: I. Thermopower, Journal of Physics F: Metal Physics, Volume 5 (1975) no. 6, pp. 1211-1216 | DOI

[17] Carlo W. J. Beenakker; Henk van Houten Quantum Point Contacts, Physics Today, Volume 49 (1996) no. 7, pp. 22-27 | DOI

[18] Rolf Landauer Conductance from transmission: common sense points, Phys. Scr., Volume T42 (1992), pp. 110-114 | DOI

[19] Hideaki Ohnishi; Yukihito Kondo; Kunio Takayanagi Quantized conductance through individual rows of suspended gold atoms, Nature, Volume 395 (1998) no. 6704, pp. 780-783 | DOI

[20] Neil W. Ashcroft; N. David Mermin Solid State: A New Exposition: Solid State Physics, Holt-Saunders, 1976

[21] Jacques Flouquet On the Heavy Fermion Road (W. P. Halperin, ed.) (Progress in low temperature physics), Volume 15, Elsevier, 2005, pp. 139-281 | DOI

[22] Kamran Behnia; Didier Jaccard; Jacques Flouquet On the thermoelectricity of correlated electrons in the zero-temperature limit, J. Phys.: Condens. Matter, Volume 16 (2004) no. 28, pp. 5187-5198 | DOI

[23] Zengwei Zhu; Elena Hassinger; Zhu’an Xu; Dai Aoki; Jacques Flouquet; Kamran Behnia Anisotropic inelastic scattering and its interplay with superconductivity in URu 2 Si 2 , Phys. Rev. B, Volume 80 (2009) no. 17, 172501 | DOI

[24] Qian Niu; G. Knebel; D. Braithwaite; Dai Aoki; G. Lapertot; Gabriel Seyfarth; J-P. Brison; Jacques Flouquet; Alexandre Pourret Fermi-Surface Instability in the Heavy-Fermion Superconductor UTe 2 , Phys. Rev. Lett., Volume 124 (2020) no. 8, 086601 | DOI

[25] M. Lakner; H. v. Löhneysen Thermoelectric power of a disordered metal near the metal-insulator transition, Phys. Rev. Lett., Volume 70 (1993) no. 22, pp. 3475-3478 | DOI

[26] Xiao Lin; Zengwei Zhu; Benoît Fauqué; Kamran Behnia Fermi Surface of the Most Dilute Superconductor, Phys. Rev. X, Volume 3 (2013) no. 2, 021002 | DOI

[27] Benoît Fauqué; Nicholas P. Butch; Paul Syers; Johnpierre Paglione; Steffen Wiedmann; Aurélie Collaudin; Benjamin Grena; Uli Zeitler; Kamran Behnia Magnetothermoelectric properties of Bi 2 Se 3 , Phys. Rev. B, Volume 87 (2013) no. 3, 035133 | DOI

[28] F. Laliberté; J. Chang; N. Doiron-Leyraud; Elena Hassinger; R. Daou; M. Rondeau; B. J. Ramshaw; R. Liang; D. A. Bonn; W. N. Hardy; S. Pyon; T. Takayama; H. Takagi; I. Sheikin; L. Malone; C. Proust; K. Behnia; Louis Taillefer Fermi-surface reconstruction by stripe order in cuprate superconductors, Nat. Commun., Volume 2 (2011) no. 1, 432 | DOI

[29] E. R. Rumbo Transport properties of very pure copper and silver below 8.5K, Journal of Physics F: Metal Physics, Volume 6 (1976) no. 1, pp. 85-98 | DOI

[30] CléTment Collignon; Phillipe Bourges; Benoît Fauqué; Kamran Behnia Heavy Nondegenerate Electrons in Doped Strontium Titanate, Phys. Rev. X, Volume 10 (2020) no. 3, 031025 | DOI

[31] Yi-Bin Gao; Bin He; David Parker; Ioannis Androulakis; Joseph P. Heremans Experimental study of the valence band of Bi 2 Se 3 , Phys. Rev. B, Volume 90 (2014) no. 12, 125204 | DOI

