Comptes Rendus
Correction de la dispersion atmosphérique dans l’imagerie par les grands télescopes et les interféromètres astronomiques
Comptes Rendus. Physique, Volume 23 (2022) no. S1, pp. 345-364.

Les très grands télescopes et les divers interféromètres optiques permettent d’accéder à des résolutions angulaires inégalées et fournissent des données scientifiques de première importance, mais au prix de contraintes instrumentales qui demandent des équipements complexes. La correction de la dispersion atmosphérique (i.e. de la variation d’indice de l’air avec la longueur d’onde) est l’une d’elles. Cette dispersion se présente sous trois formes  : la dispersion angulaire (l’image d’une étoile est étalée en un petit spectre) ; la dispersion longitudinale (i.e. en différence de marche entre voies d’un interféromètre, pour la correction de laquelle nous proposons une technique nouvelle à notre connaissance) ; enfin la dispersion latérale, liée à la coloration de la scintillation. On évoque aussi la question de la stabilisation de la différence de marche dans les interféromètres optiques.

The very large telescopes and the various optical interferometers provide access to unparalleled angular resolutions and provide scientific data of primary importance, but at the price of instrumental constraints that require complex equipment. The correction of the atmospheric dispersion (i.e. of the variation of the air refractive index versus the wavelength) is one of these constraints. This dispersion comes in three forms: the angular dispersion (the image of a star is spread out into a small spectrum); the dispersion in optical path difference in an interferometer (for the correction of which we propose a new technique to our knowledge); and the lateral dispersion that is related to the apparition of colours in the scintillation. The question of stabilizing the optical path difference in optical interferometers is also raised.

Reçu le :
Révisé le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/crphys.112
Mot clés : Haute résolution angulaire, Interféromètres astronomiques, Interférométrie des tavelures, Dispersion, Prismes de Risley, Interféromètre achromatique de Sinton
Keywords: High angular resolution, Stellar interferometers, Speckle interferometry, Dispersion, Risley prisms, Sinton’s achromatic interferometer
Laurent Koechlin 1 ; Luc Dettwiller 2

1 Astronome émérite, Institut de recherches en astrophysique et planétologie, Université de Toulouse, CNRS, France
2 Université Jean Monnet Saint-Etienne, CNRS, Institut d Optique Graduate School, Laboratoire Hubert Curien UMR 5516, F-42023, SAINT-ETIENNE, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2022__23_S1_345_0,
     author = {Laurent Koechlin and Luc Dettwiller},
     title = {Correction de la dispersion atmosph\'erique dans l{\textquoteright}imagerie par les grands t\'elescopes et les interf\'erom\`etres astronomiques},
     journal = {Comptes Rendus. Physique},
     pages = {345--364},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {23},
     number = {S1},
     year = {2022},
     doi = {10.5802/crphys.112},
     language = {fr},
}
TY  - JOUR
AU  - Laurent Koechlin
AU  - Luc Dettwiller
TI  - Correction de la dispersion atmosphérique dans l’imagerie par les grands télescopes et les interféromètres astronomiques
JO  - Comptes Rendus. Physique
PY  - 2022
SP  - 345
EP  - 364
VL  - 23
IS  - S1
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.112
LA  - fr
ID  - CRPHYS_2022__23_S1_345_0
ER  - 
%0 Journal Article
%A Laurent Koechlin
%A Luc Dettwiller
%T Correction de la dispersion atmosphérique dans l’imagerie par les grands télescopes et les interféromètres astronomiques
%J Comptes Rendus. Physique
%D 2022
%P 345-364
%V 23
%N S1
%I Académie des sciences, Paris
%R 10.5802/crphys.112
%G fr
%F CRPHYS_2022__23_S1_345_0
Laurent Koechlin; Luc Dettwiller. Correction de la dispersion atmosphérique dans l’imagerie par les grands télescopes et les interféromètres astronomiques. Comptes Rendus. Physique, Volume 23 (2022) no. S1, pp. 345-364. doi : 10.5802/crphys.112. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.112/

[1] J. Texereau La construction du télescope d’amateur, Société Astronomique de France, Paris, 1961

[2] P. Léna; D. Rouan; F. Lebrun; F. Mignard; D. Pelat L’observation en astrophysique, EDP Sciences, Les Ulis, 2008

[3] L. Dettwiller Panorama historique de l’étude de la réfraction astronomique : une histoire méconnue entre optique, mathématiques et géodésie, C. R. Phys., Volume 23 (2022) no. S1, pp. 13-62 | DOI

[4] L. Dettwiller Short review on the refractive index of air as a function of temperature, pressure, humidity and ionization, 2022 (preprint) | arXiv

