Comptes Rendus
Research article
Gravitational quantum collapse in dilute systems
Comptes Rendus. Physique, Volume 23 (2022), pp. 27-40.

Penrose has suggested that large fluctuations of the gravitational energy of quantum systems, resulting from fluctuations of its density in space, may induce a quantum collapse mechanism [1], but he did not propose a precise dynamics for this process. We use the GBC (Gravitational Bohmian Collapse) model [2], which provides such a dynamics. The effects of collapse in dilute quantum systems are investigated, both in ordinary 3D space and in configuration space. We first discuss how a single result appears during a quantum measurement. The GBC model predicts a continuous but very fast evolution of the state vector that, at the end of the measurement, reproduces the von Neumann projection postulate. This ensures that the model remains compatible with the relativistic nosignaling constraint. In the absence of any measurement, we study the spontaneous effects of the GBC process, which depend on the quantum correlation function of observables with the spatial density operator. If the selected observable is the local current of the density fluid, we show that the collapse term leads to modifications of the Newton force, in a scalar or tensor form.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crphys.104
Keywords: quantum collapse, quantum measurement, modified Schrödinger dynamics, modified gravity, Penrose model
Keywords: mesure quantique, collapse dynamique, dynamique de Schrödinger modifiée, gravitation

Franck Laloë 1

1 Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond 75005 Paris, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRPHYS_2022__23_G1_27_0,
     author = {Franck Lalo\"e},
     title = {Gravitational quantum collapse in dilute systems},
     journal = {Comptes Rendus. Physique},
     pages = {27--40},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {23},
     year = {2022},
     doi = {10.5802/crphys.104},
     language = {en},
}
TY  - JOUR
AU  - Franck Laloë
TI  - Gravitational quantum collapse in dilute systems
JO  - Comptes Rendus. Physique
PY  - 2022
SP  - 27
EP  - 40
VL  - 23
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.104
LA  - en
ID  - CRPHYS_2022__23_G1_27_0
ER  - 
%0 Journal Article
%A Franck Laloë
%T Gravitational quantum collapse in dilute systems
%J Comptes Rendus. Physique
%D 2022
%P 27-40
%V 23
%I Académie des sciences, Paris
%R 10.5802/crphys.104
%G en
%F CRPHYS_2022__23_G1_27_0
Franck Laloë. Gravitational quantum collapse in dilute systems. Comptes Rendus. Physique, Volume 23 (2022), pp. 27-40. doi : 10.5802/crphys.104. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.104/

[1] Roger Penrose On gravity’s role in quantum state reduction, General Relativity and Gravitation, Volume 28 (1996) no. 5, pp. 581-600 | DOI | MR | Zbl

[2] Franck Laloë A model of quantum collapse induced by gravity, Eur. Phys. J. D, Volume 74 (2020), 25 | DOI

[3] John von Neumann Mathematical Foundations of Quantum Mechanics, Investigations in Physics, 2, Princeton University Press, 1955 | Zbl

[4] Gian Carlo Ghirardi; Alberto Rimini; T. Weber Unified dynamics for microscopic and macroscopic systems, Phys. Rev. D, Volume 34 (1986) no. 2, pp. 470-491 | DOI | MR | Zbl

[5] Philip Pearle Combining stochastic dynamical state-vector reduction with spontaneous localization, Phys. Rev. A, Volume 39 (1989) no. 5, pp. 2277-2289 | DOI

[6] Gian Carlo Ghirardi; Philip Pearle; Alberto Rimini Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles, Phys. Rev. A, Volume 42 (1990) no. 1, pp. 78-89 | DOI | MR

[7] Angelo Bassi; Kinjalk Lochan; Seema Satin; Tejinder P. Singh; Hendrik Ulbricht Models of wave function collapse, underlying theories and experimental tests, Rev. Mod. Phys., Volume 85 (2013) no. 2, pp. 471-527 | DOI

[8] Gian Carlo Ghirardi; Renata Grassi; Alberto Rimini Continuous-spontaneous-reduction models involving gravity, Phys. Rev. A, Volume 42 (1990) no. 3, pp. 1057-1064 | DOI

[9] Antoine Tilloy; Howard M. Wiseman Non-Markovian wave function collapse models are Bohmian-like theories in disguise, Quantum, Volume 5 (2021), 594, 20 pages | DOI

[10] Philip Pearle; Euan Squires Gravity, energy conservation, and parameter values in collapse models, Found. Phys., Volume 26 (1996), pp. 291-305 | DOI | MR

[11] Antoine Tilloy; Lajos Diósi Sourcing semiclassical gravity from spontaneously localized quantum matter, Phys. Rev. D, Volume 93 (2016) no. 2, 024026, 12 pages | DOI | MR