[32] A. F. Ioffe; L. S. Stil’bans; E. K. Iordanishvili; T. S. Stavitskaya Semiconductor thermoelements and thermoelectric cooling, Infosearch Limited London, 1957 (translated from russian by A. Gelbtuch)

[33] V. A. Johnson; K. Lark-Horovitz Theory of Thermoelectric Power in Semiconductors with Applications to Germanium, Phys. Rev., Volume 92 (1953) no. 2, pp. 226-232 | DOI

[34] Francisco José Paños; Enric Pérez Sackur–Tetrode equation in the lab, Eur. J. Phys., Volume 36 (2015) no. 5, 055033 | DOI

[35] J. Eisert; M. Cramer; M. B. Plenio Colloquium: Area laws for the entanglement entropy, Rev. Mod. Phys., Volume 82 (2010) no. 1, pp. 277-306 | DOI

[36] Jacob D. Bekenstein Black holes and information theory, Contemporary Physics, Volume 45 (2004) no. 1, pp. 31-43 | DOI

[37] Mark Srednicki Entropy and area, Phys. Rev. Lett., Volume 71 (1993) no. 5, pp. 666-669 | DOI

[38] E. T. Jaynes Information Theory and Statistical Mechanics. II, Phys. Rev., Volume 108 (1957) no. 2, pp. 171-190 | DOI

[39] Christian Beck Generalised information and entropy measures in physics, Contemporary Physics, Volume 50 (2009) no. 4, pp. 495-510 | DOI

[40] Isaac F. Silvera Bose–Einstein condensation, Am. J. Phys., Volume 65 (1997) no. 6, pp. 570-574 | DOI

[41] Yo Machida; Xiao Lin; Woun Kang; Koichi Izawa; Kamran Behnia Colossal Seebeck Coefficient of Hopping Electrons in (TMTSF) 2 PF 6 , Phys. Rev. Lett., Volume 116 (2016) no. 8, 087003 | DOI

[42] T. H. Geballe; G. W. Hull Seebeck Effect in Germanium, Phys. Rev., Volume 94 (1954) no. 5, pp. 1134-1140 | DOI

[43] T. H. Geballe; G. W. Hull Seebeck Effect in Silicon, Phys. Rev., Volume 98 (1955) no. 4, pp. 940-947 | DOI

[44] Kell Mortensen; E. M. Conwell; J. M. Fabre Thermopower studies of a series of salts of tetramethyltetrathiafulvalene [(TMTTF) 2 X, X=Br, ClO 4 , NO 3 , SCN, BF 4 , AsF 6 , and PF 6 ], Phys. Rev. B, Volume 28 (1983) no. 10, pp. 5856-5862 | DOI

[45] Yugo Onishi; Hiroki Isobe; Naoto Nagaosa Theory of thermoelectric effect in insulators (2021) (https://arxiv.org/abs/2105.08228)

[46] Kamran Behnia; Hervé Aubin Nernst effect in metals and superconductors: a review of concepts and experiments, Rep. Prog. Phys., Volume 79 (2016) no. 4, 046502 | DOI

[47] Linchao Ding; Jahyun Koo; Liangcai Xu; Xiaokang Li; Xiufang Lu; Lingxiao Zhao; Qi Wang; Qiangwei Yin; Hechang Lei; Binghai Yan; Zengwei Zhu; Kamran Behnia Intrinsic Anomalous Nernst Effect Amplified by Disorder in a Half-Metallic Semimetal, Phys. Rev. X, Volume 9 (2019) no. 4, 041061 | DOI

[48] Xitong Xu; Yiyuan Liu; Gabriel Seyfarth; Alexandre Pourret; Wenlong Ma; Huibin Zhou; Guangqiang Wang; Zhe Qu; Shuang Jia Thermoelectric transport and phonon drag in Weyl semimetal monochalcogenides, Phys. Rev. B, Volume 104 (2021) no. 11, 115164 | DOI