[5] T. A. ten Brummelaar Differential path considerations in optical stellar interferometry, Appl. Opt., Volume 34 (1994), pp. 2214-2219 | DOI

[6] A. V. Goncharov; N. Devaney; C. Dainty Atmospheric dispersion compensation for extremely large telescopes, Opt. Express, Volume 15 (2007), pp. 1534-1542 | DOI

[7] T. Nakajima Zenith-distance dependence of chromatic shear effect : a limiting factor for an extreme adaptive optics system, Astrophys. J., Volume 652 (2006), pp. 1782-1786 | DOI

[8] Lord Rayleigh On the theory of stellar scintillation, Phil. Mag., Volume 36 (1893), pp. 129-142 | Zbl

[9] N. Devaney; A. V. Goncharov; C. J. Dainty Chromatic effects of the atmosphere on astronomical adaptive optics, Appl. Opt., Volume 47 (2008), pp. 1072-1081 | DOI

[10] R. J. Sasiela Strehl ratios with various types of anisoplanatism, J. Opt. Soc. Am. A, Volume 9 (1992), pp. 1398-1406 | DOI

[11] H. Labriji; O. Herscovici-Schiller; F. Cassaing Computation of the lateral shift due to atmospheric refraction, Astron. Astrophys., Volume 662 (2022) article n° A61, (15 p.) | DOI

[12] W. M. Sinton On an achromatic stellar interferometer, Astron. J., Volume 56 (1951), pp. 140-141 | DOI

[13] W. M. Sinton An achromatic stellar interferometer, Astron. J., Volume 59 (1954), pp. 369-375 | DOI

[14] W. S. Finsen A critical evaluation of Sinton’s achromatic interferometer, J. Observateurs, Volume 38 (1955), pp. 217-220

[15] A. Danjon On the interferometric measurement of small angular distances, Vist. Astron., Volume 1 (1955), pp. 377-385 | DOI

[16] G. Rousset; T. Fusco Optique adaptative : correction des effets de la turbulence atmosphérique sur les images astronomiques, C. R. Phys., Volume 23 (2022) no. S1, pp. 293-344 | DOI

[17] A. T. Young Saturation of scintillation, J. Opt. Soc. Am., Volume 60 (1970), pp. 1495-1500 | DOI

[18] J. A. van den Born; W. Jellema Quantification of the expected residual dispersion of the MICADO Near-IR imaging instrument, Mon. Not. R. Astron. Soc., Volume 496 (2020), pp. 4266-4275 | DOI

[19] M. M. Colavita; J. K. Wallace; B. E. Hines; Y. Gursel; F. Malbet; D. L. Palmer; X. P. Pan; M. Shao; J. W. Yu; A. F. Boden; P. J. Dumont; J. Gubler; C. D. Koresko; S. R. Kulkarni; B. F. Lane; D. W. Mobley; G. T. van Belle The Palomar testbed interferometer, Astrophys. J., Volume 510 (1999), pp. 505-521 | DOI

[20] Gravity Collaboration; R. Abuter et al. First light for GRAVITY : Phase referencing optical interferometry for the Very Large Telescope Interferometer, Astron. Astrophys., Volume 602 (2017) article n° A94, (23 p.) | DOI

[21] Sur la mesure du diamètre des plus grandes planètes, Hist. Acad. R. Sci. année 1748 (1752), pp. 87-94

[22] L. Dettwiller L’invariant de Bouguer et ses conséquences : commentaire historique, C. R. Phys., Volume 23 (2022) no. S1, pp. 415-452 | DOI

[23] P. Bouguer De la mesure du diamètre des plus grandes planètes : Description d’un nouvel Instrument qu’on peut nommer Héliomètre, propre à les déterminer ; & Observations sur le Soleil, Mém. Acad. R. Sci. année 1748 (1752), pp. 11-34

[24] L. Dettwiller Propriétés remarquables de la réfraction astronomique dans une atmosphère à symétrie sphérique, C. R. Phys., Volume 23 (2022) no. S1, pp. 63-102 | DOI

[25] F. Arago Sur les pouvoirs dispersifs, Œuvres complètes, t. 11 (J.-A. Barral, ed.), Volume 2, Gide, Paris, 1859, pp. 733-748

[26] G. B. Airy On the Eye-piece for correction of atmospheric dispersion, Mon. Not. R. Astron. Soc., Volume 30 (1870), pp. 57-59 | DOI

[27] D. Bonneau Mieux voir les étoiles – 1 er siècle de l’interférométrie optique, EDP Sciences, Les Ulis, 2019

[28] J. A. Anderson Applications of Michelson’s interferometer method to the measurememnt of close double stars, Astrophys. J., Volume 51 (1920), pp. 263-275 | DOI

