A thermal gradient generates an electric field in any solid hosting mobile electrons. In presence of a finite magnetic field (or Berry curvature) this electric field has a transverse component. These are known as Seebeck and Nernst coefficients. As Callen argued, back in 1948, the Seebeck effect quantifies the entropy carried by a flow of charged particles in absence of thermal gradient. Similarly, the Nernst conductivity, , quantifies the entropy carried by a flow of magnetic flux in absence of thermal gradient. The present paper summarizes a picture in which the rough amplitude of the thermoelectric response is given by fundamental units and material-dependent length scales. Therefore, knowledge of material-dependent length scales allows predicting the amplitude of the signal measured by experiments. Specifically, the Nernst conductivity scales with the square of the mean-free-path in metals. Its anomalous component in magnets scales with the square of the fictitious magnetic length. Ephemeral Cooper pairs in the normal state of a superconductor generate a signal, which scales with the square of the superconducting coherence length and smoothly evolves to the signal produced by mobile vortices below the critical temperature.
Dans un solide contenant des électrons itinérants, un gradient thermique génère un champ électrique. En présence d’un champ magnétique (ou une courbure de Berry) ce champ électrique a une composante transverse. Ces deux effets sont connus sous le nom de coefficients de Seebeck et de Nernst. Callen a soutenu, en 1948 que l’effet Seebeck quantifie l’entropie portée par un flux de particules chargées en l’absence de gradient thermique. De même, la conductivité de Nernst quantifie l’entropie portée par un flux de flux magnétique en l’absence de gradient thermique. Cet article résume une approche aux phénomènes thermoélectriques dans laquelle leur amplitude approximative est donnée par des constantes fondamentales et des longueur caractéristiques qui dépendent du matériau. Par conséquent, la connaissance de ces échelles de longueur permet de prédire l’amplitude du signal mesuré. Plus précisément, la conductivité de Nernst dans les métaux varie avec le carré du libre parcours moyen. Sa composante anormale dans les solides magnétiques est proportionnelle au carré de la longueur magnétique fictive. Dans l’état normal d’un supraconducteur, les paires de Cooper éphémères génèrent un signal qui évolue avec le carré de la longueur de cohérence supraconductrice. En dessous de la température critique, se signal devient celui produit par les vortex mobiles du supraconducteur en question.
@article{CRPHYS_2022__23_S2_A6_0, author = {Kamran Behnia}, title = {What is measured when measuring a thermoelectric coefficient?}, journal = {Comptes Rendus. Physique}, publisher = {Acad\'emie des sciences, Paris}, year = {2022}, doi = {10.5802/crphys.100}, language = {en}, note = {Online first}, }
Kamran Behnia. What is measured when measuring a thermoelectric coefficient?. Comptes Rendus. Physique, Online first (2022), pp. 1-16. doi : 10.5802/crphys.100.
[1] Thermoelectricity: An introduction to the principles, Dover Publications, 2006
[2] Introduction to Thermoelectricity, Springer Series in materials science, 121, Springer, 2009 | DOI
[3] Fundamentals of Thermoelectricity, Oxford University Press, 2015 | DOI
[4] Theory of the Thermoelectric Power of Semiconductors, Phys. Rev., Volume 96 (1954) no. 5, pp. 1163-1187 | DOI
[5] Conductance viewed as transmission, Rev. Mod. Phys., Volume 71 (1999) no. 2, p. S306-S312 | DOI
[6] Reciprocal Relations in Irreversible Processes. I., Phys. Rev., Volume 37 (1931) no. 4, pp. 405-426 | DOI
[7] Reciprocal Relations in Irreversible Processes. II., Phys. Rev., Volume 38 (1931) no. 12, pp. 2265-2279 | DOI
[8] On Onsager’s Principle of Microscopic Reversibility, Rev. Mod. Phys., Volume 17 (1945) no. 2-3, pp. 343-350 | DOI
[9] The Application of Onsager’s Reciprocal Relations to Thermoelectric, Thermomagnetic, and Galvanomagnetic Effects, Phys. Rev., Volume 73 (1948) no. 11, pp. 1349-1358 | DOI