[12] Stephen L. Adler Gravitation and the noise needed in objective reduction models, Quantum nonlocality and reality. 50 years of Bell’s theorem, Cambridge University Press, 2016 | DOI | Zbl

[13] Giulio Gasbarri; Marko Toroš; Sandro Donadi; Angelo Bassi Gravity induced wave function collapse, Phys. Rev. D, Volume 96 (2017) no. 10, 104013, 13 pages | DOI | MR

[14] Nicolas Gisin Stochastic quantum dynamics and relativity, Helv. Phys. Acta, Volume 62 (1989) no. 4, pp. 363-371 | MR

[15] Angelo Bassi; Kasra Hejazi No-faster-than-light-signaling implies linear evolution. A re-derivation, Eur. J. Phys., Volume 36 (2015) no. 5, 055027 | DOI | Zbl

[16] Lajos Diósi Gravity related spontaneous wave function collapse in bulk matter, New J. Phys., Volume 16 (2014) no. 10, 105006 | DOI | MR | Zbl

[17] Mohammad Bahrami; André Großardt; Sandro Donadi; Angelo Bassi The Schrödinger–Newton equation and its foundations, New Journ. Phys., Volume 16 (2014) no. 11, 115007 | DOI | Zbl

[18] Lajos Diósi; Tibor N. Papp Schrödinger–Newton equation with a complex Newton constant and induced gravity, Phys. Lett., A, Volume 373 (2009) no. 36, pp. 3244-3247 | DOI | Zbl

[19] Louis de Broglie La mécanique ondulatoire et la structure atomique de la matière et du rayonnement, J. Phys. Radium, Volume 8 (1927) no. 7, pp. 225-241 english translation published as “Interpretation of quantum mechanics by the double solution theory”, in Annales de la Fondation Louis de Broglie, Vol. 12, no. 4 (1987) | DOI

[20] Geneviève Tastevin; Franck Laloë The outcomes of measurement in the de Broglie–Bohm, Comptes Rendus. Physique, Volume 22 (2021) no. 1, pp. 99-116 | DOI

[21] Antony Valentini Signal-locality, uncertainty, and the subquantum H-theorem. II, Phys. Lett., A, Volume 158 (1991) no. 1-2, pp. 1-8 | DOI | MR

[22] Antony Valentini Signal-locality in hidden-variables theories, Phys. Lett., A, Volume 297 (2002) no. 5-6, pp. 273-278 | DOI | MR | Zbl

[23] Antony Valentini; Hans Westman Dynamical origin of quantum probabilities, Proc. R. Soc. Lond., Ser. A, Volume 461 (2004), pp. 253-272 | DOI | Zbl

[24] M. D. Towler; N. J. Russell; Antony Valentini Time scales for dynamical relaxation to the Born rule, Proc. R. Soc. Lond., Ser. A, Volume 468 (2015) no. 2140, pp. 990-1013 | DOI | MR | Zbl

[25] Ward Struyve Semi-classical approximations based on Bohmian mechanics (2015) (https://arxiv.org/abs/1507.04771v1)

[26] Ward Struyve Towards a novel approach to semi-classical gravity, The philosophy of cosmology, Cambridge University Press, 2017, pp. 356-373 | DOI

[27] Patrick Peter; Emmanuel J. C. Pinho; Nelson Pinto-Neto Tensor perturbations in quantum cosmological backgrounds, J. Cosmol. Astropart. Phys., Volume 2005 (2005) no. 7, p. 014-014 | DOI | MR | Zbl

[28] Patrick Peter; Emmanuel J. C. Pinho; Nelson Pinto-Neto Gravitational wave background in perfect fluid quantum cosmologies, Phys. Rev. D, Volume 73 (2006) no. 10, 104017, 11 pages | DOI | MR

[29] Emmanuel J. C. Pinho; Nelson Pinto-Neto Scalar and vector perturbations in quantum cosmological backgrounds, Phys. Rev. D, Volume 76 (2007) no. 2, 023506, 21 pages | DOI | Zbl

[30] Louis de Broglie La mécanique ondulatoire et la structure atomique de la matière et du rayonnement, J. Phys. Radium, Volume 8 (1927), pp. 225-241 | DOI | Zbl

[31] Louis de Broglie Tentative d’interprétation causale et non linéaire de la mécanique ondulatoire. (La théorie de la double solution.), Gauthier-Villars, 1956 | Zbl

[32] N. David Mermin Commentary Quantum mechanics: fixing the shifty split, Physics Today, Volume 65 (2012) no. 7, 8 | DOI

[33] John S. Bell The theory of local beables, Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press, 2004, pp. 52-62 first edition in Epistemological Letters (1976)

[34] John S. Bell Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press, 2004 (contains the complete set of J. Bell’s articles on Quantum Mechanics) | DOI | Zbl

Cited by Sources:

Comments - Policy