[29] A. F. Brown; H. J. Hoxie Double stars measured by interference method, Popular Astron., Volume 36 (1928), pp. 385-387

[30] W. S. Finsen Compensation for atmospheric dispersion in double star interferometry, Mon. Notes Astron. Soc. S. Afr., Volume 10 (1951), pp. 7-8

[31] W. S. Finsen The significance of atmospheric dispersion in astronomical interferometry, Circ. Union Observ. Johannesburg, Volume 112 (1951), pp. 82-86

[32] W. S. Finsen The Airy-Simms eyepiece for neutralizing atmospheric dispersion, Observatory, Volume 87 (1967), pp. 41-42

[33] R. H. Wilson Construction and use of an interferometer for measurement of close double stars with the eighteen-inch refractor. Continuation of the use of the interferometer for close double star measurements at Flower Observatory, Publications of the University of Pennsylvania (Astronomical Series), Volume 6, University of Pennsylvania Press, Philadelphie, 1941, pp. 1-32 (part IV)

[34] H. M. Jeffers Measures of double stars, Lick Obs. Bull., Volume 19 (1947), pp. 175-181

[35] C. G. Wynne Correction of atmospheric dispersion in the infrared, Mon. Not. R. Astron. Soc., Volume 282 (1996), pp. 863-867 | DOI

[36] D. Y. Gezari; A. Labeyrie; R. V. Stachnik Speckle interferometry : diffraction-limited measurements of nine stars with the 200-inch telescope, Astrophys. J., Volume 173 (1972), p. L1-L5 | DOI

[37] D. Bonneau; A. Labeyrie Speckle interferometry : color-dependent limb darkening evidenced on alpha Orionis and omicron Ceti, Astrophys. J., Volume 181 (1973), p. L1-L4 | DOI

[38] A. Labeyrie Attainment of diffraction limited resolution in large telescopes by Fourier analysing speckle patterns in star images, Astron. Astrophys., Volume 6 (1970), pp. 85-87

[39] C. G. Wynne; S. P. Worswick Atmospheric dispersion correctors at the Cassegrain focus, Mon. Not. R. Astron. Soc., Volume 220 (1986), pp. 657-670 | DOI

[40] C. G. Wynne A new form of atmospheric dispersion corrector, Mon. Not. R. Astron. Soc., Volume 262 (1993), pp. 741-748 | DOI

[41] C. G. Wynne Atmospheric dispersion in very large telescopes with adaptive optics, Mon. Not. R. Astron. Soc., Volume 285 (1997), pp. 130-134 | DOI

[42] G. Avila; G. Rupprecht; J. M. Beckers Atmospheric dispersion correction for the FORS focal reducers at ESO VLT, Proc. SPIE, Volume 2871 (1996), pp. 1135-1143 | DOI

[43] E. Ketteler Ueber die Dispersion des Lichts in den Gasen, Ann. Phys. (Leipzig), Volume 200 (1865), pp. 390-406 | DOI

[44] A. A. Michelson Some recent application of interference methods, Proc. Phys. Soc. Lond., Volume 33 (1920), pp. 275-285 | DOI

[45] A. Labeyrie Interference fringes obtained on Vega with two optical telescopes, Astrophys. J., Volume 196 (1975), p. L71-L75 | DOI

[46] C. A. Hummel; J. T. Armstrong; A. Quirrenbach; D. F. Buscher; D. Morkuzevich; N. M. Elias II Very high precision orbit of Capella by long baseline interferometry, Astron. J., Volume 107 (1994), pp. 1859-1867 | DOI

[47] J. E. Baldwin; M. G. Beckett; R. C. Boysen; D. Burns; D. F. Buscher; G. C. Cox; C. A. Haniff; C. D. Mackay; N. S. Nightingale; J. Rogers; P. A. G. Scheuer; T. R. Scott; P. G. Tuthill; P. J. Warner; D. M. A. Wilson; R. W. Wilson The first images from an optical aperture synthesis array : mapping of Capella with COAST at two epochs, Astron. Astrophys., Volume 306 (1996), p. L1-L16

[48] J. T. Armstrong; D. Mozurkewich; L. J. Rickard; D. J. Hutter; J. A. Benson; P. F. Bowers; N. M. Elias II; C. A. Hummel; K. J. Johnston; D. F. Buscher; J. H. Clark III; L. Ha; L.-C. Ling; N. M. White; R. S. Simon The navy prototype optical interferometer, Astrophys. J., Volume 496 (1998), pp. 550-571 | DOI