[49] N. F. Mott; H. Jones The Theory of the Properties of Metals and Alloys, International Series of Monographs on Physics, Clarendon Press; Oxford University Press, 1936

[50] J. H. Mangez; J. P. Issi; Joseph P. Heremans Transport properties of bismuth in quantizing magnetic fields, Phys. Rev. B, Volume 14 (1976) no. 10, pp. 4381-4385 | DOI

[51] Kamran Behnia; Marie-Aude Méasson; Yakov Kopelevich Nernst Effect in Semimetals: The Effective Mass and the Figure of Merit, Phys. Rev. Lett., Volume 98 (2007) no. 7, 076603 | DOI

[52] Kamran Behnia The Nernst effect and the boundaries of the Fermi liquid picture, J. Phys.: Condens. Matter, Volume 21 (2009) no. 11, 113101 | DOI

[53] E. N. Adams; E. I. Blount Energy bands in the presence of an external force field—II: Anomalous velocities, Journal of Physics and Chemistry of Solids, Volume 10 (1959) no. 4, pp. 286-303 | DOI

[54] Naoto Nagaosa; Jairo Sinova; Shigeki Onoda; A. H. MacDonald; N. P. Ong Anomalous Hall effect, Rev. Mod. Phys., Volume 82 (2010) no. 2, pp. 1539-1592 | DOI

[55] Di Xiao; Ming-Che Chang; Qian Niu Berry phase effects on electronic properties, Rev. Mod. Phys., Volume 82 (2010) no. 3, pp. 1959-2007 | DOI

[56] N. A. Sinitsyn Semiclassical theories of the anomalous Hall effect, J. Phys.: Condens. Matter, Volume 20 (2007) no. 2, 023201 | DOI

[57] Daniel Gos’álbez-Martínez; Ivo Souza; David Vanderbilt Chiral degeneracies and Fermi-surface Chern numbers in bcc Fe, Phys. Rev. B, Volume 92 (2015) no. 8, 085138 | DOI

[58] Hannah M. Price; Tomoki Ozawa; Iacopo Carusotto Quantum Mechanics with a Momentum-Space Artificial Magnetic Field, Phys. Rev. Lett., Volume 113 (2014) no. 19, 190403 | DOI

[59] Liangcai Xu; Xiaokang Li; Linchao Ding; Taishi Chen; Akito Sakai; Benoît Fauqué; Satoru Nakatsuji; Zengwei Zhu; Kamran Behnia Anomalous transverse response of Co 2 MnGa and universality of the room-temperature α i j A /σ i j A ratio across topological magnets, Phys. Rev. B, Volume 101 (2020) no. 18, 180404 | DOI

[60] T. Asaba; V. Ivanov; S. M. Thomas; S. Y. Savrasov; J. D. Thompson; E. D. Bauer; F. Ronning Colossal anomalous Nernst effect in a correlated noncentrosymmetric kagome ferromagnet, Sci. adv., Volume 7 (2021) no. 13, eabf1467 | DOI

[61] Akito Sakai; Susumu Minami; Takashi Koretsune; Taishi Chen; Tomoya Higo; Yangming Wang; Takuya Nomoto; Motoaki Hirayama; Shinji Miwa; Daisuke Nishio-Hamane; Fumiyuki Ishii; Ryotaro Arita; Satoru Nakatsuji Iron-based binary ferromagnets for transverse thermoelectric conversion, Nature, Volume 581 (2020) no. 7806, pp. 53-57 | DOI

[62] Yayu Wang; Lu Li; N. P. Ong Nernst effect in high-T c superconductors, Phys. Rev. B, Volume 73 (2006) no. 2, 024510 | DOI

[63] Iddo Ussishkin; S. L. Sondhi; David A. Huse Gaussian Superconducting Fluctuations, Thermal Transport, and the Nernst Effect, Phys. Rev. Lett., Volume 89 (2002) no. 28, 287001 | DOI