[10] A Note on the Adiabatic Thermomagnetic Effects, Phys. Rev., Volume 85 (1952) no. 1, pp. 16-19 | DOI
[11] Thermoelectric Power in the Nearly-Free-Electron Model, Phys. Rev., Volume 161 (1967) no. 3, pp. 533-539 | DOI
[12] First Principles Explanation of the Positive Seebeck Coefficient of Lithium, Phys. Rev. Lett., Volume 112 (2014) no. 19, 196603 | DOI
[13] Thermoelectric properties of elemental metals from first-principles electron-phonon coupling, Phys. Rev. B, Volume 102 (2020) no. 15, 155128 | DOI
[14] Vortex-like excitations and the onset of superconducting phase fluctuation in underdoped LaSrCuO, Nature, Volume 406 (2000) no. 6795, pp. 486-488 | DOI
[15] The Kondo Problem to Heavy Fermions, Cambridge University Press, 1993
[16] Single impurity Kondo effect in gold: I. Thermopower, Journal of Physics F: Metal Physics, Volume 5 (1975) no. 6, pp. 1211-1216 | DOI
[17] Quantum Point Contacts, Physics Today, Volume 49 (1996) no. 7, pp. 22-27 | DOI
[18] Conductance from transmission: common sense points, Phys. Scr., Volume T42 (1992), pp. 110-114 | DOI
[19] Quantized conductance through individual rows of suspended gold atoms, Nature, Volume 395 (1998) no. 6704, pp. 780-783 | DOI
[20] Solid State: A New Exposition: Solid State Physics, Holt-Saunders, 1976
[21] On the Heavy Fermion Road (W. P. Halperin, ed.) (Progress in low temperature physics), Volume 15, Elsevier, 2005, pp. 139-281 | DOI
[22] On the thermoelectricity of correlated electrons in the zero-temperature limit, J. Phys.: Condens. Matter, Volume 16 (2004) no. 28, pp. 5187-5198 | DOI
[23] Anisotropic inelastic scattering and its interplay with superconductivity in URuSi, Phys. Rev. B, Volume 80 (2009) no. 17, 172501 | DOI
[24] Fermi-Surface Instability in the Heavy-Fermion Superconductor UTe, Phys. Rev. Lett., Volume 124 (2020) no. 8, 086601 | DOI
[25] Thermoelectric power of a disordered metal near the metal-insulator transition, Phys. Rev. Lett., Volume 70 (1993) no. 22, pp. 3475-3478 | DOI
[26] Fermi Surface of the Most Dilute Superconductor, Phys. Rev. X, Volume 3 (2013) no. 2, 021002 | DOI
[27] Magnetothermoelectric properties of BiSe, Phys. Rev. B, Volume 87 (2013) no. 3, 035133 | DOI
[28] Fermi-surface reconstruction by stripe order in cuprate superconductors, Nat. Commun., Volume 2 (2011) no. 1, 432 | DOI
[29] Transport properties of very pure copper and silver below 8.5K, Journal of Physics F: Metal Physics, Volume 6 (1976) no. 1, pp. 85-98 | DOI
[30] Heavy Nondegenerate Electrons in Doped Strontium Titanate, Phys. Rev. X, Volume 10 (2020) no. 3, 031025 | DOI
[31] Experimental study of the valence band of BiSe, Phys. Rev. B, Volume 90 (2014) no. 12, 125204 | DOI
[32] Semiconductor thermoelements and thermoelectric cooling, Infosearch Limited London, 1957 (translated from russian by A. Gelbtuch)
[33] Theory of Thermoelectric Power in Semiconductors with Applications to Germanium, Phys. Rev., Volume 92 (1953) no. 2, pp. 226-232 | DOI
[34] Sackur–Tetrode equation in the lab, Eur. J. Phys., Volume 36 (2015) no. 5, 055033 | DOI
[35] Colloquium: Area laws for the entanglement entropy, Rev. Mod. Phys., Volume 82 (2010) no. 1, pp. 277-306 | DOI
[36] Black holes and information theory, Contemporary Physics, Volume 45 (2004) no. 1, pp. 31-43 | DOI
[37] Entropy and area, Phys. Rev. Lett., Volume 71 (1993) no. 5, pp. 666-669 | DOI
[38] Information Theory and Statistical Mechanics. II, Phys. Rev., Volume 108 (1957) no. 2, pp. 171-190 | DOI
[39] Generalised information and entropy measures in physics, Contemporary Physics, Volume 50 (2009) no. 4, pp. 495-510 | DOI
[40] Bose–Einstein condensation, Am. J. Phys., Volume 65 (1997) no. 6, pp. 570-574 | DOI
[41] Colossal Seebeck Coefficient of Hopping Electrons in (TMTSF)PF, Phys. Rev. Lett., Volume 116 (2016) no. 8, 087003 | DOI
[42] Seebeck Effect in Germanium, Phys. Rev., Volume 94 (1954) no. 5, pp. 1134-1140 | DOI
[43] Seebeck Effect in Silicon, Phys. Rev., Volume 98 (1955) no. 4, pp. 940-947 | DOI
[44] Thermopower studies of a series of salts of tetramethyltetrathiafulvalene [TMTTF, Br, ClO, NO, SCN, BF, AsF, and PF], Phys. Rev. B, Volume 28 (1983) no. 10, pp. 5856-5862 | DOI