[49] T. A. ten Brummelaar; H. A. McAllister; S. T. Ridgway; W. G. Bagnuolo Jr.; N. H. Turner; L. Sturmann; J. Sturmann; D. H. Berger; C. E. Ogden; R. Cadman; W. I. Hartkopf; C. H. Hopper; M. A. Shure First results from the CHARA array. II. A description of the instrument, Astrophys. J., Volume 628 (2005), pp. 453-465 | DOI

[50] F. Roddier Triple correlation as a phase closure technique, Opt. Commun., Volume 60 (1986), pp. 145-148 | DOI

[51] Y. Kok; M. J. Ireland; P. G. Tuthill; J. G. Robertson; B. A. Warrington; A. C. Rizzuto; W. J. Tango Phase-referenced interferometry and narrow-angle astrometry with SUSI, J. Astron. Instrum., Volume 2 (2013), p. 1340011-1–1340011-32 | DOI

[52] S. Gillessen; G. Perrin; W. Brandner; C. Straubmeier; F. Eisenhauer; S. Rabien; A. Eckart; P. Lena; R. Genzel; T. Paumard; S. Hippler GRAVITY : the adaptive-optics-assisted two-object beam combiner for the VLTI, Proc. SPIE, Volume 6268 (2006), p. 626811-1–626811-9 | DOI

[53] Gravity Collaboration; R. Abuter et al. Detection of orbital motions near the last stable circular orbit of the massive black hole SgrA*, Astron. Astrophys., Volume 618 (2018) article n° L10, (15 p.) | DOI

[54] Gravity Collaboration; M. Nowak et al. Direct confirmation of the radial velocity planet β Pictoris c, Astron. Astrophys., Volume 642 (2020) article n° L2, (8 p.)

[55] D. D. S. Hale; M. Bester; W. C. Danchi; W. Fitelson; S. Hoss; E. A. Lipman; J. D. Monnier; P. G. Tuthill; C. H. Townes The Berkeley infrared spatial interferometer : a heterodyne stellar interferometer for the mid-infrared, Astrophys. J., Volume 537 (2000), pp. 998-1012 | DOI

[56] A. Glindemann; J. Argomedo; R. Amestica; P. Ballester; B. Bauvir et al. The VLTI – A status report, Proc. SPIE, Volume 4838 (2003), pp. 89-100 | DOI

[57] J. M. Hill; R. F. Green; J. H. Slagle The Large Binocular Telescope, Proc. SPIE, Volume 6267 (2006), pp. 1-15

[58] P. Léna Une histoire de flou – Miroirs, trous noirs et autres mondes, Le Pommier, Paris, 2019 | Numdam

[59] M. G. Lacasse; W. A. Traub Glass compensation for an air filled delay line, High-Resolution Imaging by Interferometry (F. Merkle, ed.) (European Southern Observatory), Garching bei München (RFA), 1988, pp. 959-970

[60] W. J. Tango Dispersion in stellar interferometry, Appl. Opt., Volume 29 (1990), pp. 516-521 | DOI

[61] C. Pannetier; D. Mourard; F. Cassaing; S. Lagarde; J.-B. Le Bouquin; J. Monnier; J. Sturmann; T. ten Brummelaar Compensation of differential dispersion : application to multiband stellar interferometry, Mon. Not. R. Astron. Soc., Volume 507 (2021), pp. 1369-1380 | DOI

[62] P. R. Lawson; J. Davis Dispersion compensation in stellar interferometry, Appl. Opt., Volume 35 (1996), pp. 612-620 | DOI

[63] L. Koechlin; P. R. Lawson; D. Mourard; A. Blazit; D. Bonneau; F. Morand; P. Stee; I. Tallon-Bosc; F. Vakili Dispersed fringe tracking with the multi-r 0 apertures of the Grand Interféromètre à 2 Télescopes, Appl. Opt., Volume 35 (1996), pp. 3002-3009 | DOI

[64] E. P. Wallner Minimizing atmospheric dispersion effects in compensated imaging, J. Opt. Soc. Am., Volume 67 (1977), pp. 407-409 | DOI

[65] R. Foy; A. Migus; F. Biraben; G. Grynberg; P. R. McCullough; M. Tallon The polychromatic artificial sodium star : a new concept for correcting the atmospheric tilt, Astron. Astrophys. Suppl. Ser., Volume 111 (1995), pp. 569-578

[66] J.-P. Pérez Optique géométrique et ondulatoire, Masson, Paris, 1994 | Numdam

[67] M. Born; E. Wolf Principles of Optics – Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Pergamon Press, Oxford, 1980

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Les effets optiques de la turbulence atmosphérique dans les images astronomiques

Daniel Bonneau

C. R. Phys (2022)


Optique adaptative  : correction des effets de la turbulence atmosphérique sur les images astronomiques

Gérard Rousset; Thierry Fusco

C. R. Phys (2022)