[64] Alexandre Pourret; Hervé Aubin; J. Lesueur; C. A. Marrache-Kikuchi; L. Bergé; L. Dumoulin; K. Behnia Observation of the Nernst signal generated by fluctuating Cooper pairs, Nat. Phys., Volume 2 (2006) no. 10, pp. 683-686 | DOI

[65] Alexandre Pourret; Hervé Aubin; J. Lesueur; C. A. Marrache-Kikuchi; L. Bergé; L. Dumoulin; K. Behnia Length scale for the superconducting Nernst signal above T c in Nb 0.15 Si 0.85 , Phys. Rev. B, Volume 76 (2007) no. 21, 214504 | DOI

[66] M. N. Serbyn; M. A. Skvortsov; A. A. Varlamov; Victor Galitski Giant Nernst Effect due to Fluctuating Cooper Pairs in Superconductors, Phys. Rev. Lett., Volume 102 (2009) no. 6, 067001 | DOI

[67] K. Michaeli; A. M. Finkel’stein Fluctuations of the superconducting order parameter as an origin of the Nernst effect, Eur. Phys. Lett., Volume 86 (2009) no. 2, 27007 | DOI

[68] I. Kokanović; J. R. Cooper; M. Matusiak Nernst Effect Measurements of Epitaxial Y 0.95 Ca 0.05 Ba 2 (Cu 1-x Zn x ) 3 O y and Y 0.9 Ca 0.1 Ba 2 Cu 3 O y Superconducting Films, Phys. Rev. Lett., Volume 102 (2009) no. 18, 187002 | DOI

[69] J. Chang; N. Doiron-Leyraud; O. Cyr-Choinière; G. Grissonnanche; F. Laliberté; Elena Hassinger; J-Ph. Reid; R. Daou; S. Pyon; T. Takayama; H. Takagi; Louis Taillefer Decrease of upper critical field with underdoping in cuprate superconductors, Nat. Phys., Volume 8 (2012) no. 10, pp. 751-756 | DOI

[70] F. F. Tafti; F. Laliberté; M. Dion; J. Gaudet; P. Fournier; Louis Taillefer Nernst effect in the electron-doped cuprate superconductor Pr 2-x Ce x CuO 4 : Superconducting fluctuations, upper critical field H c2 , and the origin of the T c dome, Phys. Rev. B, Volume 90 (2014) no. 2, 024519 | DOI

[71] O. Cyr-Choinière; R. Daou; F. Laliberté; Clément Collignon; S. Badoux; D. LeBoeuf; J. Chang; B. J. Ramshaw; D. A. Bonn; W. N. Hardy; R. Liang; J.-Q. Yan; J.-G. Cheng; J.-S. Zhou; J. B. Goodenough; S. Pyon; T. Takayama; H. Takagi; N. Doiron-Leyraud; Louis Taillefer Pseudogap temperature T * of cuprate superconductors from the Nernst effect, Phys. Rev. B, Volume 97 (2018) no. 6, 064502 | DOI

[72] Carl Willem Rischau; Yuke Li; Benoît Fauqué; Hisashi Inoue; Minu Kim; Christopher Bell; Harold Y. Hwang; Aharon Kapitulnik; Kamran Behnia Universal Bound to the Amplitude of the Vortex Nernst Signal in Superconductors, Phys. Rev. Lett., Volume 126 (2021) no. 7, 077001 | DOI

Cited by Sources:

Articles of potential interest

Interface enhanced superconductivity in FeSe/SrTiO 3 and the hidden nature

Sha Han; Can-Li Song; Xu-Cun Ma; ...

C. R. Phys (2021)


Ultrafast dynamics with time-resolved ARPES: photoexcited electrons in monochalcogenide semiconductors

Zhesheng Chen; Jonathan Caillaux; Jiuxiang Zhang; ...

C. R. Phys (2021)


TiO 2 , ZnO, and SnO 2 -based metal oxides for photocatalytic applications: principles and development

Olga Ishchenko; Vincent Rogé; Guillaume Lamblin; ...

C. R. Chim (2021)