[45] Theory of thermoelectric effect in insulators (2021) (https://arxiv.org/abs/2105.08228)
[46] Nernst effect in metals and superconductors: a review of concepts and experiments, Rep. Prog. Phys., Volume 79 (2016) no. 4, 046502 | DOI
[47] Intrinsic Anomalous Nernst Effect Amplified by Disorder in a Half-Metallic Semimetal, Phys. Rev. X, Volume 9 (2019) no. 4, 041061 | DOI
[48] Thermoelectric transport and phonon drag in Weyl semimetal monochalcogenides, Phys. Rev. B, Volume 104 (2021) no. 11, 115164 | DOI
[49] The Theory of the Properties of Metals and Alloys, International Series of Monographs on Physics, Clarendon Press; Oxford University Press, 1936
[50] Transport properties of bismuth in quantizing magnetic fields, Phys. Rev. B, Volume 14 (1976) no. 10, pp. 4381-4385 | DOI
[51] Nernst Effect in Semimetals: The Effective Mass and the Figure of Merit, Phys. Rev. Lett., Volume 98 (2007) no. 7, 076603 | DOI
[52] The Nernst effect and the boundaries of the Fermi liquid picture, J. Phys.: Condens. Matter, Volume 21 (2009) no. 11, 113101 | DOI
[53] Energy bands in the presence of an external force field—II: Anomalous velocities, Journal of Physics and Chemistry of Solids, Volume 10 (1959) no. 4, pp. 286-303 | DOI
[54] Anomalous Hall effect, Rev. Mod. Phys., Volume 82 (2010) no. 2, pp. 1539-1592 | DOI
[55] Berry phase effects on electronic properties, Rev. Mod. Phys., Volume 82 (2010) no. 3, pp. 1959-2007 | DOI
[56] Semiclassical theories of the anomalous Hall effect, J. Phys.: Condens. Matter, Volume 20 (2007) no. 2, 023201 | DOI
[57] Chiral degeneracies and Fermi-surface Chern numbers in bcc Fe, Phys. Rev. B, Volume 92 (2015) no. 8, 085138 | DOI
[58] Quantum Mechanics with a Momentum-Space Artificial Magnetic Field, Phys. Rev. Lett., Volume 113 (2014) no. 19, 190403 | DOI
[59] Anomalous transverse response of CoMnGa and universality of the room-temperature ratio across topological magnets, Phys. Rev. B, Volume 101 (2020) no. 18, 180404 | DOI
[60] Colossal anomalous Nernst effect in a correlated noncentrosymmetric kagome ferromagnet, Sci. adv., Volume 7 (2021) no. 13, eabf1467 | DOI
[61] Iron-based binary ferromagnets for transverse thermoelectric conversion, Nature, Volume 581 (2020) no. 7806, pp. 53-57 | DOI
[62] Nernst effect in high- superconductors, Phys. Rev. B, Volume 73 (2006) no. 2, 024510 | DOI
[63] Gaussian Superconducting Fluctuations, Thermal Transport, and the Nernst Effect, Phys. Rev. Lett., Volume 89 (2002) no. 28, 287001 | DOI
[64] Observation of the Nernst signal generated by fluctuating Cooper pairs, Nat. Phys., Volume 2 (2006) no. 10, pp. 683-686 | DOI
[65] Length scale for the superconducting Nernst signal above in NbSi, Phys. Rev. B, Volume 76 (2007) no. 21, 214504 | DOI
[66] Giant Nernst Effect due to Fluctuating Cooper Pairs in Superconductors, Phys. Rev. Lett., Volume 102 (2009) no. 6, 067001 | DOI
[67] Fluctuations of the superconducting order parameter as an origin of the Nernst effect, Eur. Phys. Lett., Volume 86 (2009) no. 2, 27007 | DOI
[68] Nernst Effect Measurements of Epitaxial CaBaCuZnO and CaBaCu Superconducting Films, Phys. Rev. Lett., Volume 102 (2009) no. 18, 187002 | DOI
[69] Decrease of upper critical field with underdoping in cuprate superconductors, Nat. Phys., Volume 8 (2012) no. 10, pp. 751-756 | DOI
[70] Nernst effect in the electron-doped cuprate superconductor PrCeCuO: Superconducting fluctuations, upper critical field , and the origin of the dome, Phys. Rev. B, Volume 90 (2014) no. 2, 024519 | DOI
[71] Pseudogap temperature of cuprate superconductors from the Nernst effect, Phys. Rev. B, Volume 97 (2018) no. 6, 064502 | DOI
[72] Universal Bound to the Amplitude of the Vortex Nernst Signal in Superconductors, Phys. Rev. Lett., Volume 126 (2021) no. 7, 077001 | DOI
Cited by Sources:
Interface enhanced superconductivity in FeSe/SrTiO and the hidden nature
Sha Han; Can-Li Song; Xu-Cun Ma; ...
C. R. Phys (2021)
Zhesheng Chen; Jonathan Caillaux; Jiuxiang Zhang; ...
C. R. Phys (2021)
TiO, ZnO, and SnO-based metal oxides for photocatalytic applications: principles and development
Olga Ishchenko; Vincent Rogé; Guillaume Lamblin; ...
C. R. Chim (2021)